Machine Learning for Science: State of the Art and Future Prospects

Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) Jg. 293; H. 5537; S. 2051 - 2055
Hauptverfasser: Mjolsness, Eric, DeCoste, Dennis
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Society for the Advancement of Science 14.09.2001
American Association for the Advancement of Science
The American Association for the Advancement of Science
Schlagworte:
ISSN:0036-8075, 1095-9203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in machine learning methods, along with successful applications across a wide variety of fields such as planetary science and bioinformatics, promise powerful new tools for practicing scientists. This viewpoint highlights some useful characteristics of modern machine learning methods and their relevance to scientific applications. We conclude with some speculations on near-term progress and promising directions.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Commentary-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0036-8075
1095-9203
DOI:10.1126/science.293.5537.2051