L ∞ Spaces of Vector-Valued Functions as Spaces of Continuous Functions

It is proved that for any decomposable perfect measure space ( , , ), the space ∗∞ ( , *) of essentially bounded weak* measurable functions on to * is linearly isometric to the space ( , ∗*) of continuous functions on to ∗*, the latter space is being provided with the supremum norm ‖ ‖∞ = sup ∈ ‖ (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Fen Dergisi Jg. 19; H. 1; S. 1 - 7
1. Verfasser: Güntürk, Banu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 27.05.2024
ISSN:1306-7575, 1306-7575
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is proved that for any decomposable perfect measure space ( , , ), the space ∗∞ ( , *) of essentially bounded weak* measurable functions on to * is linearly isometric to the space ( , ∗*) of continuous functions on to ∗*, the latter space is being provided with the supremum norm ‖ ‖∞ = sup ∈ ‖ ( )‖⁡ where ∗* stands for the space * endowed with its weak* topology.
ISSN:1306-7575
1306-7575
DOI:10.29233/sdufeffd.1396580