Approximate Counting for Spin Systems in Sub-Quadratic Time
We present two randomised approximate counting algorithms with $\widetilde{O}(n^{2-c}/\varepsilon^2)$ running time for some constant $c>0$ and accuracy $\varepsilon$: (1) for the hard-core model with fugacity $\lambda$ on graphs with maximum degree $\Delta$ when $\lambda=O(\Delta^{-1.5-c_1})$ whe...
Gespeichert in:
| Veröffentlicht in: | TheoretiCS Jg. 4 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
13.01.2025
|
| ISSN: | 2751-4838, 2751-4838 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present two randomised approximate counting algorithms with $\widetilde{O}(n^{2-c}/\varepsilon^2)$ running time for some constant $c>0$ and accuracy $\varepsilon$: (1) for the hard-core model with fugacity $\lambda$ on graphs with maximum degree $\Delta$ when $\lambda=O(\Delta^{-1.5-c_1})$ where $c_1=c/(2-2c)$; (2) for spin systems with strong spatial mixing (SSM) on planar graphs with quadratic growth, such as $\mathbb{Z}^2$. For the hard-core model, Weitz's algorithm (STOC, 2006) achieves sub-quadratic running time when correlation decays faster than the neighbourhood growth, namely when $\lambda = o(\Delta^{-2})$. Our first algorithm does not require this property and extends the range where sub-quadratic algorithms exist. Our second algorithm appears to be the first to achieve sub-quadratic running time up to the SSM threshold, albeit on a restricted family of graphs. It also extends to (not necessarily planar) graphs with polynomial growth, such as $\mathbb{Z}^d$, but with a running time of the form $\widetilde{O}\left(n^2\varepsilon^{-2}/2^{c(\log n)^{1/d}}\right)$ where $d$ is the exponent of the polynomial growth and $c>0$ is some constant.
Comment: 27 pages. This is the TheoretiCS journal version |
|---|---|
| ISSN: | 2751-4838 2751-4838 |
| DOI: | 10.46298/theoretics.25.3 |