Machine Learning for Science: State of the Art and Future Prospects
Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods...
Uloženo v:
| Vydáno v: | Science (American Association for the Advancement of Science) Ročník 293; číslo 5537; s. 2051 - 2055 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Society for the Advancement of Science
14.09.2001
American Association for the Advancement of Science The American Association for the Advancement of Science |
| Témata: | |
| ISSN: | 0036-8075, 1095-9203 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods and their relevance to scientific applications. We conclude with some speculations on near-term progress and promising directions. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Commentary-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| ISSN: | 0036-8075 1095-9203 |
| DOI: | 10.1126/science.293.5537.2051 |