L ∞ Spaces of Vector-Valued Functions as Spaces of Continuous Functions
It is proved that for any decomposable perfect measure space ( , , ), the space ∗∞ ( , *) of essentially bounded weak* measurable functions on to * is linearly isometric to the space ( , ∗*) of continuous functions on to ∗*, the latter space is being provided with the supremum norm ‖ ‖∞ = sup ∈ ‖ (...
Uloženo v:
| Vydáno v: | Süleyman Demirel Üniversitesi Fen-Edebiyat Fakültesi Fen Dergisi Ročník 19; číslo 1; s. 1 - 7 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
27.05.2024
|
| ISSN: | 1306-7575, 1306-7575 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | It is proved that for any decomposable perfect measure space ( , , ), the space ∗∞ ( , *) of essentially bounded weak* measurable functions on to * is linearly isometric to the space ( , ∗*) of continuous functions on to ∗*, the latter space is being provided with the supremum norm ‖ ‖∞ = sup ∈ ‖ ( )‖ where ∗* stands for the space * endowed with its weak* topology. |
|---|---|
| ISSN: | 1306-7575 1306-7575 |
| DOI: | 10.29233/sdufeffd.1396580 |