L ∞ Spaces of Vector-Valued Functions as Spaces of Continuous Functions
It is proved that for any decomposable perfect measure space ( , , ), the space ∗∞ ( , *) of essentially bounded weak* measurable functions on to * is linearly isometric to the space ( , ∗*) of continuous functions on to ∗*, the latter space is being provided with the supremum norm ‖ ‖∞ = sup ∈ ‖ (...
Gespeichert in:
| Veröffentlicht in: | Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Fen Dergisi Jg. 19; H. 1; S. 1 - 7 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
27.05.2024
|
| ISSN: | 1306-7575, 1306-7575 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | It is proved that for any decomposable perfect measure space ( , , ), the space ∗∞ ( , *) of essentially bounded weak* measurable functions on to * is linearly isometric to the space ( , ∗*) of continuous functions on to ∗*, the latter space is being provided with the supremum norm ‖ ‖∞ = sup ∈ ‖ ( )‖ where ∗* stands for the space * endowed with its weak* topology. |
|---|---|
| ISSN: | 1306-7575 1306-7575 |
| DOI: | 10.29233/sdufeffd.1396580 |