L ∞ Spaces of Vector-Valued Functions as Spaces of Continuous Functions

It is proved that for any decomposable perfect measure space ( , , ), the space ∗∞ ( , *) of essentially bounded weak* measurable functions on to * is linearly isometric to the space ( , ∗*) of continuous functions on to ∗*, the latter space is being provided with the supremum norm ‖ ‖∞ = sup ∈ ‖ (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Fen Dergisi Ročník 19; číslo 1; s. 1 - 7
Hlavní autor: Güntürk, Banu
Médium: Journal Article
Jazyk:angličtina
Vydáno: 27.05.2024
ISSN:1306-7575, 1306-7575
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is proved that for any decomposable perfect measure space ( , , ), the space ∗∞ ( , *) of essentially bounded weak* measurable functions on to * is linearly isometric to the space ( , ∗*) of continuous functions on to ∗*, the latter space is being provided with the supremum norm ‖ ‖∞ = sup ∈ ‖ ( )‖⁡ where ∗* stands for the space * endowed with its weak* topology.
ISSN:1306-7575
1306-7575
DOI:10.29233/sdufeffd.1396580