Machine Learning for Science: State of the Art and Future Prospects

Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Science (American Association for the Advancement of Science) Ročník 293; číslo 5537; s. 2051 - 2055
Hlavní autoři: Mjolsness, Eric, DeCoste, Dennis
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Society for the Advancement of Science 14.09.2001
American Association for the Advancement of Science
The American Association for the Advancement of Science
Témata:
ISSN:0036-8075, 1095-9203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods and their relevance to scientific applications. We conclude with some speculations on near-term progress and promising directions.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Commentary-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0036-8075
1095-9203
DOI:10.1126/science.293.5537.2051