Defect-Engineered Metal-Organic Frameworks
Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical...
Saved in:
| Published in: | Angewandte Chemie International Edition Vol. 54; no. 25; pp. 7234 - 7254 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
WILEY-VCH Verlag
15.06.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Edition: | International ed. in English |
| Subjects: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect‐engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect‐engineered CNCs.
Designer defects: Defects in coordination network compounds (CNCs) are defined as “sites that locally break the regular periodic arrangement of atoms or ions of the static crystalline parent framework due to missing or incorrectly dislocated atoms or ions”. This Review provides both a concise overview of defects in CNCs (including their classification and characterizations) and applications of defective CNCs/MOFs. |
|---|---|
| AbstractList | Defect engineering in metal-organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of "defect-engineering" concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect-engineered CNCs. Defect engineering in metal-organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of "defect-engineering" concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect-engineered CNCs.Defect engineering in metal-organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of "defect-engineering" concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect-engineered CNCs. Defect engineering in metal-organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of "defect-engineering" concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect-engineered CNCs. Designer defects: Defects in coordination network compounds (CNCs) are defined as "sites that locally break the regular periodic arrangement of atoms or ions of the static crystalline parent framework due to missing or incorrectly dislocated atoms or ions". This Review provides both a concise overview of defects in CNCs (including their classification and characterizations) and applications of defective CNCs/MOFs. Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect‐engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect‐engineered CNCs. Designer defects: Defects in coordination network compounds (CNCs) are defined as “sites that locally break the regular periodic arrangement of atoms or ions of the static crystalline parent framework due to missing or incorrectly dislocated atoms or ions”. This Review provides both a concise overview of defects in CNCs (including their classification and characterizations) and applications of defective CNCs/MOFs. |
| Author | De Vos, Dirk E. Fischer, Roland A. Fang, Zhenlan Bueken, Bart |
| Author_xml | – sequence: 1 givenname: Zhenlan surname: Fang fullname: Fang, Zhenlan email: iamzlfang@njtech.edu.cn organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816 (V.R. China) – sequence: 2 givenname: Bart surname: Bueken fullname: Bueken, Bart email: bart.bueken@biw.kuleuven.be organization: Centre for Surface Chemistry and Catalysis, KULeuven, Kasteelpark Arenberg 23, 3001 Leuven (Belgien) – sequence: 3 givenname: Dirk E. surname: De Vos fullname: De Vos, Dirk E. email: dirk.devos@biw.kuleuven.be organization: Centre for Surface Chemistry and Catalysis, KULeuven, Kasteelpark Arenberg 23, 3001 Leuven (Belgien) – sequence: 4 givenname: Roland A. surname: Fischer fullname: Fischer, Roland A. email: roland.fischer@rub.de organization: Inorganic Chemistry II-Organometallics & Material Chemistry, Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum (Germany) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26036179$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkd9rFDEQx4NU7A999VEKvhRhz8mvye6LUOr1rPRaQUXxJWRzs2favd2a7Fn735vj2qMWpE8JzOfzzWRml211fUeMveQw4gDiresCjQRwxblW8ITtcC14IY2RW_mupCxMqfk2203pIvNlCfiMbQsEidxUO-zNe2rID8W4m4eOKNJsf0qDa4vzOM_Zfv84ugVd9_EyPWdPG9cmenF77rGvx-MvRx-K0_PJydHhaeFNKaDAGr2i_JQSCoSvuZNGgBCErpxpFI3SOpeUnuWCRAlOKF4DVqgblLWXe-zdOvdqWS9o5qkbomvtVQwLF29s74L9t9KFn3be_7ZKczAccsDBbUDsfy0pDXYRkqe2dR31y2S5UQpNBYCPo1gBahBSZfT1A_SiX8YuTyJTZVUKVCgy9ep-85uu7yaeAbUGfOxTitRYHwY3hH71l9BaDna1WLtarN0sNmujB9pd8n-Fai1ch5ZuHqHt4dnJ-L5brN2QBvqzcV28tGik0fbb2cTi5Pv088fpD_tJ_gVs-cF8 |
| CODEN | ACIEAY |
| CitedBy_id | crossref_primary_10_1038_s41578_020_0225_x crossref_primary_10_1038_nenergy_2016_184 crossref_primary_10_1016_j_jallcom_2022_165259 crossref_primary_10_1039_C5CC10072K crossref_primary_10_1016_j_micromeso_2017_02_031 crossref_primary_10_1016_j_jallcom_2021_160886 crossref_primary_10_1039_D0CY01946A crossref_primary_10_1039_D0CY00638F crossref_primary_10_1016_j_fuel_2022_126012 crossref_primary_10_1002_ange_201610914 crossref_primary_10_1016_j_ccr_2024_216356 crossref_primary_10_1016_j_jcis_2018_04_063 crossref_primary_10_1016_j_jcis_2025_138233 crossref_primary_10_1002_ange_201700835 crossref_primary_10_1016_j_ccr_2024_216354 crossref_primary_10_1002_adma_201700213 crossref_primary_10_1002_ece2_70010 crossref_primary_10_1016_j_enconman_2016_07_069 crossref_primary_10_1039_C9RA10412G crossref_primary_10_3390_ma14020310 crossref_primary_10_1002_aenm_202002091 crossref_primary_10_1039_D3NR05821B crossref_primary_10_1016_j_apcatb_2021_120885 crossref_primary_10_1021_jacs_3c14739 crossref_primary_10_1002_anie_202210466 crossref_primary_10_1016_j_cej_2022_141063 crossref_primary_10_1038_s41570_017_0056 crossref_primary_10_1002_ange_201700962 crossref_primary_10_1016_j_chemosphere_2021_130997 crossref_primary_10_1039_D4TA07509A crossref_primary_10_1016_j_mcat_2023_113116 crossref_primary_10_1021_acs_jpcb_8b08094 crossref_primary_10_3762_bjnano_13_67 crossref_primary_10_1039_C9CC07953J crossref_primary_10_1016_j_ccr_2021_214107 crossref_primary_10_1002_ange_202218252 crossref_primary_10_1007_s40843_018_9393_x crossref_primary_10_1016_j_matt_2021_06_045 crossref_primary_10_1016_j_jcat_2018_07_032 crossref_primary_10_1002_anie_202405676 crossref_primary_10_1002_ange_202000385 crossref_primary_10_1002_ejic_201700597 crossref_primary_10_1016_j_cej_2025_160671 crossref_primary_10_1002_cctc_201601689 crossref_primary_10_1021_acs_chemmater_5c00914 crossref_primary_10_1002_slct_202002897 crossref_primary_10_1016_j_jiec_2019_04_049 crossref_primary_10_3390_molecules26195736 crossref_primary_10_1007_s40820_023_01291_3 crossref_primary_10_1016_j_cej_2023_141326 crossref_primary_10_1002_smll_202103530 crossref_primary_10_1002_smll_202506717 crossref_primary_10_1016_j_foodchem_2024_139378 crossref_primary_10_1016_j_apcatb_2019_117746 crossref_primary_10_1016_j_jece_2022_108734 crossref_primary_10_1016_j_ccr_2015_08_001 crossref_primary_10_1002_smll_202001998 crossref_primary_10_1002_smll_202307236 crossref_primary_10_1016_j_apcatb_2023_123572 crossref_primary_10_1002_adfm_201702126 crossref_primary_10_1038_s41563_023_01541_0 crossref_primary_10_1016_j_cej_2016_01_019 crossref_primary_10_1016_j_envres_2023_115633 crossref_primary_10_1016_j_ica_2016_07_022 crossref_primary_10_1016_j_jcis_2025_137250 crossref_primary_10_1039_D0CY02163F crossref_primary_10_1016_j_apsusc_2025_162323 crossref_primary_10_1021_jacs_7b07987 crossref_primary_10_1021_jacs_6b01414 crossref_primary_10_1016_j_jcis_2024_02_067 crossref_primary_10_1016_j_matt_2023_02_009 crossref_primary_10_1007_s13762_021_03489_7 crossref_primary_10_1016_j_cattod_2020_02_033 crossref_primary_10_1002_adsu_202500394 crossref_primary_10_1016_j_apcata_2025_120555 crossref_primary_10_1016_j_ccr_2025_216836 crossref_primary_10_3390_pr13020387 crossref_primary_10_1002_ange_201911384 crossref_primary_10_1038_s41467_023_38155_8 crossref_primary_10_1002_sstr_202100203 crossref_primary_10_1016_j_jphotochemrev_2021_100418 crossref_primary_10_1002_anie_201700962 crossref_primary_10_1002_ejic_202200679 crossref_primary_10_1016_j_ccr_2018_07_016 crossref_primary_10_1016_j_cej_2021_134050 crossref_primary_10_1016_j_ccr_2021_214259 crossref_primary_10_1021_jacs_0c08773 crossref_primary_10_1002_adma_201704501 crossref_primary_10_1002_smll_202401594 crossref_primary_10_1016_j_ccr_2021_214376 crossref_primary_10_1016_j_memsci_2016_12_068 crossref_primary_10_1002_aoc_7670 crossref_primary_10_1002_ange_202405676 crossref_primary_10_1016_j_ica_2022_121026 crossref_primary_10_1002_aenm_202303281 crossref_primary_10_1039_D1CS00976A crossref_primary_10_1039_D2SC06120A crossref_primary_10_1098_rsta_2022_0239 crossref_primary_10_1016_j_microc_2020_105417 crossref_primary_10_1016_j_seppur_2022_122526 crossref_primary_10_1016_j_mattod_2018_10_038 crossref_primary_10_1021_jacs_2c00952 crossref_primary_10_1039_C9RA10795A crossref_primary_10_1016_j_seppur_2024_126845 crossref_primary_10_1016_j_fuel_2024_131252 crossref_primary_10_1002_adma_201906368 crossref_primary_10_1016_j_apsusc_2017_01_271 crossref_primary_10_1016_j_jcat_2015_10_026 crossref_primary_10_1038_s41467_019_10470_z crossref_primary_10_1039_D1SC00607J crossref_primary_10_1016_j_cej_2024_158011 crossref_primary_10_1039_C9NR09742B crossref_primary_10_1002_adma_201703663 crossref_primary_10_1016_j_memsci_2022_120496 crossref_primary_10_1002_advs_201900053 crossref_primary_10_1002_anie_201700835 crossref_primary_10_1016_j_envres_2025_122705 crossref_primary_10_1038_s41467_021_22218_9 crossref_primary_10_1002_ange_201904834 crossref_primary_10_1002_advs_201901020 crossref_primary_10_1016_j_compchemeng_2022_108022 crossref_primary_10_1039_D2MH00914E crossref_primary_10_1016_j_cej_2022_135432 crossref_primary_10_1016_j_micromeso_2020_110405 crossref_primary_10_1016_j_jece_2024_114819 crossref_primary_10_1016_j_tibtech_2021_01_002 crossref_primary_10_1039_C8CC04172E crossref_primary_10_1002_adfm_202204499 crossref_primary_10_1080_01614940_2016_1128193 crossref_primary_10_1016_j_apmt_2025_102676 crossref_primary_10_1016_j_chemosphere_2022_136167 crossref_primary_10_1038_ncomms14457 crossref_primary_10_1039_D4CS00710G crossref_primary_10_1038_s41467_019_10013_6 crossref_primary_10_1038_s41598_022_18932_z crossref_primary_10_1016_j_jcat_2023_02_012 crossref_primary_10_1038_s41467_019_13692_3 crossref_primary_10_1063_5_0139208 crossref_primary_10_1016_j_watres_2024_121872 crossref_primary_10_1016_j_jcis_2021_12_132 crossref_primary_10_1016_j_ultsonch_2019_104714 crossref_primary_10_3389_fenrg_2016_00009 crossref_primary_10_1002_chem_201803887 crossref_primary_10_1016_j_microc_2022_107188 crossref_primary_10_3390_catal9040309 crossref_primary_10_1016_j_apcatb_2021_119941 crossref_primary_10_1016_j_ccr_2019_01_016 crossref_primary_10_1002_smll_202106893 crossref_primary_10_1002_jssc_202200346 crossref_primary_10_1016_j_apsusc_2021_151235 crossref_primary_10_1002_cctc_201700236 crossref_primary_10_1016_j_jcou_2022_102264 crossref_primary_10_1039_C9SC00513G crossref_primary_10_1002_anie_202000385 crossref_primary_10_1002_adfm_201909267 crossref_primary_10_1016_j_jcis_2018_03_075 crossref_primary_10_1007_s40242_022_2250_3 crossref_primary_10_1016_j_cej_2024_151736 crossref_primary_10_1002_adts_202000211 crossref_primary_10_1039_C8SC05480K crossref_primary_10_1016_j_ccr_2023_215175 crossref_primary_10_1002_aenm_202200389 crossref_primary_10_1016_j_apcata_2021_118203 crossref_primary_10_3390_cryst15030231 crossref_primary_10_1039_D1NR03829J crossref_primary_10_1002_adma_201505320 crossref_primary_10_1016_j_poly_2018_07_026 crossref_primary_10_1039_D5GC02438B crossref_primary_10_1107_S2052252518015749 crossref_primary_10_9767_bcrec_20136 crossref_primary_10_1007_s11814_022_1223_z crossref_primary_10_1016_j_cclet_2025_111858 crossref_primary_10_1002_adma_202303065 crossref_primary_10_1038_s41578_018_0054_3 crossref_primary_10_1016_j_apsusc_2023_158459 crossref_primary_10_1016_j_cej_2023_147605 crossref_primary_10_1002_adsu_202400903 crossref_primary_10_1016_j_gee_2020_04_006 crossref_primary_10_1007_s11356_020_08316_z crossref_primary_10_1016_j_ccr_2020_213487 crossref_primary_10_1016_j_cej_2020_127839 crossref_primary_10_1016_j_renene_2024_122148 crossref_primary_10_1016_j_ces_2025_122434 crossref_primary_10_1021_jacs_2c10672 crossref_primary_10_1002_smll_202405512 crossref_primary_10_1002_adts_202400110 crossref_primary_10_1002_anie_202017244 crossref_primary_10_1038_natrevmats_2015_13 crossref_primary_10_3390_nano11061517 crossref_primary_10_1016_j_jece_2023_109723 crossref_primary_10_1016_j_ijhydene_2022_10_108 crossref_primary_10_1039_D4SC01433B crossref_primary_10_1016_j_seppur_2024_128300 crossref_primary_10_1002_anie_202100897 crossref_primary_10_1016_j_surfin_2024_105263 crossref_primary_10_1021_jacs_6b03662 crossref_primary_10_1016_j_cej_2025_163893 crossref_primary_10_1016_j_poly_2023_116733 crossref_primary_10_1016_j_inoche_2018_09_003 crossref_primary_10_1002_batt_201900012 crossref_primary_10_1002_cctc_201901579 crossref_primary_10_1016_j_aca_2019_05_030 crossref_primary_10_3390_molecules24071221 crossref_primary_10_1002_zaac_202100380 crossref_primary_10_1016_j_fuel_2021_120955 crossref_primary_10_1002_anie_201508407 crossref_primary_10_1016_j_desal_2024_118075 crossref_primary_10_1002_aoc_7523 crossref_primary_10_1016_j_nanoen_2016_04_003 crossref_primary_10_1016_j_jhazmat_2021_125933 crossref_primary_10_1002_aoc_6559 crossref_primary_10_1016_j_memsci_2022_121146 crossref_primary_10_1038_s41467_019_12754_w crossref_primary_10_1002_chem_201901939 crossref_primary_10_1007_s11581_025_06604_7 crossref_primary_10_1002_chem_202400603 crossref_primary_10_1016_j_inoche_2017_07_009 crossref_primary_10_1016_j_seppur_2023_124111 crossref_primary_10_1039_C7CS00315C crossref_primary_10_1002_ange_202102337 crossref_primary_10_1016_j_cej_2020_124101 crossref_primary_10_1002_chem_201504757 crossref_primary_10_1002_admi_202000494 crossref_primary_10_1016_j_jssc_2019_120948 crossref_primary_10_1039_D5NR01757B crossref_primary_10_1038_s41598_017_11479_4 crossref_primary_10_3389_fchem_2020_00708 crossref_primary_10_1016_j_apsusc_2024_159840 crossref_primary_10_1016_j_cej_2019_05_228 crossref_primary_10_1002_adma_202308427 crossref_primary_10_1002_smll_202403354 crossref_primary_10_1002_chem_201700365 crossref_primary_10_1002_anie_201507692 crossref_primary_10_1002_anie_201904834 crossref_primary_10_1002_adhm_202402066 crossref_primary_10_1016_j_cjsc_2023_100210 crossref_primary_10_1002_anie_201911384 crossref_primary_10_1038_ncomms15356 crossref_primary_10_1039_C6CC00805D crossref_primary_10_1038_s41467_018_06828_4 crossref_primary_10_1039_D4DT02975E crossref_primary_10_1016_j_cej_2025_159260 crossref_primary_10_1002_ejic_202000656 crossref_primary_10_1016_j_asems_2023_100055 crossref_primary_10_1002_ange_202013422 crossref_primary_10_1016_j_jtice_2016_01_021 crossref_primary_10_1016_j_foodcont_2025_111497 crossref_primary_10_1016_j_inoche_2024_112881 crossref_primary_10_1016_j_mcat_2025_115038 crossref_primary_10_1063_1_5143590 crossref_primary_10_1002_anie_201915848 crossref_primary_10_1002_chem_201803157 crossref_primary_10_1016_j_jmst_2025_01_057 crossref_primary_10_3390_molecules27123829 crossref_primary_10_1016_j_apsusc_2023_157592 crossref_primary_10_1021_jacs_1c08356 crossref_primary_10_1002_adfm_202102511 crossref_primary_10_1016_j_apcatb_2019_118416 crossref_primary_10_1016_j_ccr_2017_03_027 crossref_primary_10_1016_j_apcatb_2023_122418 crossref_primary_10_1002_adma_202405898 crossref_primary_10_1002_ange_202210466 crossref_primary_10_1007_s10904_025_03973_4 crossref_primary_10_1039_D0NR02230F crossref_primary_10_1039_D2QM01181F crossref_primary_10_1038_s41570_021_00336_8 crossref_primary_10_1039_D2DT02142K crossref_primary_10_1016_j_mtchem_2023_101694 crossref_primary_10_1016_j_seppur_2022_120620 crossref_primary_10_1002_smll_201801454 crossref_primary_10_1016_j_seppur_2021_119233 crossref_primary_10_1016_j_snb_2025_137709 crossref_primary_10_1002_anie_202318559 crossref_primary_10_1002_adma_202206421 crossref_primary_10_1016_j_cej_2017_10_078 crossref_primary_10_1016_j_jcat_2020_09_017 crossref_primary_10_1021_jacs_8b12124 crossref_primary_10_1016_j_ijhydene_2020_09_245 crossref_primary_10_1002_chem_202103102 crossref_primary_10_1016_j_cej_2021_132157 crossref_primary_10_1016_j_ces_2023_118891 crossref_primary_10_1002_adma_202402234 crossref_primary_10_1016_j_cclet_2022_04_025 crossref_primary_10_1038_s41467_025_60720_6 crossref_primary_10_1038_s41467_017_01478_4 crossref_primary_10_1038_s41467_021_24830_1 crossref_primary_10_1038_s41467_025_56575_6 crossref_primary_10_1016_j_ccr_2015_09_013 crossref_primary_10_1002_batt_202000163 crossref_primary_10_1016_j_trechm_2023_03_002 crossref_primary_10_1016_j_apsusc_2023_157211 crossref_primary_10_1016_j_electacta_2019_05_030 crossref_primary_10_1039_D1SC02408F crossref_primary_10_1016_j_ccr_2022_214643 crossref_primary_10_1016_j_ccr_2022_214642 crossref_primary_10_1016_j_ccr_2022_214641 crossref_primary_10_1016_j_molliq_2021_116108 crossref_primary_10_1038_s41570_020_00228_3 crossref_primary_10_1016_j_seppur_2024_129821 crossref_primary_10_1021_acsaenm_5c00156 crossref_primary_10_1016_j_electacta_2019_06_141 crossref_primary_10_1016_j_micromeso_2023_112647 crossref_primary_10_1002_adfm_202005238 crossref_primary_10_1002_anie_201505461 crossref_primary_10_1016_j_jinorgbio_2019_110977 crossref_primary_10_1002_adma_201907619 crossref_primary_10_1016_j_seppur_2024_127409 crossref_primary_10_1016_j_ccr_2017_10_014 crossref_primary_10_1016_j_jechem_2021_10_011 crossref_primary_10_1016_j_molstruc_2025_143091 crossref_primary_10_1002_anie_201915537 crossref_primary_10_1021_jacs_4c12619 crossref_primary_10_1039_C9RA05003E crossref_primary_10_1002_cctc_201500907 crossref_primary_10_1038_s42004_025_01492_4 crossref_primary_10_1002_adma_201704124 crossref_primary_10_1039_D1SC02833B crossref_primary_10_1007_s11426_020_9798_2 crossref_primary_10_1016_j_jcat_2018_06_013 crossref_primary_10_1039_D3SE00823A crossref_primary_10_3389_fchem_2021_673738 crossref_primary_10_1007_s12274_024_6621_6 crossref_primary_10_1016_j_nimb_2017_01_058 crossref_primary_10_1016_j_microc_2023_109379 crossref_primary_10_1039_D2EE00432A crossref_primary_10_1016_j_jiec_2021_10_005 crossref_primary_10_1016_j_indcrop_2023_117233 crossref_primary_10_1002_chem_201704929 crossref_primary_10_1038_srep23676 crossref_primary_10_1038_s41586_020_1980_y crossref_primary_10_1107_S1600576721002843 crossref_primary_10_1002_mame_202200469 crossref_primary_10_1039_C6CC05433A crossref_primary_10_1002_qua_70013 crossref_primary_10_1021_jacs_1c09245 crossref_primary_10_1016_j_ccr_2017_04_010 crossref_primary_10_1021_acs_cgd_6b01533 crossref_primary_10_3390_molecules27175426 crossref_primary_10_1016_j_engfracmech_2024_110253 crossref_primary_10_1002_bkcs_12203 crossref_primary_10_1002_anie_201704579 crossref_primary_10_1039_C8RA10619C crossref_primary_10_3390_molecules27196585 crossref_primary_10_1039_D1CS01011E crossref_primary_10_1002_cnma_201900110 crossref_primary_10_1016_j_aca_2021_338924 crossref_primary_10_1002_adma_202413353 crossref_primary_10_1002_chem_202003716 crossref_primary_10_1016_j_cej_2022_135736 crossref_primary_10_1007_s40843_020_1656_0 crossref_primary_10_1016_j_memsci_2021_119515 crossref_primary_10_1002_adma_201905923 crossref_primary_10_1002_advs_201901758 crossref_primary_10_1002_smll_201800285 crossref_primary_10_1016_j_ijhydene_2024_10_060 crossref_primary_10_1021_jacs_4c03806 crossref_primary_10_1016_j_mtener_2025_101817 crossref_primary_10_1039_D1SC02617H crossref_primary_10_1088_1361_648X_aba06c crossref_primary_10_1002_adma_201705112 crossref_primary_10_1002_ifm2_8 crossref_primary_10_1021_jacs_5c01399 crossref_primary_10_1002_anie_202505978 crossref_primary_10_1039_C8CP00259B crossref_primary_10_1039_D1NR07959J crossref_primary_10_1007_s10876_022_02316_4 crossref_primary_10_1038_s41557_019_0374_y crossref_primary_10_6023_A23040148 crossref_primary_10_1002_chem_202403607 crossref_primary_10_1016_j_snb_2022_131927 crossref_primary_10_1016_j_seppur_2025_131729 crossref_primary_10_1002_ente_202201203 crossref_primary_10_26599_NR_2025_94907229 crossref_primary_10_1002_anie_202103766 crossref_primary_10_1016_j_seppur_2023_124623 crossref_primary_10_1002_smll_202305999 crossref_primary_10_1016_j_colsurfa_2025_136806 crossref_primary_10_1007_s12274_020_3138_5 crossref_primary_10_1016_j_micromeso_2019_109943 crossref_primary_10_1002_smtd_202501470 crossref_primary_10_1016_j_indcrop_2024_118232 crossref_primary_10_1002_adma_202412005 crossref_primary_10_1107_S2052252516019072 crossref_primary_10_1007_s40820_024_01425_1 crossref_primary_10_1016_j_nantod_2025_102634 crossref_primary_10_1002_open_202000291 crossref_primary_10_1016_j_seppur_2022_122152 crossref_primary_10_1016_j_jcat_2017_08_012 crossref_primary_10_1002_adma_201705369 crossref_primary_10_1002_admt_201800666 crossref_primary_10_1016_j_arabjc_2018_07_004 crossref_primary_10_1088_1757_899X_383_1_012011 crossref_primary_10_1016_j_memsci_2019_117730 crossref_primary_10_1016_j_ccr_2017_08_017 crossref_primary_10_1016_j_apmt_2020_100632 crossref_primary_10_1002_ange_201507692 crossref_primary_10_1016_j_jiec_2020_12_023 crossref_primary_10_1002_slct_201904028 crossref_primary_10_1016_j_rser_2018_04_073 crossref_primary_10_1002_slct_202201566 crossref_primary_10_1016_j_pmatsci_2021_100904 crossref_primary_10_1038_s41467_022_29736_0 crossref_primary_10_1021_jacs_3c07778 crossref_primary_10_1002_celc_202201147 crossref_primary_10_1002_smll_201903380 crossref_primary_10_1016_j_cej_2025_165655 crossref_primary_10_1002_ejic_201600394 crossref_primary_10_1016_j_bej_2025_109661 crossref_primary_10_1021_jacs_9b07563 crossref_primary_10_1002_er_3492 crossref_primary_10_1016_j_jgsce_2023_205162 crossref_primary_10_1016_j_cej_2024_153398 crossref_primary_10_3390_chemosensors12070135 crossref_primary_10_1039_C8CC01153B crossref_primary_10_1021_jacs_7b10112 crossref_primary_10_1038_s41557_019_0263_4 crossref_primary_10_1039_D0SC01204A crossref_primary_10_1002_anie_202102337 crossref_primary_10_1038_s41467_018_05141_4 crossref_primary_10_1039_D0CY01479F crossref_primary_10_1002_smtd_202100573 crossref_primary_10_1002_solr_202100762 crossref_primary_10_1016_j_ccr_2023_215411 crossref_primary_10_1155_2021_5512174 crossref_primary_10_1016_j_jcis_2018_07_140 crossref_primary_10_1016_j_jcis_2023_03_120 crossref_primary_10_1016_j_mcat_2022_112741 crossref_primary_10_1002_adma_202000791 crossref_primary_10_1039_C7CC07527H crossref_primary_10_1002_adma_201601133 crossref_primary_10_1016_j_jhazmat_2023_133160 crossref_primary_10_1016_j_ccr_2020_213655 crossref_primary_10_1007_s11426_020_9781_7 crossref_primary_10_1016_j_ces_2024_120245 crossref_primary_10_1002_ange_202318559 crossref_primary_10_1016_j_cej_2022_139450 crossref_primary_10_1002_chem_201503951 crossref_primary_10_1016_j_cej_2024_152295 crossref_primary_10_1016_j_nanoen_2018_08_058 crossref_primary_10_1002_ceat_201800398 crossref_primary_10_1039_D1ME00085C crossref_primary_10_1016_j_jcat_2021_09_006 crossref_primary_10_1016_j_cclet_2023_109418 crossref_primary_10_1021_jacs_5c08703 crossref_primary_10_1038_s41467_023_38170_9 crossref_primary_10_1016_j_chempr_2020_08_008 crossref_primary_10_1038_s41467_019_08972_x crossref_primary_10_1016_j_cej_2021_133617 crossref_primary_10_1007_s11705_024_2427_z crossref_primary_10_1016_j_cjche_2022_02_016 crossref_primary_10_1016_j_colsurfa_2015_10_048 crossref_primary_10_1002_adma_202414736 crossref_primary_10_1016_j_mcat_2022_112730 crossref_primary_10_1016_j_apsusc_2023_157047 crossref_primary_10_1016_j_watres_2019_04_043 crossref_primary_10_1016_j_seppur_2024_128588 crossref_primary_10_26599_NR_2025_94907382 crossref_primary_10_1016_j_fuel_2025_135043 crossref_primary_10_1515_zkri_2016_1968 crossref_primary_10_3390_ijms22094803 crossref_primary_10_1039_D1QM00442E crossref_primary_10_1039_C9SC01018A crossref_primary_10_1002_anie_202008100 crossref_primary_10_1016_j_chemosphere_2024_142707 crossref_primary_10_1002_agt2_145 crossref_primary_10_1002_adma_202411359 crossref_primary_10_1002_cphc_201800439 crossref_primary_10_1016_j_talanta_2023_124777 crossref_primary_10_1002_ange_202505978 crossref_primary_10_1039_D3SC00562C crossref_primary_10_1039_D4CS01007H crossref_primary_10_1016_j_chempr_2020_09_010 crossref_primary_10_1002_ejic_201601239 crossref_primary_10_1002_ange_202017244 crossref_primary_10_1039_D3QI01881D crossref_primary_10_1016_j_micromeso_2021_111555 crossref_primary_10_1016_j_cej_2023_147992 crossref_primary_10_1002_ange_202008100 crossref_primary_10_1002_chem_201901213 crossref_primary_10_1039_C8CY01139G crossref_primary_10_1016_j_mtcomm_2021_102419 crossref_primary_10_1007_s11356_024_32312_2 crossref_primary_10_1007_s11814_025_00559_1 crossref_primary_10_1002_cssc_202102217 crossref_primary_10_1016_j_apcatb_2022_121989 crossref_primary_10_1021_jacs_7b00106 crossref_primary_10_1016_j_ccr_2020_213220 crossref_primary_10_1002_smll_202407487 crossref_primary_10_1111_ijac_13807 crossref_primary_10_1002_chem_202103404 crossref_primary_10_3390_catal12030275 crossref_primary_10_1016_j_ccr_2018_08_005 crossref_primary_10_1038_s42004_020_00361_6 crossref_primary_10_1016_j_memsci_2020_118239 crossref_primary_10_1021_jacs_9b13070 crossref_primary_10_1039_C9SC04961D crossref_primary_10_1016_j_cej_2023_142287 crossref_primary_10_1016_j_micromeso_2023_112595 crossref_primary_10_1002_cphc_202400283 crossref_primary_10_1039_D0SC01356K crossref_primary_10_1038_s41467_022_29849_6 crossref_primary_10_1016_j_ccr_2018_08_012 crossref_primary_10_1039_C9RA08097J crossref_primary_10_1039_C7FD90042B crossref_primary_10_1016_j_cej_2021_131483 crossref_primary_10_1039_C9QI01119F crossref_primary_10_1016_j_seppur_2024_130754 crossref_primary_10_1002_adfm_202315817 crossref_primary_10_1016_j_micromeso_2022_111877 crossref_primary_10_1016_j_ccr_2020_213447 crossref_primary_10_1016_j_seppur_2024_127585 crossref_primary_10_1002_chin_201531257 crossref_primary_10_1002_adma_201904969 crossref_primary_10_1002_ange_202103766 crossref_primary_10_1007_s10967_025_10299_5 crossref_primary_10_1016_j_fuel_2022_125917 crossref_primary_10_1016_j_jmst_2021_08_053 crossref_primary_10_1016_j_jhazmat_2020_124692 crossref_primary_10_1039_D1RE00214G crossref_primary_10_1038_nmat4852 crossref_primary_10_1088_1361_6463_aa87e9 crossref_primary_10_1021_jacs_5b10666 crossref_primary_10_1016_j_ccr_2021_214178 crossref_primary_10_1002_jccs_202400289 crossref_primary_10_1002_slct_202202489 crossref_primary_10_1039_C7CC05927B crossref_primary_10_1038_s42004_023_00891_9 crossref_primary_10_1016_j_micromeso_2020_110438 crossref_primary_10_1038_s41467_019_12268_5 crossref_primary_10_1002_chem_202005050 crossref_primary_10_1016_j_apsusc_2021_149064 crossref_primary_10_1007_s10562_018_2432_2 crossref_primary_10_1016_j_nanoen_2017_03_028 crossref_primary_10_1002_adfm_202010052 crossref_primary_10_1038_s41467_020_14671_9 crossref_primary_10_1016_j_indcrop_2024_120154 crossref_primary_10_1016_j_ica_2021_120416 crossref_primary_10_3390_nano12010121 crossref_primary_10_1002_aoc_4819 crossref_primary_10_1002_cplu_201900349 crossref_primary_10_1007_s10562_020_03098_y crossref_primary_10_1007_s12274_018_2098_5 crossref_primary_10_1016_j_enchem_2021_100067 crossref_primary_10_1016_j_ccr_2019_213116 crossref_primary_10_1016_j_jcat_2022_06_015 crossref_primary_10_1038_s41467_022_35762_9 crossref_primary_10_1039_D4EN00194J crossref_primary_10_1016_j_ccr_2019_02_001 crossref_primary_10_1002_adom_201701060 crossref_primary_10_1039_C8CC01627E crossref_primary_10_1016_j_ssnmr_2022_101793 crossref_primary_10_1038_s41467_022_29710_w crossref_primary_10_1002_adfm_201703765 crossref_primary_10_1016_j_talanta_2024_126580 crossref_primary_10_1002_slct_202000998 crossref_primary_10_1016_j_seppur_2022_121014 crossref_primary_10_1002_ange_201915848 crossref_primary_10_1002_cctc_201902079 crossref_primary_10_1002_chem_201800694 crossref_primary_10_1021_acs_inorgchem_5c02814 crossref_primary_10_1073_pnas_1706330114 crossref_primary_10_1002_anie_202013422 crossref_primary_10_1016_j_apcatb_2020_119540 crossref_primary_10_1002_chem_201801301 crossref_primary_10_1016_j_ccr_2024_215680 crossref_primary_10_1016_j_ccr_2023_215121 crossref_primary_10_1021_jacs_0c04468 crossref_primary_10_3390_molecules24244529 crossref_primary_10_1039_D2RA06587H crossref_primary_10_1039_C7CS00033B crossref_primary_10_1016_j_jcis_2022_10_122 crossref_primary_10_1016_j_pmatsci_2023_101123 crossref_primary_10_1039_C9NR02962A crossref_primary_10_1016_j_jece_2020_104332 crossref_primary_10_3390_catal12121568 crossref_primary_10_1002_chem_202202441 crossref_primary_10_1038_s43246_024_00691_1 crossref_primary_10_1016_j_jclepro_2024_140704 crossref_primary_10_1038_s41467_018_04050_w crossref_primary_10_1002_adma_201900617 crossref_primary_10_1016_j_ccr_2025_216928 crossref_primary_10_1002_inf2_70040 crossref_primary_10_1002_smll_202304008 crossref_primary_10_1002_slct_201601205 crossref_primary_10_1002_smll_201503187 crossref_primary_10_1002_smll_202403808 crossref_primary_10_1016_j_memsci_2022_120959 crossref_primary_10_1016_S1872_2067_23_64556_5 crossref_primary_10_1002_advs_201901129 crossref_primary_10_1002_ange_201505461 crossref_primary_10_1002_cssc_202201324 crossref_primary_10_1016_j_chemosphere_2021_131305 crossref_primary_10_1039_D5GC00030K crossref_primary_10_1016_j_apsusc_2022_153252 crossref_primary_10_1016_j_molstruc_2024_137976 crossref_primary_10_1002_ijch_201800119 crossref_primary_10_1016_j_mtchem_2024_102197 crossref_primary_10_1016_j_cej_2021_130991 crossref_primary_10_1016_j_ccr_2023_215493 crossref_primary_10_1016_j_jcis_2022_10_015 crossref_primary_10_1002_ejic_201600566 crossref_primary_10_1021_jacs_3c12275 crossref_primary_10_1007_s12274_023_6351_1 crossref_primary_10_1016_j_porgcoat_2023_107814 crossref_primary_10_1002_chem_201600669 crossref_primary_10_1016_j_trechm_2020_02_004 crossref_primary_10_1021_jacs_2c12284 crossref_primary_10_1016_j_cattod_2021_08_027 crossref_primary_10_1038_s41467_018_06438_0 crossref_primary_10_1016_j_actphy_2025_100164 crossref_primary_10_1039_C5CP06798G crossref_primary_10_1021_acs_inorgchem_5c00873 crossref_primary_10_1016_j_mtchem_2022_100776 crossref_primary_10_1016_j_micromeso_2025_113510 crossref_primary_10_1039_C7QI00711F crossref_primary_10_1002_smtd_202400584 crossref_primary_10_1016_j_jpowsour_2025_237578 crossref_primary_10_1016_j_rser_2024_114482 crossref_primary_10_1016_j_cej_2024_155390 crossref_primary_10_1016_j_molliq_2024_124365 crossref_primary_10_1021_jacs_5c04345 crossref_primary_10_1063_5_0156044 crossref_primary_10_1016_j_ccr_2019_03_005 crossref_primary_10_1002_cssc_202000376 crossref_primary_10_1002_solr_202200362 crossref_primary_10_1016_j_seppur_2025_132855 crossref_primary_10_1016_j_ijhydene_2022_01_066 crossref_primary_10_1021_jacs_1c05357 crossref_primary_10_1016_j_cej_2020_127075 crossref_primary_10_1016_j_ijhydene_2022_12_313 crossref_primary_10_1016_j_jhazmat_2025_139877 crossref_primary_10_1002_ejic_202000031 crossref_primary_10_1016_j_comptc_2024_114748 crossref_primary_10_1016_j_fuel_2022_123904 crossref_primary_10_1016_j_psep_2024_10_027 crossref_primary_10_1002_chem_201905645 crossref_primary_10_1016_j_jcat_2017_09_014 crossref_primary_10_1246_cl_200683 crossref_primary_10_1016_j_jece_2025_118647 crossref_primary_10_1080_14686996_2023_2250705 crossref_primary_10_1021_jacs_5b09487 crossref_primary_10_1039_D0NR02899A crossref_primary_10_1002_smsc_202100015 crossref_primary_10_1016_j_mencom_2021_01_018 crossref_primary_10_15541_jim20240333 crossref_primary_10_1016_j_jece_2023_111217 crossref_primary_10_1002_smtd_202401689 crossref_primary_10_1016_j_micromeso_2021_110985 crossref_primary_10_1016_j_apcatb_2024_124635 crossref_primary_10_1016_j_ijhydene_2024_01_331 crossref_primary_10_1016_j_jcat_2025_116379 crossref_primary_10_1016_j_cplett_2025_142059 crossref_primary_10_1016_j_seppur_2024_130133 crossref_primary_10_1016_j_est_2025_115928 crossref_primary_10_1016_j_jcat_2021_12_033 crossref_primary_10_1016_j_pmatsci_2022_100921 crossref_primary_10_1038_nchem_2691 crossref_primary_10_1002_cssc_201701438 crossref_primary_10_1080_01614940_2021_1948302 crossref_primary_10_1002_adma_202511250 crossref_primary_10_1039_C6CP03791G crossref_primary_10_1002_anie_202218252 crossref_primary_10_1007_s11814_020_0730_z crossref_primary_10_1002_adma_202211790 crossref_primary_10_1002_smll_202504212 crossref_primary_10_1002_ange_201508407 crossref_primary_10_1039_D0NR01673J crossref_primary_10_1002_ange_201704579 crossref_primary_10_1021_jacs_0c13181 crossref_primary_10_1002_cctc_201700519 crossref_primary_10_1002_cssc_202001444 crossref_primary_10_1016_j_seppur_2025_132834 crossref_primary_10_1021_jacs_8b09682 crossref_primary_10_1016_j_micromeso_2020_110215 crossref_primary_10_1016_j_ccr_2020_213734 crossref_primary_10_1007_s40820_024_01558_3 crossref_primary_10_1038_s41467_023_41936_w crossref_primary_10_1002_adfm_202303447 crossref_primary_10_1002_app_50519 crossref_primary_10_1016_j_matdes_2024_112688 crossref_primary_10_1016_j_micromeso_2020_110571 crossref_primary_10_1016_j_apcatb_2019_01_033 crossref_primary_10_1016_j_commatsci_2021_111033 crossref_primary_10_1002_admi_201902098 crossref_primary_10_1016_j_electacta_2023_143075 crossref_primary_10_1016_j_fuel_2025_135896 crossref_primary_10_1002_ange_201915537 crossref_primary_10_1002_cssc_202400602 crossref_primary_10_1002_zaac_201900046 crossref_primary_10_1016_j_inoche_2024_113495 crossref_primary_10_1039_D2ME00213B crossref_primary_10_1002_smtd_202201170 crossref_primary_10_1016_j_cclet_2019_04_030 crossref_primary_10_1002_anie_201610914 crossref_primary_10_1016_j_matlet_2017_03_077 crossref_primary_10_1002_asia_202401532 crossref_primary_10_1016_j_ccr_2024_215751 crossref_primary_10_1002_cctc_202400906 crossref_primary_10_1002_smtd_201800406 crossref_primary_10_1016_j_partic_2018_09_007 crossref_primary_10_1002_ange_202100897 crossref_primary_10_1002_chem_201602641 crossref_primary_10_1002_chem_201900069 |
| Cites_doi | 10.1021/am200276x 10.1002/ange.201204806 10.1021/ja500330a 10.1002/chem.201202261 10.1039/c0ce00568a 10.1021/ja403810k 10.1038/nmat3343 10.1016/j.cbpa.2009.12.012 10.1002/cphc.201200222 10.1002/ange.200901177 10.1021/ja502765n 10.1021/cm501859p 10.1103/PhysRevB.86.125429 10.1021/ic801734x 10.1002/ange.201108565 10.1016/j.micromeso.2008.04.033 10.1039/c2cp41099k 10.1088/0022-3727/44/46/464011 10.1021/cr00039a005 10.1039/c0cs00147c 10.1126/science.1192759 10.1039/ft9969201401 10.1002/ange.201202925 10.1021/ja503218j 10.1021/ja0739887 10.1021/ar5000314 10.1038/nmat1560 10.1002/ange.201205627 10.1002/anie.201306923 10.1021/ja802741b 10.1002/adma.200903618 10.1002/ejic.201300591 10.1002/anie.201311128 10.1002/ange.201204963 10.1021/jz5012065 10.1021/ic901872g 10.1039/c3sc52666f 10.1002/anie.201202925 10.1021/ic500722n 10.1002/ange.201108462 10.1016/j.micromeso.2006.11.006 10.1039/c3cs60232j 10.1023/A:1019188105794 10.1002/anie.200300610 10.1021/ja056906s 10.1002/ange.201306923 10.1002/9783527630295 10.1016/j.micromeso.2011.12.058 10.1021/cr200077m 10.1021/ja8048767 10.1021/cm402136z 10.1002/ange.200803460 10.1126/science.1177582 10.1016/0920-5861(95)00161-1 10.1021/jp104441d 10.1002/chem.201003211 10.1021/ja204818q 10.1039/b803953b 10.1063/1.372595 10.1126/science.1246738 10.1038/nmat2228 10.1002/(SICI)1521-3757(20000417)112:8<1566::AID-ANGE1566>3.0.CO;2-9 10.1021/ja208140f 10.1038/nmat1213 10.1021/ja5063423 10.1021/cm101778g 10.1080/01614948508064741 10.1021/cr200101d 10.1016/S1002-0721(10)60611-4 10.1021/ja3079219 10.1016/j.ijheatmasstransfer.2006.10.001 10.1126/science.1238339 10.1038/ncomms5176 10.1021/ja405078u 10.1002/chem.201300326 10.1002/anie.201205627 10.1021/ja3085884 10.1039/C4CS90059F 10.1039/C1SC00394A 10.1039/c3cs35524a 10.1016/j.ijheatmasstransfer.2006.10.002 10.1039/b718890k 10.1107/S0021889812043026 10.1126/science.1181761 10.1039/c3ta10784a 10.1063/1.3257677 10.1002/anie.201204806 10.1039/C4CE01672F 10.1039/b704977c 10.1021/cm502399q 10.1016/j.jcat.2011.09.014 10.1016/j.micromeso.2009.06.008 10.1039/C4CC03764B 10.1016/j.jcat.2011.04.004 10.1021/ja3077654 10.1021/ja4064475 10.1021/cr9003924 10.1021/ja0752336 10.1039/C4CC04945D 10.1021/ja302991b 10.1039/b802158a 10.1021/cg900987r 10.1016/j.progsurf.2009.06.001 10.1039/b802352m 10.1002/(SICI)1521-3773(20000417)39:8<1506::AID-ANIE1506>3.0.CO;2-U 10.1016/S0022-3115(98)00034-8 10.1002/chem.201203145 10.1021/ja103365s 10.1021/ic402614w 10.1021/ja209156v 10.1103/PhysRevB.86.104113 10.1002/ange.201311128 10.1039/c3dt51637g 10.1039/C4SC01731E 10.1002/anie.201204963 10.1021/ja204233q 10.1021/ja2094316 10.2533/chimia.2001.510 10.1002/cctc.201402411 10.1002/cctc.201200164 10.1021/ja061681m 10.1021/cg501386j 10.1002/anie.201108462 10.1021/cr200324t 10.1038/nchem.1871 10.1039/c0cc01506g 10.1002/ange.200300610 10.1002/anie.200901177 10.1002/chem.200600220 10.1007/978-3-642-10500-5 10.1103/PhysRevB.84.125421 10.1021/cm102601v 10.1021/ja404514r 10.1039/b703643d 10.1002/anie.201108565 10.1039/c1cy00386k 10.1002/anie.200803460 10.1021/cm1022882 10.1039/c2jm16030g |
| ContentType | Journal Article |
| Copyright | 2015 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non‐Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2015 |
| Copyright_xml | – notice: 2015 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non‐Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. – notice: 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. – notice: 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2015 |
| DBID | BSCLL 24P AAYXX CITATION NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 5PM |
| DOI | 10.1002/anie.201411540 |
| DatabaseName | Istex Wiley-Blackwell Open Access Titles CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Materials Research Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | 7254 |
| ExternalDocumentID | PMC4510710 3719848261 26036179 10_1002_anie_201411540 ANIE201411540 ark_67375_WNG_6GXMSJMZ_P |
| Genre | reviewArticle Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61136003; 51173081 – fundername: Funded Access – fundername: KULeuven – fundername: National Basic Research Program of China funderid: 2015CB932200 – fundername: SBO – fundername: Natural Science Foundation of Jiangsu Province, China funderid: BM2012010 – fundername: IAP – fundername: FWO |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 24P AAYXX ABUFD CITATION O8X AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 5PM |
| ID | FETCH-LOGICAL-c7820-6b6c4e02842402cb1a372022e6a8d562f45542445da373630a241b06965f63bc3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 1052 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356390300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Tue Nov 04 01:51:29 EST 2025 Sun Nov 09 12:32:24 EST 2025 Sun Nov 09 11:58:13 EST 2025 Sat Nov 29 14:31:30 EST 2025 Thu Apr 03 07:07:56 EDT 2025 Sat Nov 29 05:33:35 EST 2025 Tue Nov 18 22:11:13 EST 2025 Wed Aug 20 07:25:35 EDT 2025 Sun Sep 21 06:20:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | porous materials coordination chemistry heterogeneity defects engineering metal-organic frameworks |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c7820-6b6c4e02842402cb1a372022e6a8d562f45542445da373630a241b06965f63bc3 |
| Notes | SBO Funded Access ArticleID:ANIE201411540 Natural Science Foundation of Jiangsu Province, China - No. BM2012010 ark:/67375/WNG-6GXMSJMZ-P IAP National Basic Research Program of China - No. 2015CB932200 National Natural Science Foundation of China - No. 61136003; No. 51173081 KULeuven istex:2A2F5071F096BDD5399014547601F25FEFC027B7 FWO These two authors are the main authors of the manuscript and contributed equally in composing it. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201411540 |
| PMID | 26036179 |
| PQID | 1689826462 |
| PQPubID | 946352 |
| PageCount | 21 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4510710 proquest_miscellaneous_1744679006 proquest_miscellaneous_1690650234 proquest_journals_1689826462 pubmed_primary_26036179 crossref_citationtrail_10_1002_anie_201411540 crossref_primary_10_1002_anie_201411540 wiley_primary_10_1002_anie_201411540_ANIE201411540 istex_primary_ark_67375_WNG_6GXMSJMZ_P |
| PublicationCentury | 2000 |
| PublicationDate | June 15, 2015 |
| PublicationDateYYYYMMDD | 2015-06-15 |
| PublicationDate_xml | – month: 06 year: 2015 text: June 15, 2015 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew. Chem. Int. Ed |
| PublicationYear | 2015 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
| References | R. Ameloot, F. Vermoortele, J. Hofkens, F. C. De Schryver, D. E. De Vos, M. B. J. Roeffaers, Angew. Chem. Int. Ed. 2013, 52, 401-405 V. E. Fairbank, A. L. Thompson, R. I. Cooper, A. L. Goodwin, Phys. Rev. B 2012, 86, 144103-144105. A. M. Walker, B. Slater, CrystEngComm 2008, 10, 790-791. M. B. Roeffaers, R. Ameloot, A.-J. Bons, W. Mortier, G. De Cremer, R. de Kloe, J. Hofkens, D. E. De Vos, B. F. Sels, J. Am. Chem. Soc. 2008, 130, 13516-13517. G. C. Shearer, S. Chavan, J. Ethiraj, J. G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, K. P. Lillerud, Chem. Mater. 2014, 26, 4068-4071. R. Ameloot, M. Aubrey, B. M. Wiers, A. P. Gomora-Figueroa, S. N. Patel, N. P. Balsara, J. R. Long, Chem. Eur. J. 2013, 19, 5533-5536. Angew. Chem. 2012, 124, 9401-9405. B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, O. Yaghi, Int. J. Heat Mass Transfer 2007, 50, 405-411. A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, M. D. Allendorf, Science 2014, 343, 66-69. U. Ravon, M. Savonnet, S. Aguado, M. E. Domine, E. Janneau, D. Farrusseng, Microporous Mesoporous Mater. 2010, 129, 319-329. J. C. Lavalley, Catal. Today 1996, 27, 377-401. H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 4369-4381. S. Takamizawa, M. A. Kohbara, Dalton Trans. 2007, 3640-3645. Angew. Chem. 2009, 121, 4833-4837. J. Hölsä, T. Laamanen, M. Lastusaari, P. Novák, J. Rare Earths 2011, 29, 1130-1136. M. Vandichel, J. Hajek, F. Vermoortele, M. Waroquier, D. E. De Vos, V. Van Speybroeck, CrystEngComm 2015, 17, 395-406. J. Čejka, A. Corma, S. Zones, Zeolites and Catalysis: Synthesis Reactions and Applications, Wiley-VCH, Weinheim, 2010. A. M. Walker, B. Slater, J. D. Gale, K. Wright, Nat. Mater. 2004, 3, 715-720. A. Corma, H. García, F. X. Llabres i Xamena, Chem. Rev. 2010, 110, 4606-4655. F. Vermoortele, M. Vandichel, B. Van de Voorde, R. Ameloot, M. Waroquier, V. Van Speybroeck, D. E. De Vos, Angew. Chem. Int. Ed. 2012, 51, 4887-4890 H. B. Bürgi, T. Weber, Chimia 2001, 55, 510-516. Angew. Chem. 2012, 124, 4971-4974. C. K. Brozek, M. Dinca, J. Am. Chem. Soc. 2013, 135, 12886-12891. O. Shekhah, J. Liu, R. A. Fischer, C. Woll, Chem. Soc. Rev. 2011, 40, 1081-1106. S. H. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake, M. Schröder, Nat. Mater. 2012, 11, 710-716. A. B. Cairns, A. L. Goodwin, Chem. Soc. Rev. 2013, 42, 4881-4893. U. Ravon, M. E. Domine, C. Gaudillere, A. Desmartin-Chomel, D. Farrusseng, New J. Chem. 2008, 32, 937-940. M. Moret, S. Rizzato, Cryst. Growth Des. 2009, 9, 5035-5042. S. Marx, W. Kleist, A. Baiker, J. Catal. 2011, 281, 76-87. A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Chem. Eur. J. 2011, 17, 6643-6665. E. S. Božin, C. D. Malliakas, P. Souvatzis, T. Proffen, N. A. Spaldin, M. G. Kanatzidis, S. J. L. Billinge, Science 2010, 330, 1660-1663. J. Park, Z. Y. U. Wang, L. B. Sun, Y. P. Chen, H. C. Zhou, J. Am. Chem. Soc. 2012, 134, 20110-20116. Angew. Chem. 2014, 126, 7178-7182. V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, G. Férey, A. Vittadini, S. Gross, C. Serre, Angew. Chem. Int. Ed. 2012, 51, 9267-9271 S. Jakobsen, D. Gianolio, D. S. Wragg, M. H. Nilsen, H. Emerich, S. Bordiga, C. Lamberti, U. Olsbye, M. Tilset, K. P. Lillerud, Phys. Rev. B 2012, 86, 125429. C. H. Hendon, D. Tiana, A. Walsh, Phys. Chem. Chem. Phys. 2012, 14, 13120-13132. Angew. Chem. 2000, 112, 1566-1570. S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka, S. Kitagawa, Chem. Mater. 2010, 22, 4531-4538. T. R. Welberry, B. D. Butler, Chem. Rev. 1995, 95, 2369-2403. K. Leus, M. Vandichel, Y.-Y. Liu, I. Muylaert, J. Musschoot, S. Pyl, H. Vrielinck, F. Callens, G. B. Marin, C. Detavernier, P. V. Wiper, Y. Z. Khimyak, M. Waroquier, V. Van Speybroeck, P. Van Der Voort, J. Catal. 2012, 285, 196-207. B. Bueken, H. Reinsch, N. Reimer, I. Stassen, F. Vermoortele, R. Ameloot, N. Stock, C. E. A. Kirschhocka, D. De Vos, Chem. Commun. 2014, 50, 10055-10058. Angew. Chem. 2012, 124, 1921-1925. B. Tu, Q. Pang, D. Wu, Y. Song, L. Weng, Q. Li, J. Am. Chem. Soc. 2014, 136, 14465-14471. A. D. Burrows, CrystEngComm 2011, 13, 3623-3642. F. Vermoortele, B. Bueken, G. Le Bars, B. V. de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock, D. E. De Vos, J. Am. Chem. Soc. 2013, 135, 11465-11468. Y. J. Cui, Y. F. Yue, G. D. Qian, B. L. Chen, Chem. Rev. 2012, 112, 1126-1162. Electronic and Optoelectronic Properties of Semiconductor Structures (Ed.: J. Singh), Cambridge University Press, Cambridge, 2003. R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810-6918. G. Barin, V. Krungleviciute, O. Gutov, J. T. Hupp, T. Yildirim, O. K. Farha, Inorg. Chem. 2014, 53, 6914-6919. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105-1125. Angew. Chem. 2013, 125, 419-423. X. X. Zhang, S. S. Y. Chui, I. D. Williams, J. Appl. Phys. 2000, 87, 6007-6009. M. Tafipolsky, S. Amirjalayer, R. Schmid, J. Phys. Chem. C 2010, 114, 14402-14409. M. Položij, M. Rubeš, J. Čejka, P. Nachtigall, ChemCatChem 2014, 6, 2821-2824. C. S. Tsao, M.-S. Yu, T.-Y. Chung, H.-C. Wu, C.-Y. Wang, K.-S. Chang, H.-L. Chen, J. Am. Chem. Soc. 2007, 129, 15997-16004. R. C. Huxford, J. D. Rocca, W. Lin, Curr. Opin. Chem. Biol. 2010, 14, 262-268. S. Øien, D. Wragg, H. Reinsch, S. Svelle, S. Bordiga, C. Lamberti, K. P. Lillerud, Cryst. Growth Des. 2014, 14, 5370-5372. O. Ourdjini, R. Pawlak, M. Abel, S. Clair, L. Chen, N. Bergeon, M. Sassi, V. Oison, J.-M. Debierre, R. Coratger, L. Porte, Phys. Rev. B 2011, 84, 125421. S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334-2375 C. Baerlocher, D. Xie, L. B. McCusker, S.-J. Hwang, I. Y. Chan, K. Ong, A. W. Burton, S. I. Zones, Nat. Mater. 2008, 7, 631-635. Y. W. Li, R. T. Yang, J. Am. Chem. Soc. 2006, 128, 8136-8137. H. Noei, S. Amirjalayer, M. Müller, X. Zhang, R. Schmid, M. Muhler, R. A. Fischer, Y. Wang, ChemCatChem 2012, 4, 755-759. M. C. Kunga, H. H. Kung, Catal. Rev. 1985, 27, 425-460. L. Carlucci, G. Ciani, M. Moret, D. M. Proserpio, S. Rizzato, Angew. Chem. Int. Ed. 2000, 39, 1506-1510 M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino, K. P. Lillerud, Chem. Mater. 2010, 22, 6632-6640. M. Ishizaki, M. Ishizaki, S. Akiba, A. Ohtani, Y. Hoshi, K. Ono, M. Matsuba, T. Togashi, K. Kananizuka, M. Sakamoto, A. Takahashi, T. Kawamoto, H. Tanaka, M. Watanabe, M. Arisaka, T. Nankawa, M. Kurihara, Dalton Trans. 2013, 42, 16049-16055. T. H. Park, A. J. Hickman, K. Koh, S. Martin, A. G. Wong-Foy, M. S. Sanford, A. J. Matzger, J. Am. Chem. Soc. 2011, 133, 20138-20141. Angew. Chem. 2014, 126, 4618-4628. M. Liu, A. G. Wong-Foy, R. S. Vallery, W. E. Frieze, J. K. Schnobrich, D. W. Gidley, A. J. Matzger, Adv. Mater. 2010, 22, 1598-1601. T. D. Bennett, A. K. Cheetham, Acc. Chem. Res. 2014, 47, 1555-1562. S. Amirjalayer, M. Tafipolsky, R. Schmid, J. Phys. Chem. Lett. 2014, 5, 3206-3210. L. Alaerts, E. Séguin, H. Poelman, F. Thibault-Starzyk, P. A. Jacobs, D. E. De Vos, Chem. Eur. J. 2006, 12, 7353-7363. M. L. Foo, R. Matsuda, S. Kitagawa, Chem. Mater. 2014, 26, 310-322. M. Kim, J. F. Cahill, Y. X. Su, K. A. Prather, S. M. Cohen, Chem. Sci. 2012, 3, 126-130. H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, J. Am. Chem. Soc. 2013, 135, 10525-10532. M. Shoaee, M. W. Anderson, M. P. Attfield, Angew. Chem. Int. Ed. 2008, 47, 8525-8528 M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J. M. Dieterich, T. Reimer, U. Kolb, D. de Vos, N. Stock, Angew. Chem. Int. Ed. 2012, 51, 10373-10376 S. Henke, A. Schneemann, A. Wuetscher, R. A. Fischer, J. Am. Chem. Soc. 2012, 134, 9464-9474. M. Shöâeè, J. R. Agger, M. W. Anderson, M. P. Attfield, CrystEngComm 2008, 10, 646-648. Angew. Chem. 2004, 116, 2388-2430. J. Li, L. Porter, S. Yip, J. Nucl. Mater. 1998, 255, 139-152. O. Kozachuk, M. Meilikhov, K. Yusenko, A. Schneemann, B. Jee, A. V. Kuttatheyil, M. Bertmer, C. Sternemann, A. Pöppl, R. A. Fischer, Eur. J. Inorg. Chem. 2013, 4546-4557. Z. Q. Liang, M. O. Reese, B. A. Gregg, ACS Appl. Mater. Interfaces 2011, 3, 2042-2050. O. Karagiaridi, W. Bury, J. E. Mondloch, J. T. Hupp, O. K. Farha, Angew. Chem. Int. Ed. 2014, 53, 4530-4540 M. Kind, C. Woll, Prog. Surf. Sci. 2009, 84, 230-278. K. Leus, I. Muylaert, M. Vandichel, G. B. Marin, M. Waroquier, V. Van Speybroeck, P. Van Der Voort, Chem. Commun. 2010, 46, 5085-5087. T. Barzetti, E. Selli, D. Moscotti, L. Forni, J. Chem. Soc. Faraday Trans. 1996, 92, 1401-1407. P. Shen, W.-W. He, D.-Y. Du, H.-L. Jiang, S.-L. Li, Z.-L. Lang, Z.-M. Su, Q. Fu, Y.-Q. Lan, Chem. Sci. 2014, 5, 1368-1374. T. Li, M. T. Kozlowski, E. A. Doud, M. N. Blakely, N. L. Rosi, J. Am. Chem. Soc. 2013, 135, 11688-11691. Y. Wang, A. Glenz, M. Muhler, C. Woll, Rev. Sci. Instrum. 2009, 80, 113108. D. N. Bunck, W. R. Dichtel, Chem. Eur. J. 2013, 19, 818-827. R. A. Beyerlein, C. Choi-Feng, J. B. Hall, B. J. Huggins, G. J. Ray, Top. Catal. 1997, 4, 27-42. Z. Fang, J. P. Dürholt, M. Kauer, W. Zhang, C. Lochenie, B. Jee, B. Albada, N. Metzler-Nolte, A. Pöppl, B. Weber, M. Muhler, Y. Wang, R. Schmid, R. A. Fischer, J. Am. Chem. Soc. 2014, 136, 9627-9636. P. Valvekens, D. Jonckheere, T. De Baerdemaeker, A. V. Kubarev, M. Vandichel, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, E. Smolders, D. Depla, M. B. J. Roeffaersa, D. De Vos, Chem. Sci. 2014, 5, 4517-4524. S. B. Choi, H. Furukawa, H. J. Nam, D.-Y. Jung, Y. H. Jhon, A. Walton, D. Book, M. O′Keeffe, O. M. Yaghi, J. Kim, Angew. Chem. Int. Ed. 2012, 51, 8791-8795 F. X. Llabres i Xamena, F. G. Cirujano, A. Corma, Microporous Mesoporous Mater. 2012, 157, 112-117. H. X. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. 2014 2014; 53 126 2007; 101 2012; 285 2009; 84 2010; 14 2013; 1 2000 2000; 39 112 2009 2009; 48 121 2009; 80 2000; 87 2014; 26 2004; 3 2008; 7 2011; 13 2012; 18 2008; 32 2008 2008; 47 120 2011; 17 2012; 14 2012; 13 1997; 4 2012; 11 2014; 136 2009; 48 2011; 111 1985; 27 2013 2013; 52 125 2013; 19 2010; 22 2014; 5 2012; 134 2012 2012; 51 124 2010; 114 2010; 110 2007; 9 2014; 14 2008; 116 2011; 23 2001; 55 2014; 50 1996; 27 2006; 128 2011; 281 2014; 6 2012; 22 2011; 29 2009; 326 2014; 53 1995; 95 2004 2004; 43 116 2015; 17 2007; 129 2010; 129 2010; 327 2006; 12 2011 2010 2013; 42 2011; 40 2011; 84 2009 2006; 5 2007 2014; 47 2005 2008; 10 2007; 50 2003 2013; 341 1996; 92 2009; 131 2011; 3 1998; 255 2011; 133 1999 2010; 49 2012; 2 2012; 3 2012; 112 2012; 157 2010; 46 2010; 330 2010; 132 2009; 9 2011; 44 2013; 135 2013 2012; 4 2012; 45 2008; 130 2009; 38 2012; 86 2014; 343 e_1_2_10_21_3 e_1_2_10_44_2 Batten S. R. (e_1_2_10_12_2) 2009 e_1_2_10_21_2 (e_1_2_10_2_2) 2005 e_1_2_10_109_2 e_1_2_10_40_2 e_1_2_10_131_2 e_1_2_10_70_2 e_1_2_10_116_2 e_1_2_10_93_2 e_1_2_10_18_2 e_1_2_10_74_2 e_1_2_10_37_3 e_1_2_10_112_2 e_1_2_10_37_2 e_1_2_10_97_2 e_1_2_10_55_2 e_1_2_10_78_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_79_3 (e_1_2_10_95_2) 1999 e_1_2_10_79_2 e_1_2_10_32_2 e_1_2_10_51_2 e_1_2_10_120_2 e_1_2_10_105_2 e_1_2_10_128_2 e_1_2_10_82_2 e_1_2_10_29_2 e_1_2_10_63_2 e_1_2_10_48_3 e_1_2_10_101_2 e_1_2_10_124_2 e_1_2_10_48_2 e_1_2_10_86_2 e_1_2_10_25_2 e_1_2_10_67_2 e_1_2_10_22_2 e_1_2_10_45_2 e_1_2_10_68_2 e_1_2_10_41_2 e_1_2_10_129_2 e_1_2_10_90_2 e_1_2_10_19_2 e_1_2_10_71_2 e_1_2_10_94_2 e_1_2_10_117_2 e_1_2_10_52_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_52_3 e_1_2_10_75_2 e_1_2_10_98_2 e_1_2_10_113_2 e_1_2_10_7_2 e_1_2_10_56_2 e_1_2_10_132_2 e_1_2_10_10_3 e_1_2_10_57_2 e_1_2_10_33_2 e_1_2_10_10_2 e_1_2_10_118_2 e_1_2_10_60_2 e_1_2_10_83_2 e_1_2_10_106_2 e_1_2_10_125_2 e_1_2_10_26_2 e_1_2_10_49_2 e_1_2_10_64_2 e_1_2_10_87_2 e_1_2_10_102_2 e_1_2_10_45_3 e_1_2_10_121_2 e_1_2_10_23_2 e_1_2_10_69_2 e_1_2_10_42_2 e_1_2_10_107_2 Bürgi H. B. (e_1_2_10_35_2) 2001; 55 e_1_2_10_91_3 e_1_2_10_91_2 e_1_2_10_72_2 e_1_2_10_114_2 e_1_2_10_39_2 e_1_2_10_53_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_53_3 e_1_2_10_76_2 e_1_2_10_110_2 e_1_2_10_133_2 e_1_2_10_99_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_58_2 e_1_2_10_30_2 e_1_2_10_119_2 e_1_2_10_80_2 e_1_2_10_61_2 e_1_2_10_126_3 e_1_2_10_103_2 e_1_2_10_126_2 e_1_2_10_84_2 e_1_2_10_27_2 e_1_2_10_65_2 e_1_2_10_122_2 e_1_2_10_46_2 e_1_2_10_88_2 e_1_2_10_20_2 e_1_2_10_43_2 (e_1_2_10_3_2) 2003 e_1_2_10_108_2 e_1_2_10_130_2 e_1_2_10_92_2 e_1_2_10_1_2 e_1_2_10_17_2 e_1_2_10_73_2 e_1_2_10_96_2 e_1_2_10_17_3 e_1_2_10_115_2 e_1_2_10_5_2 e_1_2_10_54_2 e_1_2_10_36_2 e_1_2_10_77_2 e_1_2_10_111_2 e_1_2_10_9_2 e_1_2_10_59_2 e_1_2_10_31_2 e_1_2_10_50_2 (e_1_2_10_13_2) 2010 e_1_2_10_81_2 e_1_2_10_127_2 e_1_2_10_28_2 e_1_2_10_62_2 e_1_2_10_85_2 e_1_2_10_104_2 e_1_2_10_100_3 e_1_2_10_123_2 e_1_2_10_24_2 e_1_2_10_47_2 e_1_2_10_66_2 e_1_2_10_89_2 e_1_2_10_100_2 18044895 - J Am Chem Soc. 2007 Dec 26;129(51):15997-6004 24310609 - Science. 2014 Jan 3;343(6166):66-9 15359343 - Nat Mater. 2004 Oct;3(10):715-20 23902330 - J Am Chem Soc. 2013 Aug 28;135(34):12886-91 19947718 - Rev Sci Instrum. 2009 Nov;80(11):113108 23471316 - Chem Soc Rev. 2013 Jun 21;42(12):4881-93 24652755 - Angew Chem Int Ed Engl. 2014 Apr 25;53(18):4530-40 19384441 - Chem Soc Rev. 2009 May;38(5):1330-52 23157426 - J Am Chem Soc. 2012 Dec 12;134(49):20110-6 23039827 - J Am Chem Soc. 2012 Oct 31;134(43):18082-8 16415875 - Nat Mater. 2006 Feb;5(2):134-40 20715825 - J Am Chem Soc. 2010 Sep 8;132(35):12365-77 23009199 - J Am Chem Soc. 2012 Oct 17;134(41):17286-90 23280516 - Chemistry. 2013 Jan 14;19(3):818-27 25036867 - Chem Commun (Camb). 2014 Sep 11;50(70):10055-8 24915512 - J Am Chem Soc. 2014 Jul 9;136(27):9627-36 24750124 - J Am Chem Soc. 2014 Jun 25;136(25):8859-62 23495187 - Chemistry. 2013 Apr 26;19(18):5533-6 21164012 - Science. 2010 Dec 17;330(6011):1660-3 22976879 - Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10373-6 17999502 - J Am Chem Soc. 2007 Dec 12;129(49):15192-201 24077361 - Chem Soc Rev. 2013 Dec 21;42(24):9232-42 24588307 - J Am Chem Soc. 2014 Mar 19;136(11):4369-81 20359232 - Chem Rev. 2010 Aug 11;110(8):4606-55 23055448 - Chemistry. 2012 Nov 26;18(48):15406-15 21863792 - Chem Rev. 2011 Nov 9;111(11):6810-918 21225034 - Chem Soc Rev. 2011 Feb;40(2):1081-106 16881030 - Chemistry. 2006 Sep 25;12(28):7353-63 23945598 - Dalton Trans. 2013 Dec 7;42(45):16049-55 24946837 - Nat Commun. 2014 Jun 20;5:4176 23143805 - Angew Chem Int Ed Engl. 2013 Jan 2;52(1):401-5 23887875 - Science. 2013 Aug 23;341(6148):882-5 22249947 - Angew Chem Int Ed Engl. 2012 Feb 20;51(8):1885-9 19472244 - Angew Chem Int Ed Engl. 2009;48(26):4739-43 21995563 - J Am Chem Soc. 2011 Nov 23;133(46):18950-6 18800795 - J Am Chem Soc. 2008 Oct 15;130(41):13516-7 24838592 - Angew Chem Int Ed Engl. 2014 Jul 1;53(27):7058-62 17700826 - Dalton Trans. 2007 Sep 7;(33):3640-5 21547962 - Chemistry. 2011 Jun 6;17(24):6643-51 24707980 - Acc Chem Res. 2014 May 20;47(5):1555-62 22517762 - Chemphyschem. 2012 Jun 4;13(8):2025-9 25229624 - J Am Chem Soc. 2014 Oct 15;136(41):14465-71 24903856 - Inorg Chem. 2014 Jul 7;53(13):6914-9 18622404 - Nat Mater. 2008 Aug;7(8):631-5 15114565 - Angew Chem Int Ed Engl. 2004 Apr 26;43(18):2334-75 22660661 - Nat Mater. 2012 Jun 03;11(8):710-6 21861521 - J Am Chem Soc. 2011 Oct 5;133(39):15506-13 21604784 - ACS Appl Mater Interfaces. 2011 Jun;3(6):2042-50 20095567 - Inorg Chem. 2010 Feb 15;49(4):1510-6 16522102 - J Am Chem Soc. 2006 Mar 15;128(10):3218-27 24328288 - Inorg Chem. 2014 Jan 6;53(1):160-6 23808838 - J Am Chem Soc. 2013 Jul 17;135(28):10525-32 22858739 - Phys Chem Chem Phys. 2012 Oct 14;14(38):13120-32 20071210 - Curr Opin Chem Biol. 2010 Apr;14(2):262-8 20496387 - Adv Mater. 2010 Apr 12;22(14):1598-601 21688849 - Chem Rev. 2012 Feb 8;112(2):1126-62 22575013 - J Am Chem Soc. 2012 Jun 6;134(22):9464-74 17627311 - Phys Chem Chem Phys. 2007 Jun 7;9(21):2676-85 22887718 - Angew Chem Int Ed Engl. 2012 Sep 10;51(37):9267-71 22080843 - J Am Chem Soc. 2012 Jan 11;134(1):588-98 22070233 - Chem Rev. 2012 Feb 8;112(2):1105-25 25116653 - Chem Commun (Camb). 2014 Oct 7;50(77):11329-31 23688075 - J Am Chem Soc. 2013 Aug 14;135(32):11688-91 19046076 - Inorg Chem. 2009 Jan 5;48(1):267-76 10777657 - Angew Chem Int Ed Engl. 2000 Apr;39(8):1506-1510 24651203 - Nat Chem. 2014 Apr;6(4):343-51 16787068 - J Am Chem Soc. 2006 Jun 28;128(25):8136-7 20563337 - Chem Commun (Camb). 2010 Jul 28;46(28):5085-7 20150497 - Science. 2010 Feb 12;327(5967):846-50 19729619 - Science. 2009 Oct 16;326(5951):415-7 21749096 - J Am Chem Soc. 2011 Aug 10;133(31):11920-3 26276333 - J Phys Chem Lett. 2014 Sep 18;5(18):3206-10 23875753 - J Am Chem Soc. 2013 Aug 7;135(31):11465-8 18846529 - Angew Chem Int Ed Engl. 2008;47(44):8525-8 19140765 - J Am Chem Soc. 2009 Feb 4;131(4):1404-6 22807234 - Angew Chem Int Ed Engl. 2012 Aug 27;51(35):8791-5 22122560 - J Am Chem Soc. 2011 Dec 21;133(50):20138-41 22488675 - Angew Chem Int Ed Engl. 2012 May 14;51(20):4887-90 |
| References_xml | – reference: M. Shöâeè, J. R. Agger, M. W. Anderson, M. P. Attfield, CrystEngComm 2008, 10, 646-648. – reference: M. Tafipolsky, S. Amirjalayer, R. Schmid, J. Phys. Chem. C 2010, 114, 14402-14409. – reference: M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino, K. P. Lillerud, Chem. Mater. 2010, 22, 6632-6640. – reference: R. C. Huxford, J. D. Rocca, W. Lin, Curr. Opin. Chem. Biol. 2010, 14, 262-268. – reference: J. Heine, K. Muller-Buschbaum, Chem. Soc. Rev. 2013, 42, 9232-9242. – reference: P. St. Petkov, G. N. Vayssilov, J. Liu, O. Shekhah, Y. Wang, C. Wöll, T. Heine, ChemPhysChem 2012, 13, 2025-2029. – reference: L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilsen, S. Jakobsen, K. P. Lillerud, C. Lamberti, Chem. Mater. 2011, 23, 1700-1718. – reference: M. Kim, J. F. Cahill, H. H. Fei, K. A. Prather, S. M. Cohen, J. Am. Chem. Soc. 2012, 134, 18082-18088. – reference: S. B. Choi, H. Furukawa, H. J. Nam, D.-Y. Jung, Y. H. Jhon, A. Walton, D. Book, M. O′Keeffe, O. M. Yaghi, J. Kim, Angew. Chem. Int. Ed. 2012, 51, 8791-8795; – reference: M. Lackinger, W. M. Heckl, J. Phys. D 2011, 44, 464011. – reference: M. B. Roeffaers, R. Ameloot, A.-J. Bons, W. Mortier, G. De Cremer, R. de Kloe, J. Hofkens, D. E. De Vos, B. F. Sels, J. Am. Chem. Soc. 2008, 130, 13516-13517. – reference: S. Amirjalayer, M. Tafipolsky, R. Schmid, J. Phys. Chem. Lett. 2014, 5, 3206-3210. – reference: Angew. Chem. 2012, 124, 8921-8925. – reference: M. Kim, J. F. Cahill, Y. X. Su, K. A. Prather, S. M. Cohen, Chem. Sci. 2012, 3, 126-130. – reference: T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D. Prabhakaran, A. T. Boothroyd, R. J. Aldus, D. F. McMorrow, S. T. Bramwell, Science 2009, 326, 415-417. – reference: X. X. Zhang, S. S. Y. Chui, I. D. Williams, J. Appl. Phys. 2000, 87, 6007-6009. – reference: M. Liu, A. G. Wong-Foy, R. S. Vallery, W. E. Frieze, J. K. Schnobrich, D. W. Gidley, A. J. Matzger, Adv. Mater. 2010, 22, 1598-1601. – reference: C. L. Whittington, L. Wojtas, R. W. Larsen, Inorg. Chem. 2014, 53, 160-166. – reference: J. S. Choi, W. J. Son, J. Kim, W. S. Ahn, Microporous Mesoporous Mater. 2008, 116, 727-731. – reference: Y. Wang, A. Glenz, M. Muhler, C. Woll, Rev. Sci. Instrum. 2009, 80, 113108. – reference: H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, J. Am. Chem. Soc. 2013, 135, 10525-10532. – reference: G. C. Shearer, S. Chavan, J. Ethiraj, J. G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, K. P. Lillerud, Chem. Mater. 2014, 26, 4068-4071. – reference: Y. J. Cui, Y. F. Yue, G. D. Qian, B. L. Chen, Chem. Rev. 2012, 112, 1126-1162. – reference: D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 2014, 136, 8859-8862. – reference: U. Ravon, M. E. Domine, C. Gaudillere, A. Desmartin-Chomel, D. Farrusseng, New J. Chem. 2008, 32, 937-940. – reference: J. Li, L. Porter, S. Yip, J. Nucl. Mater. 1998, 255, 139-152. – reference: O. Karagiaridi, W. Bury, J. E. Mondloch, J. T. Hupp, O. K. Farha, Angew. Chem. Int. Ed. 2014, 53, 4530-4540; – reference: H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 4369-4381. – reference: U. Ravon, M. Savonnet, S. Aguado, M. E. Domine, E. Janneau, D. Farrusseng, Microporous Mesoporous Mater. 2010, 129, 319-329. – reference: S. R. Batten, D. R. Turner, M. S. Neville, Coordination Polymers: Design, Analysis and Application, RSC, Cambridge, 2009. – reference: L. I. Meza, M. W. Anderson, J. R. Agger, C. S. Cundy, C. B. Chong, R. J. Plaisted, J. Am. Chem. Soc. 2007, 129, 15192-15201. – reference: R. Ameloot, M. Aubrey, B. M. Wiers, A. P. Gomora-Figueroa, S. N. Patel, N. P. Balsara, J. R. Long, Chem. Eur. J. 2013, 19, 5533-5536. – reference: T. R. Welberry, B. D. Butler, Chem. Rev. 1995, 95, 2369-2403. – reference: A. Corma, H. García, F. X. Llabres i Xamena, Chem. Rev. 2010, 110, 4606-4655. – reference: P. Shen, W.-W. He, D.-Y. Du, H.-L. Jiang, S.-L. Li, Z.-L. Lang, Z.-M. Su, Q. Fu, Y.-Q. Lan, Chem. Sci. 2014, 5, 1368-1374. – reference: C. S. Tsao, M.-S. Yu, C.-Y. Wang, P.-Y. Liao, H.-L. Chen, U.-S. Jeng, Y.-R. Tzeng, T.-Y. Chung, H.-C. Wu, J. Am. Chem. Soc. 2009, 131, 1404-1406. – reference: P. Valvekens, D. Jonckheere, T. De Baerdemaeker, A. V. Kubarev, M. Vandichel, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, E. Smolders, D. Depla, M. B. J. Roeffaersa, D. De Vos, Chem. Sci. 2014, 5, 4517-4524. – reference: B. Bueken, H. Reinsch, N. Reimer, I. Stassen, F. Vermoortele, R. Ameloot, N. Stock, C. E. A. Kirschhocka, D. De Vos, Chem. Commun. 2014, 50, 10055-10058. – reference: D. N. Bunck, W. R. Dichtel, Chem. Eur. J. 2013, 19, 818-827. – reference: Angew. Chem. 2012, 124, 9401-9405. – reference: D. N. Bunck, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 1885-1889; – reference: M. Položij, M. Rubeš, J. Čejka, P. Nachtigall, ChemCatChem 2014, 6, 2821-2824. – reference: M. J. Cliffe, A. L. Goodwin, J. Appl. Crystallogr. 2012, 45, 1321-1329. – reference: Y. Yoshida, K. Inoue, M. Kurmoo, Inorg. Chem. 2009, 48, 267-276. – reference: S. Bordiga, L. Regli, F. Bonino, E. Groppo, C. Lamberti, B. Xiao, P. S. Wheatley, R. E. Morris, A. Zecchina, Phys. Chem. Chem. Phys. 2007, 9, 2676-2685. – reference: P. Cubillas, M. W. Anderson, M. P. Attfield, Chem. Eur. J. 2012, 18, 15406-15415. – reference: V. E. Fairbank, A. L. Thompson, R. I. Cooper, A. L. Goodwin, Phys. Rev. B 2012, 86, 144103-144105. – reference: M. Vandichel, J. Hajek, F. Vermoortele, M. Waroquier, D. E. De Vos, V. Van Speybroeck, CrystEngComm 2015, 17, 395-406. – reference: T. Hasell, S. Y. Chong, K. E. Jelfs, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc. 2012, 134, 588-598. – reference: M. Shoaee, M. W. Anderson, M. P. Attfield, Angew. Chem. Int. Ed. 2008, 47, 8525-8528; – reference: C. Marti-Gastaldo, D. Antypov, J. E. Warren, M. E. Briggs, P. A. Chater, P. V. Wiper, G. J. Miller, Y. Z. Khimyak, G. R. Darling, G. Berry, M. J. Rosseinsky, Nat. Chem. 2014, 6, 343-351. – reference: F. X. Llabres i Xamena, F. G. Cirujano, A. Corma, Microporous Mesoporous Mater. 2012, 157, 112-117. – reference: F. Vermoortele, R. Ameloot, L. Alaerts, R. Matthessen, B. Carlier, E. V. R. Fernandez, J. Gascon, F. Kapteijn, D. E. De Vos, J. Mater. Chem. 2012, 22, 10313-10321. – reference: K. Leus, M. Vandichel, Y.-Y. Liu, I. Muylaert, J. Musschoot, S. Pyl, H. Vrielinck, F. Callens, G. B. Marin, C. Detavernier, P. V. Wiper, Y. Z. Khimyak, M. Waroquier, V. Van Speybroeck, P. Van Der Voort, J. Catal. 2012, 285, 196-207. – reference: O. Kozachuk, M. Meilikhov, K. Yusenko, A. Schneemann, B. Jee, A. V. Kuttatheyil, M. Bertmer, C. Sternemann, A. Pöppl, R. A. Fischer, Eur. J. Inorg. Chem. 2013, 4546-4557. – reference: G. Barin, V. Krungleviciute, O. Gutov, J. T. Hupp, T. Yildirim, O. K. Farha, Inorg. Chem. 2014, 53, 6914-6919. – reference: Electronic and Optoelectronic Properties of Semiconductor Structures (Ed.: J. Singh), Cambridge University Press, Cambridge, 2003. – reference: A. Umemura, S. Diring, S. Furukawa, H. Uehara, T. Tsuruoka, S. Kitagawa, J. Am. Chem. Soc. 2011, 133, 15506-15513. – reference: F. Vermoortele, B. Bueken, G. Le Bars, B. V. de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock, D. E. De Vos, J. Am. Chem. Soc. 2013, 135, 11465-11468. – reference: G. Y. Xu, Z. Zhong, Y. Bing, Z. G. Ye, G. Shirane, Nat. Mater. 2006, 5, 134-140. – reference: A. M. Walker, B. Slater, CrystEngComm 2008, 10, 790-791. – reference: Z. Fang, J. P. Dürholt, M. Kauer, W. Zhang, C. Lochenie, B. Jee, B. Albada, N. Metzler-Nolte, A. Pöppl, B. Weber, M. Muhler, Y. Wang, R. Schmid, R. A. Fischer, J. Am. Chem. Soc. 2014, 136, 9627-9636. – reference: Angew. Chem. 2000, 112, 1566-1570. – reference: J. Park, Z. Y. U. Wang, L. B. Sun, Y. P. Chen, H. C. Zhou, J. Am. Chem. Soc. 2012, 134, 20110-20116. – reference: A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Chem. Eur. J. 2011, 17, 6643-6665. – reference: V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, G. Férey, A. Vittadini, S. Gross, C. Serre, Angew. Chem. Int. Ed. 2012, 51, 9267-9271; – reference: T. Tsuruoka, S. Furukawa, Y. Takashima, K. Yoshida, S. Isoda, S. Kitagawa, Angew. Chem. Int. Ed. 2009, 48, 4739-4743; – reference: A. Vimont, J.-M. Goupil, J.-C. Lavalley, M. Daturi, S. Surblé, C. Serre, F. Millange, G. Férey, N. Audebrand, J. Am. Chem. Soc. 2006, 128, 3218-3227. – reference: O. Shekhah, J. Liu, R. A. Fischer, C. Woll, Chem. Soc. Rev. 2011, 40, 1081-1106. – reference: B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, O. Yaghi, Int. J. Heat Mass Transfer 2007, 50, 405-411. – reference: H. B. Bürgi, T. Weber, Chimia 2001, 55, 510-516. – reference: Angew. Chem. 2012, 124, 1921-1925. – reference: Angew. Chem. 2004, 116, 2388-2430. – reference: M. L. Foo, R. Matsuda, S. Kitagawa, Chem. Mater. 2014, 26, 310-322. – reference: A. B. Cairns, A. L. Goodwin, Chem. Soc. Rev. 2013, 42, 4881-4893. – reference: L. Carlucci, G. Ciani, M. Moret, D. M. Proserpio, S. Rizzato, Angew. Chem. Int. Ed. 2000, 39, 1506-1510; – reference: Catalysis and Zeolites: Fundamentals and Applications (Eds.: J. Weitkamp, L. Puppe), Springer, Berlin, Heidelberg, 1999. – reference: Angew. Chem. 2008, 120, 8653-8656. – reference: L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105-1125. – reference: M. C. Kunga, H. H. Kung, Catal. Rev. 1985, 27, 425-460. – reference: M. Moret, S. Rizzato, Cryst. Growth Des. 2009, 9, 5035-5042. – reference: O. Kozachuk, I. Luz, F. X. Llabres i Xamena, H. Noei, M. Kauer, H. B. Albada, E. D. Bloch, B. Marler, Y. Wang, M. Muhler, R. A. Fischer, Angew. Chem. Int. Ed. 2014, 53, 7058-7062; – reference: H. X. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. Yaghi, Science 2010, 327, 846-850. – reference: C. S. Tsao, M.-S. Yu, T.-Y. Chung, H.-C. Wu, C.-Y. Wang, K.-S. Chang, H.-L. Chen, J. Am. Chem. Soc. 2007, 129, 15997-16004. – reference: Angew. Chem. 2013, 125, 419-423. – reference: M. Kind, C. Woll, Prog. Surf. Sci. 2009, 84, 230-278. – reference: R. Ameloot, F. Vermoortele, J. Hofkens, F. C. De Schryver, D. E. De Vos, M. B. J. Roeffaers, Angew. Chem. Int. Ed. 2013, 52, 401-405; – reference: K. M. Choi, H. J. Jeon, J. K. Kang, O. M. Yaghi, J. Am. Chem. Soc. 2011, 133, 11920-11923. – reference: A. M. Walker, B. Slater, J. D. Gale, K. Wright, Nat. Mater. 2004, 3, 715-720. – reference: M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J. M. Dieterich, T. Reimer, U. Kolb, D. de Vos, N. Stock, Angew. Chem. Int. Ed. 2012, 51, 10373-10376; – reference: B. Bonelli, L. Forni, A. Aloise, J. B. Nagy, G. Fornasari, E. Garrone, A. Gedeon, G. Giordano, F. Trifirò, Microporous Mesoporous Mater. 2007, 101, 153-160. – reference: M. Lalonde, W. Bury, O. Karagiaridi, Z. Brown, J. T. Hupp, O. K. Farha, J. Mater. Chem. A 2013, 1, 5453-5468. – reference: A. D. Burrows, CrystEngComm 2011, 13, 3623-3642. – reference: H. Noei, S. Amirjalayer, M. Müller, X. Zhang, R. Schmid, M. Muhler, R. A. Fischer, Y. Wang, ChemCatChem 2012, 4, 755-759. – reference: S. Takamizawa, M. A. Kohbara, Dalton Trans. 2007, 3640-3645. – reference: J. Čejka, A. Corma, S. Zones, Zeolites and Catalysis: Synthesis Reactions and Applications, Wiley-VCH, Weinheim, 2010. – reference: R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810-6918. – reference: J. C. Lavalley, Catal. Today 1996, 27, 377-401. – reference: P. Ghosh, Y. J. Colón, R. Q. Snurr, Chem. Commun. 2014, 50, 11329-11331. – reference: O. Ourdjini, R. Pawlak, M. Abel, S. Clair, L. Chen, N. Bergeon, M. Sassi, V. Oison, J.-M. Debierre, R. Coratger, L. Porte, Phys. Rev. B 2011, 84, 125421. – reference: C. Chizallet, S. Lazare, D. Bazer-Bachi, F. Bonnier, V. Lecocq, E. Soyer, A.-A. Quoineaud, N. Bats, J. Am. Chem. Soc. 2010, 132, 12365-12377. – reference: L. Alaerts, E. Séguin, H. Poelman, F. Thibault-Starzyk, P. A. Jacobs, D. E. De Vos, Chem. Eur. J. 2006, 12, 7353-7363. – reference: Bulk Crystal Growth in Electronic, Optical and Optoelectronic Materials (Ed.: P. Capper), Wiley, New York, 2005. – reference: M. Sánchez-Andújar, S. Presedo, S. Yáñez-Vilar, S. Castro-García, J. Shamir, M. A. Señarís-Rodríguez, Inorg. Chem. 2010, 49, 1510-1516. – reference: S. Marx, W. Kleist, A. Baiker, J. Catal. 2011, 281, 76-87. – reference: L. T. L. Nguyen, K. K. A. Le, H. X. Truong, N. T. S. Phan, Catal. Sci. Technol. 2012, 2, 521-528. – reference: T. Li, M. T. Kozlowski, E. A. Doud, M. N. Blakely, N. L. Rosi, J. Am. Chem. Soc. 2013, 135, 11688-11691. – reference: B. L. Huang, A. J. H. McGaughey, M. Kaviany, Int. J. Heat Mass Transfer 2007, 50, 393-404. – reference: C. H. Hendon, D. Tiana, A. Walsh, Phys. Chem. Chem. Phys. 2012, 14, 13120-13132. – reference: K. Leus, I. Muylaert, M. Vandichel, G. B. Marin, M. Waroquier, V. Van Speybroeck, P. Van Der Voort, Chem. Commun. 2010, 46, 5085-5087. – reference: Angew. Chem. 2014, 126, 7178-7182. – reference: S. Henke, A. Schneemann, A. Wuetscher, R. A. Fischer, J. Am. Chem. Soc. 2012, 134, 9464-9474. – reference: L. Shen, S.-W. Yang, S. Xiang, T. Liu, B. Zhao, M.-F. Ng, J. Göettlicher, J. Yi, S. Li, L. Wang, J. Ding, B. Chen, S.-H. Wei, Y. P. Feng, J. Am. Chem. Soc. 2012, 134, 17286-17290. – reference: C. K. Brozek, M. Dinca, J. Am. Chem. Soc. 2013, 135, 12886-12891. – reference: S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka, S. Kitagawa, Chem. Mater. 2010, 22, 4531-4538. – reference: S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334-2375; – reference: Y. W. Li, R. T. Yang, J. Am. Chem. Soc. 2006, 128, 8136-8137. – reference: V. Valtchev, E. Balanzat, V. Mavrodinova, I. Diaz, J. E. Fallah, J.-M. Goupil, J. Am. Chem. Soc. 2011, 133, 18950-18956. – reference: Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis (Ed.: M. Schröder), Springer, Berlin, Heidelberg, 2010. – reference: S. Gadipelli, Z. Guo, Chem. Mater. 2014, 26, 6333-6338. – reference: S. Øien, D. Wragg, H. Reinsch, S. Svelle, S. Bordiga, C. Lamberti, K. P. Lillerud, Cryst. Growth Des. 2014, 14, 5370-5372. – reference: B. Tu, Q. Pang, D. Wu, Y. Song, L. Weng, Q. Li, J. Am. Chem. Soc. 2014, 136, 14465-14471. – reference: X. Q. Kong, H. Deng, F. Yan, J. Kim, J. A. Swisher, B. Smit, O. M. Yaghi, J. A. Reimer, Science 2013, 341, 882-885. – reference: T. D. Bennett, A. K. Cheetham, Acc. Chem. Res. 2014, 47, 1555-1562. – reference: S. H. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake, M. Schröder, Nat. Mater. 2012, 11, 710-716. – reference: C. Baerlocher, D. Xie, L. B. McCusker, S.-J. Hwang, I. Y. Chan, K. Ong, A. W. Burton, S. I. Zones, Nat. Mater. 2008, 7, 631-635. – reference: T. Barzetti, E. Selli, D. Moscotti, L. Forni, J. Chem. Soc. Faraday Trans. 1996, 92, 1401-1407. – reference: Angew. Chem. 2014, 126, 4618-4628. – reference: Angew. Chem. 2012, 124, 10519-10522. – reference: F. Vermoortele, M. Vandichel, B. Van de Voorde, R. Ameloot, M. Waroquier, V. Van Speybroeck, D. E. De Vos, Angew. Chem. Int. Ed. 2012, 51, 4887-4890; – reference: Angew. Chem. 2012, 124, 4971-4974. – reference: Z. Q. Liang, M. O. Reese, B. A. Gregg, ACS Appl. Mater. Interfaces 2011, 3, 2042-2050. – reference: T. H. Park, A. J. Hickman, K. Koh, S. Martin, A. G. Wong-Foy, M. S. Sanford, A. J. Matzger, J. Am. Chem. Soc. 2011, 133, 20138-20141. – reference: A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, M. D. Allendorf, Science 2014, 343, 66-69. – reference: M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330-1352. – reference: R. A. Beyerlein, C. Choi-Feng, J. B. Hall, B. J. Huggins, G. J. Ray, Top. Catal. 1997, 4, 27-42. – reference: M. J. Cliffe, W. Wan, X. Zou, P. A. Chater, A. K. Kleppe, M. G. Tucker, H. Wilhelm, N. P. Funnell, F.-X. Coudert, A. L. Goodwin, Nat. Commun. 2014, 5, 4176. – reference: J. Hölsä, T. Laamanen, M. Lastusaari, P. Novák, J. Rare Earths 2011, 29, 1130-1136. – reference: E. S. Božin, C. D. Malliakas, P. Souvatzis, T. Proffen, N. A. Spaldin, M. G. Kanatzidis, S. J. L. Billinge, Science 2010, 330, 1660-1663. – reference: M. Ishizaki, M. Ishizaki, S. Akiba, A. Ohtani, Y. Hoshi, K. Ono, M. Matsuba, T. Togashi, K. Kananizuka, M. Sakamoto, A. Takahashi, T. Kawamoto, H. Tanaka, M. Watanabe, M. Arisaka, T. Nankawa, M. Kurihara, Dalton Trans. 2013, 42, 16049-16055. – reference: S. Jakobsen, D. Gianolio, D. S. Wragg, M. H. Nilsen, H. Emerich, S. Bordiga, C. Lamberti, U. Olsbye, M. Tilset, K. P. Lillerud, Phys. Rev. B 2012, 86, 125429. – reference: Angew. Chem. 2009, 121, 4833-4837. – volume: 5 start-page: 4176 year: 2014 publication-title: Nat. Commun. – volume: 27 start-page: 425 year: 1985 end-page: 460 publication-title: Catal. Rev. – volume: 42 start-page: 4881 year: 2013 end-page: 4893 publication-title: Chem. Soc. Rev. – volume: 53 start-page: 160 year: 2014 end-page: 166 publication-title: Inorg. Chem. – volume: 51 124 start-page: 1885 1921 year: 2012 2012 end-page: 1889 1925 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2005 – volume: 18 start-page: 15406 year: 2012 end-page: 15415 publication-title: Chem. Eur. J. – volume: 285 start-page: 196 year: 2012 end-page: 207 publication-title: J. Catal. – volume: 3 start-page: 2042 year: 2011 end-page: 2050 publication-title: ACS Appl. Mater. Interfaces – volume: 101 start-page: 153 year: 2007 end-page: 160 publication-title: Microporous Mesoporous Mater. – volume: 136 start-page: 9627 year: 2014 end-page: 9636 publication-title: J. Am. Chem. Soc. – volume: 53 126 start-page: 7058 7178 year: 2014 2014 end-page: 7062 7182 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 start-page: 510 year: 2001 end-page: 516 publication-title: Chimia – volume: 3 start-page: 715 year: 2004 end-page: 720 publication-title: Nat. Mater. – volume: 135 start-page: 11688 year: 2013 end-page: 11691 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 755 year: 2012 end-page: 759 publication-title: ChemCatChem – volume: 51 124 start-page: 9267 9401 year: 2012 2012 end-page: 9271 9405 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 17286 year: 2012 end-page: 17290 publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 15192 year: 2007 end-page: 15201 publication-title: J. Am. Chem. Soc. – volume: 52 125 start-page: 401 419 year: 2013 2013 end-page: 405 423 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 1510 year: 2010 end-page: 1516 publication-title: Inorg. Chem. – volume: 95 start-page: 2369 year: 1995 end-page: 2403 publication-title: Chem. Rev. – volume: 22 start-page: 6632 year: 2010 end-page: 6640 publication-title: Chem. Mater. – volume: 29 start-page: 1130 year: 2011 end-page: 1136 publication-title: J. Rare Earths – volume: 14 start-page: 262 year: 2010 end-page: 268 publication-title: Curr. Opin. Chem. Biol. – volume: 26 start-page: 4068 year: 2014 end-page: 4071 publication-title: Chem. Mater. – volume: 136 start-page: 14465 year: 2014 end-page: 14471 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 464011 year: 2011 publication-title: J. Phys. D – volume: 116 start-page: 727 year: 2008 end-page: 731 publication-title: Microporous Mesoporous Mater. – volume: 26 start-page: 310 year: 2014 end-page: 322 publication-title: Chem. Mater. – volume: 50 start-page: 11329 year: 2014 end-page: 11331 publication-title: Chem. Commun. – volume: 341 start-page: 882 year: 2013 end-page: 885 publication-title: Science – volume: 92 start-page: 1401 year: 1996 end-page: 1407 publication-title: J. Chem. Soc. Faraday Trans. – volume: 135 start-page: 10525 year: 2013 end-page: 10532 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 937 year: 2008 end-page: 940 publication-title: New J. Chem. – volume: 22 start-page: 4531 year: 2010 end-page: 4538 publication-title: Chem. Mater. – volume: 50 start-page: 10055 year: 2014 end-page: 10058 publication-title: Chem. Commun. – volume: 343 start-page: 66 year: 2014 end-page: 69 publication-title: Science – volume: 86 start-page: 144103 year: 2012 end-page: 144105 publication-title: Phys. Rev. B – volume: 17 start-page: 6643 year: 2011 end-page: 6665 publication-title: Chem. Eur. J. – volume: 53 126 start-page: 4530 4618 year: 2014 2014 end-page: 4540 4628 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 80 start-page: 113108 year: 2009 publication-title: Rev. Sci. Instrum. – volume: 136 start-page: 4369 year: 2014 end-page: 4381 publication-title: J. Am. Chem. Soc. – volume: 255 start-page: 139 year: 1998 end-page: 152 publication-title: J. Nucl. Mater. – volume: 129 start-page: 15997 year: 2007 end-page: 16004 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 9464 year: 2012 end-page: 9474 publication-title: J. Am. Chem. Soc. – year: 2010 – volume: 2 start-page: 521 year: 2012 end-page: 528 publication-title: Catal. Sci. Technol. – volume: 133 start-page: 15506 year: 2011 end-page: 15513 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 3623 year: 2011 end-page: 3642 publication-title: CrystEngComm – volume: 6 start-page: 343 year: 2014 end-page: 351 publication-title: Nat. Chem. – volume: 114 start-page: 14402 year: 2010 end-page: 14409 publication-title: J. Phys. Chem. C – volume: 5 start-page: 3206 year: 2014 end-page: 3210 publication-title: J. Phys. Chem. Lett. – volume: 86 start-page: 125429 year: 2012 publication-title: Phys. Rev. B – volume: 134 start-page: 20110 year: 2012 end-page: 20116 publication-title: J. Am. Chem. Soc. – volume: 43 116 start-page: 2334 2388 year: 2004 2004 end-page: 2375 2430 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 124 start-page: 10373 10519 year: 2012 2012 end-page: 10376 10522 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 393 year: 2007 end-page: 404 publication-title: Int. J. Heat Mass Transfer – volume: 84 start-page: 230 year: 2009 end-page: 278 publication-title: Prog. Surf. Sci. – volume: 129 start-page: 319 year: 2010 end-page: 329 publication-title: Microporous Mesoporous Mater. – volume: 5 start-page: 4517 year: 2014 end-page: 4524 publication-title: Chem. Sci. – volume: 84 start-page: 125421 year: 2011 publication-title: Phys. Rev. B – volume: 330 start-page: 1660 year: 2010 end-page: 1663 publication-title: Science – volume: 136 start-page: 8859 year: 2014 end-page: 8862 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 1105 year: 2012 end-page: 1125 publication-title: Chem. Rev. – volume: 128 start-page: 3218 year: 2006 end-page: 3227 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 1126 year: 2012 end-page: 1162 publication-title: Chem. Rev. – year: 2009 – volume: 23 start-page: 1700 year: 2011 end-page: 1718 publication-title: Chem. Mater. – volume: 47 120 start-page: 8525 8653 year: 2008 2008 end-page: 8528 8656 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 11465 year: 2013 end-page: 11468 publication-title: J. Am. Chem. Soc. – volume: 157 start-page: 112 year: 2012 end-page: 117 publication-title: Microporous Mesoporous Mater. – volume: 131 start-page: 1404 year: 2009 end-page: 1406 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 1555 year: 2014 end-page: 1562 publication-title: Acc. Chem. Res. – volume: 27 start-page: 377 year: 1996 end-page: 401 publication-title: Catal. Today – volume: 110 start-page: 4606 year: 2010 end-page: 4655 publication-title: Chem. Rev. – volume: 26 start-page: 6333 year: 2014 end-page: 6338 publication-title: Chem. Mater. – volume: 281 start-page: 76 year: 2011 end-page: 87 publication-title: J. Catal. – volume: 53 start-page: 6914 year: 2014 end-page: 6919 publication-title: Inorg. Chem. – volume: 38 start-page: 1330 year: 2009 end-page: 1352 publication-title: Chem. Soc. Rev. – volume: 133 start-page: 11920 year: 2011 end-page: 11923 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 395 year: 2015 end-page: 406 publication-title: CrystEngComm – volume: 128 start-page: 8136 year: 2006 end-page: 8137 publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 6810 year: 2011 end-page: 6918 publication-title: Chem. Rev. – start-page: 3640 year: 2007 end-page: 3645 publication-title: Dalton Trans. – volume: 5 start-page: 134 year: 2006 end-page: 140 publication-title: Nat. Mater. – volume: 51 124 start-page: 4887 4971 year: 2012 2012 end-page: 4890 4974 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 631 year: 2008 end-page: 635 publication-title: Nat. Mater. – volume: 133 start-page: 20138 year: 2011 end-page: 20141 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 18950 year: 2011 end-page: 18956 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 7353 year: 2006 end-page: 7363 publication-title: Chem. Eur. J. – volume: 19 start-page: 818 year: 2013 end-page: 827 publication-title: Chem. Eur. J. – volume: 46 start-page: 5085 year: 2010 end-page: 5087 publication-title: Chem. Commun. – volume: 327 start-page: 846 year: 2010 end-page: 850 publication-title: Science – volume: 4 start-page: 27 year: 1997 end-page: 42 publication-title: Top. Catal. – volume: 42 start-page: 9232 year: 2013 end-page: 9242 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 5035 year: 2009 end-page: 5042 publication-title: Cryst. Growth Des. – volume: 42 start-page: 16049 year: 2013 end-page: 16055 publication-title: Dalton Trans. – volume: 135 start-page: 12886 year: 2013 end-page: 12891 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 13120 year: 2012 end-page: 13132 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 710 year: 2012 end-page: 716 publication-title: Nat. Mater. – volume: 48 121 start-page: 4739 4833 year: 2009 2009 end-page: 4743 4837 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 5370 year: 2014 end-page: 5372 publication-title: Cryst. Growth Des. – volume: 45 start-page: 1321 year: 2012 end-page: 1329 publication-title: J. Appl. Crystallogr. – volume: 22 start-page: 1598 year: 2010 end-page: 1601 publication-title: Adv. Mater. – start-page: 4546 year: 2013 end-page: 4557 publication-title: Eur. J. Inorg. Chem. – volume: 134 start-page: 18082 year: 2012 end-page: 18088 publication-title: J. Am. Chem. Soc. – year: 2003 – volume: 22 start-page: 10313 year: 2012 end-page: 10321 publication-title: J. Mater. Chem. – volume: 6 start-page: 2821 year: 2014 end-page: 2824 publication-title: ChemCatChem – volume: 87 start-page: 6007 year: 2000 end-page: 6009 publication-title: J. Appl. Phys. – volume: 10 start-page: 646 year: 2008 end-page: 648 publication-title: CrystEngComm – volume: 39 112 start-page: 1506 1566 year: 2000 2000 end-page: 1510 1570 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 130 start-page: 13516 year: 2008 end-page: 13517 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 405 year: 2007 end-page: 411 publication-title: Int. J. Heat Mass Transfer – volume: 19 start-page: 5533 year: 2013 end-page: 5536 publication-title: Chem. Eur. J. – volume: 13 start-page: 2025 year: 2012 end-page: 2029 publication-title: ChemPhysChem – volume: 1 start-page: 5453 year: 2013 end-page: 5468 publication-title: J. Mater. Chem. A – start-page: 201 year: 2011 end-page: 244 – volume: 51 124 start-page: 8791 8921 year: 2012 2012 end-page: 8795 8925 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 132 start-page: 12365 year: 2010 end-page: 12377 publication-title: J. Am. Chem. Soc. – volume: 326 start-page: 415 year: 2009 end-page: 417 publication-title: Science – volume: 5 start-page: 1368 year: 2014 end-page: 1374 publication-title: Chem. Sci. – volume: 9 start-page: 2676 year: 2007 end-page: 2685 publication-title: Phys. Chem. Chem. Phys. – volume: 134 start-page: 588 year: 2012 end-page: 598 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 790 year: 2008 end-page: 791 publication-title: CrystEngComm – volume: 40 start-page: 1081 year: 2011 end-page: 1106 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 126 year: 2012 end-page: 130 publication-title: Chem. Sci. – volume: 48 start-page: 267 year: 2009 end-page: 276 publication-title: Inorg. Chem. – year: 1999 – ident: e_1_2_10_102_2 doi: 10.1021/am200276x – ident: e_1_2_10_53_3 doi: 10.1002/ange.201204806 – ident: e_1_2_10_73_2 doi: 10.1021/ja500330a – ident: e_1_2_10_60_2 doi: 10.1002/chem.201202261 – ident: e_1_2_10_31_2 doi: 10.1039/c0ce00568a – ident: e_1_2_10_127_2 doi: 10.1021/ja403810k – ident: e_1_2_10_36_2 doi: 10.1038/nmat3343 – ident: e_1_2_10_15_2 doi: 10.1016/j.cbpa.2009.12.012 – ident: e_1_2_10_47_2 doi: 10.1002/cphc.201200222 – ident: e_1_2_10_91_3 doi: 10.1002/ange.200901177 – ident: e_1_2_10_133_2 doi: 10.1021/ja502765n – ident: e_1_2_10_22_2 doi: 10.1021/cm501859p – ident: e_1_2_10_112_2 doi: 10.1103/PhysRevB.86.125429 – ident: e_1_2_10_32_2 doi: 10.1021/ic801734x – ident: e_1_2_10_21_3 doi: 10.1002/ange.201108565 – ident: e_1_2_10_18_2 doi: 10.1016/j.micromeso.2008.04.033 – ident: e_1_2_10_131_2 doi: 10.1039/c2cp41099k – ident: e_1_2_10_121_2 doi: 10.1088/0022-3727/44/46/464011 – ident: e_1_2_10_42_2 doi: 10.1021/cr00039a005 – ident: e_1_2_10_84_2 doi: 10.1039/c0cs00147c – ident: e_1_2_10_5_2 doi: 10.1126/science.1192759 – ident: e_1_2_10_106_2 doi: 10.1039/ft9969201401 – ident: e_1_2_10_37_3 doi: 10.1002/ange.201202925 – ident: e_1_2_10_24_2 doi: 10.1021/ja503218j – ident: e_1_2_10_98_2 doi: 10.1021/ja0739887 – ident: e_1_2_10_34_2 doi: 10.1021/ar5000314 – ident: e_1_2_10_6_2 doi: 10.1038/nmat1560 – volume-title: Catalysis and Zeolites: Fundamentals and Applications year: 1999 ident: e_1_2_10_95_2 – ident: e_1_2_10_17_3 doi: 10.1002/ange.201205627 – ident: e_1_2_10_126_2 doi: 10.1002/anie.201306923 – ident: e_1_2_10_25_2 doi: 10.1021/ja802741b – ident: e_1_2_10_61_2 doi: 10.1002/adma.200903618 – ident: e_1_2_10_78_2 doi: 10.1002/ejic.201300591 – ident: e_1_2_10_96_2 – ident: e_1_2_10_48_2 doi: 10.1002/anie.201311128 – ident: e_1_2_10_79_3 doi: 10.1002/ange.201204963 – ident: e_1_2_10_123_2 doi: 10.1021/jz5012065 – ident: e_1_2_10_38_2 doi: 10.1021/ic901872g – ident: e_1_2_10_41_2 doi: 10.1039/c3sc52666f – ident: e_1_2_10_37_2 doi: 10.1002/anie.201202925 – ident: e_1_2_10_59_2 doi: 10.1021/ic500722n – ident: e_1_2_10_100_3 doi: 10.1002/ange.201108462 – ident: e_1_2_10_8_2 doi: 10.1016/j.micromeso.2006.11.006 – ident: e_1_2_10_113_2 doi: 10.1039/c3cs60232j – ident: e_1_2_10_7_2 doi: 10.1023/A:1019188105794 – ident: e_1_2_10_10_2 doi: 10.1002/anie.200300610 – ident: e_1_2_10_107_2 doi: 10.1021/ja056906s – ident: e_1_2_10_126_3 doi: 10.1002/ange.201306923 – ident: e_1_2_10_97_2 doi: 10.1002/9783527630295 – ident: e_1_2_10_64_2 doi: 10.1016/j.micromeso.2011.12.058 – ident: e_1_2_10_94_2 doi: 10.1021/cr200077m – ident: e_1_2_10_103_2 doi: 10.1021/ja8048767 – ident: e_1_2_10_30_2 doi: 10.1021/cm402136z – ident: e_1_2_10_52_3 doi: 10.1002/ange.200803460 – volume-title: Functional Metal‐Organic Frameworks: Gas Storage, Separation and Catalysis year: 2010 ident: e_1_2_10_13_2 – ident: e_1_2_10_4_2 doi: 10.1126/science.1177582 – ident: e_1_2_10_104_2 doi: 10.1016/0920-5861(95)00161-1 – ident: e_1_2_10_122_2 doi: 10.1021/jp104441d – volume-title: Coordination Polymers: Design, Analysis and Application year: 2009 ident: e_1_2_10_12_2 – ident: e_1_2_10_93_2 doi: 10.1002/chem.201003211 – volume-title: Electronic and Optoelectronic Properties of Semiconductor Structures year: 2003 ident: e_1_2_10_3_2 – ident: e_1_2_10_66_2 doi: 10.1021/ja204818q – ident: e_1_2_10_63_2 doi: 10.1039/b803953b – ident: e_1_2_10_118_2 doi: 10.1063/1.372595 – ident: e_1_2_10_132_2 doi: 10.1126/science.1246738 – ident: e_1_2_10_9_2 doi: 10.1038/nmat2228 – ident: e_1_2_10_45_3 doi: 10.1002/(SICI)1521-3757(20000417)112:8<1566::AID-ANGE1566>3.0.CO;2-9 – ident: e_1_2_10_120_2 doi: 10.1021/ja208140f – ident: e_1_2_10_43_2 doi: 10.1038/nmat1213 – ident: e_1_2_10_55_2 doi: 10.1021/ja5063423 – ident: e_1_2_10_92_2 doi: 10.1021/cm101778g – ident: e_1_2_10_105_2 doi: 10.1080/01614948508064741 – ident: e_1_2_10_114_2 doi: 10.1021/cr200101d – ident: e_1_2_10_116_2 doi: 10.1016/S1002-0721(10)60611-4 – ident: e_1_2_10_124_2 doi: 10.1021/ja3079219 – ident: e_1_2_10_68_2 doi: 10.1016/j.ijheatmasstransfer.2006.10.001 – volume-title: Bulk Crystal Growth in Electronic, Optical and Optoelectronic Materials year: 2005 ident: e_1_2_10_2_2 – ident: e_1_2_10_87_2 doi: 10.1126/science.1238339 – ident: e_1_2_10_23_2 doi: 10.1038/ncomms5176 – ident: e_1_2_10_46_2 doi: 10.1021/ja405078u – ident: e_1_2_10_130_2 doi: 10.1002/chem.201300326 – ident: e_1_2_10_17_2 doi: 10.1002/anie.201205627 – ident: e_1_2_10_27_2 doi: 10.1021/ja3085884 – ident: e_1_2_10_11_2 doi: 10.1039/C4CS90059F – ident: e_1_2_10_125_2 doi: 10.1039/C1SC00394A – ident: e_1_2_10_29_2 doi: 10.1039/c3cs35524a – ident: e_1_2_10_67_2 doi: 10.1016/j.ijheatmasstransfer.2006.10.002 – ident: e_1_2_10_44_2 doi: 10.1039/b718890k – ident: e_1_2_10_119_2 doi: 10.1107/S0021889812043026 – ident: e_1_2_10_88_2 doi: 10.1126/science.1181761 – ident: e_1_2_10_129_2 doi: 10.1039/c3ta10784a – ident: e_1_2_10_110_2 doi: 10.1063/1.3257677 – ident: e_1_2_10_53_2 doi: 10.1002/anie.201204806 – ident: e_1_2_10_51_2 doi: 10.1039/C4CE01672F – ident: e_1_2_10_33_2 doi: 10.1039/b704977c – ident: e_1_2_10_69_2 doi: 10.1021/cm502399q – ident: e_1_2_10_77_2 doi: 10.1016/j.jcat.2011.09.014 – ident: e_1_2_10_20_2 doi: 10.1016/j.micromeso.2009.06.008 – ident: e_1_2_10_72_2 doi: 10.1039/C4CC03764B – ident: e_1_2_10_28_2 doi: 10.1016/j.jcat.2011.04.004 – ident: e_1_2_10_80_2 doi: 10.1021/ja3077654 – ident: e_1_2_10_128_2 doi: 10.1021/ja4064475 – ident: e_1_2_10_16_2 doi: 10.1021/cr9003924 – ident: e_1_2_10_62_2 doi: 10.1021/ja0752336 – ident: e_1_2_10_71_2 doi: 10.1039/C4CC04945D – ident: e_1_2_10_89_2 doi: 10.1021/ja302991b – ident: e_1_2_10_56_2 doi: 10.1039/b802158a – ident: e_1_2_10_82_2 doi: 10.1021/cg900987r – ident: e_1_2_10_85_2 doi: 10.1016/j.progsurf.2009.06.001 – ident: e_1_2_10_115_2 doi: 10.1039/b802352m – ident: e_1_2_10_45_2 doi: 10.1002/(SICI)1521-3773(20000417)39:8<1506::AID-ANIE1506>3.0.CO;2-U – ident: e_1_2_10_117_2 doi: 10.1016/S0022-3115(98)00034-8 – ident: e_1_2_10_86_2 doi: 10.1002/chem.201203145 – ident: e_1_2_10_74_2 doi: 10.1021/ja103365s – ident: e_1_2_10_83_2 doi: 10.1021/ic402614w – ident: e_1_2_10_101_2 doi: 10.1021/ja209156v – ident: e_1_2_10_39_2 doi: 10.1103/PhysRevB.86.104113 – ident: e_1_2_10_48_3 doi: 10.1002/ange.201311128 – ident: e_1_2_10_81_2 doi: 10.1039/c3dt51637g – ident: e_1_2_10_50_2 doi: 10.1039/C4SC01731E – ident: e_1_2_10_79_2 doi: 10.1002/anie.201204963 – ident: e_1_2_10_90_2 doi: 10.1021/ja204233q – ident: e_1_2_10_65_2 doi: 10.1021/ja2094316 – volume: 55 start-page: 510 year: 2001 ident: e_1_2_10_35_2 publication-title: Chimia doi: 10.2533/chimia.2001.510 – ident: e_1_2_10_58_2 doi: 10.1002/cctc.201402411 – ident: e_1_2_10_109_2 doi: 10.1002/cctc.201200164 – ident: e_1_2_10_26_2 doi: 10.1021/ja061681m – ident: e_1_2_10_70_2 doi: 10.1021/cg501386j – ident: e_1_2_10_100_2 doi: 10.1002/anie.201108462 – ident: e_1_2_10_14_2 doi: 10.1021/cr200324t – ident: e_1_2_10_40_2 doi: 10.1038/nchem.1871 – ident: e_1_2_10_76_2 doi: 10.1039/c0cc01506g – ident: e_1_2_10_10_3 doi: 10.1002/ange.200300610 – ident: e_1_2_10_91_2 doi: 10.1002/anie.200901177 – ident: e_1_2_10_108_2 doi: 10.1002/chem.200600220 – ident: e_1_2_10_1_2 doi: 10.1007/978-3-642-10500-5 – ident: e_1_2_10_99_2 doi: 10.1103/PhysRevB.84.125421 – ident: e_1_2_10_111_2 doi: 10.1021/cm102601v – ident: e_1_2_10_19_2 doi: 10.1021/ja404514r – ident: e_1_2_10_57_2 doi: 10.1039/b703643d – ident: e_1_2_10_21_2 doi: 10.1002/anie.201108565 – ident: e_1_2_10_75_2 doi: 10.1039/c1cy00386k – ident: e_1_2_10_52_2 doi: 10.1002/anie.200803460 – ident: e_1_2_10_54_2 doi: 10.1021/cm1022882 – ident: e_1_2_10_49_2 doi: 10.1039/c2jm16030g – reference: 24328288 - Inorg Chem. 2014 Jan 6;53(1):160-6 – reference: 22488675 - Angew Chem Int Ed Engl. 2012 May 14;51(20):4887-90 – reference: 16522102 - J Am Chem Soc. 2006 Mar 15;128(10):3218-27 – reference: 23009199 - J Am Chem Soc. 2012 Oct 17;134(41):17286-90 – reference: 21604784 - ACS Appl Mater Interfaces. 2011 Jun;3(6):2042-50 – reference: 23055448 - Chemistry. 2012 Nov 26;18(48):15406-15 – reference: 22887718 - Angew Chem Int Ed Engl. 2012 Sep 10;51(37):9267-71 – reference: 22976879 - Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10373-6 – reference: 23945598 - Dalton Trans. 2013 Dec 7;42(45):16049-55 – reference: 17700826 - Dalton Trans. 2007 Sep 7;(33):3640-5 – reference: 22807234 - Angew Chem Int Ed Engl. 2012 Aug 27;51(35):8791-5 – reference: 24903856 - Inorg Chem. 2014 Jul 7;53(13):6914-9 – reference: 21547962 - Chemistry. 2011 Jun 6;17(24):6643-51 – reference: 22070233 - Chem Rev. 2012 Feb 8;112(2):1105-25 – reference: 10777657 - Angew Chem Int Ed Engl. 2000 Apr;39(8):1506-1510 – reference: 21164012 - Science. 2010 Dec 17;330(6011):1660-3 – reference: 17999502 - J Am Chem Soc. 2007 Dec 12;129(49):15192-201 – reference: 24652755 - Angew Chem Int Ed Engl. 2014 Apr 25;53(18):4530-40 – reference: 20359232 - Chem Rev. 2010 Aug 11;110(8):4606-55 – reference: 21688849 - Chem Rev. 2012 Feb 8;112(2):1126-62 – reference: 23495187 - Chemistry. 2013 Apr 26;19(18):5533-6 – reference: 21749096 - J Am Chem Soc. 2011 Aug 10;133(31):11920-3 – reference: 26276333 - J Phys Chem Lett. 2014 Sep 18;5(18):3206-10 – reference: 19947718 - Rev Sci Instrum. 2009 Nov;80(11):113108 – reference: 18044895 - J Am Chem Soc. 2007 Dec 26;129(51):15997-6004 – reference: 19472244 - Angew Chem Int Ed Engl. 2009;48(26):4739-43 – reference: 18800795 - J Am Chem Soc. 2008 Oct 15;130(41):13516-7 – reference: 22575013 - J Am Chem Soc. 2012 Jun 6;134(22):9464-74 – reference: 16415875 - Nat Mater. 2006 Feb;5(2):134-40 – reference: 24838592 - Angew Chem Int Ed Engl. 2014 Jul 1;53(27):7058-62 – reference: 19046076 - Inorg Chem. 2009 Jan 5;48(1):267-76 – reference: 23808838 - J Am Chem Soc. 2013 Jul 17;135(28):10525-32 – reference: 20095567 - Inorg Chem. 2010 Feb 15;49(4):1510-6 – reference: 23039827 - J Am Chem Soc. 2012 Oct 31;134(43):18082-8 – reference: 23688075 - J Am Chem Soc. 2013 Aug 14;135(32):11688-91 – reference: 22249947 - Angew Chem Int Ed Engl. 2012 Feb 20;51(8):1885-9 – reference: 16787068 - J Am Chem Soc. 2006 Jun 28;128(25):8136-7 – reference: 15359343 - Nat Mater. 2004 Oct;3(10):715-20 – reference: 16881030 - Chemistry. 2006 Sep 25;12(28):7353-63 – reference: 23887875 - Science. 2013 Aug 23;341(6148):882-5 – reference: 23471316 - Chem Soc Rev. 2013 Jun 21;42(12):4881-93 – reference: 20071210 - Curr Opin Chem Biol. 2010 Apr;14(2):262-8 – reference: 22517762 - Chemphyschem. 2012 Jun 4;13(8):2025-9 – reference: 15114565 - Angew Chem Int Ed Engl. 2004 Apr 26;43(18):2334-75 – reference: 20496387 - Adv Mater. 2010 Apr 12;22(14):1598-601 – reference: 24707980 - Acc Chem Res. 2014 May 20;47(5):1555-62 – reference: 20715825 - J Am Chem Soc. 2010 Sep 8;132(35):12365-77 – reference: 24915512 - J Am Chem Soc. 2014 Jul 9;136(27):9627-36 – reference: 23875753 - J Am Chem Soc. 2013 Aug 7;135(31):11465-8 – reference: 22122560 - J Am Chem Soc. 2011 Dec 21;133(50):20138-41 – reference: 23902330 - J Am Chem Soc. 2013 Aug 28;135(34):12886-91 – reference: 22660661 - Nat Mater. 2012 Jun 03;11(8):710-6 – reference: 24588307 - J Am Chem Soc. 2014 Mar 19;136(11):4369-81 – reference: 18846529 - Angew Chem Int Ed Engl. 2008;47(44):8525-8 – reference: 23143805 - Angew Chem Int Ed Engl. 2013 Jan 2;52(1):401-5 – reference: 19384441 - Chem Soc Rev. 2009 May;38(5):1330-52 – reference: 25116653 - Chem Commun (Camb). 2014 Oct 7;50(77):11329-31 – reference: 22858739 - Phys Chem Chem Phys. 2012 Oct 14;14(38):13120-32 – reference: 23157426 - J Am Chem Soc. 2012 Dec 12;134(49):20110-6 – reference: 19729619 - Science. 2009 Oct 16;326(5951):415-7 – reference: 24946837 - Nat Commun. 2014 Jun 20;5:4176 – reference: 22080843 - J Am Chem Soc. 2012 Jan 11;134(1):588-98 – reference: 21225034 - Chem Soc Rev. 2011 Feb;40(2):1081-106 – reference: 25229624 - J Am Chem Soc. 2014 Oct 15;136(41):14465-71 – reference: 17627311 - Phys Chem Chem Phys. 2007 Jun 7;9(21):2676-85 – reference: 21995563 - J Am Chem Soc. 2011 Nov 23;133(46):18950-6 – reference: 23280516 - Chemistry. 2013 Jan 14;19(3):818-27 – reference: 21861521 - J Am Chem Soc. 2011 Oct 5;133(39):15506-13 – reference: 19140765 - J Am Chem Soc. 2009 Feb 4;131(4):1404-6 – reference: 20150497 - Science. 2010 Feb 12;327(5967):846-50 – reference: 24651203 - Nat Chem. 2014 Apr;6(4):343-51 – reference: 20563337 - Chem Commun (Camb). 2010 Jul 28;46(28):5085-7 – reference: 18622404 - Nat Mater. 2008 Aug;7(8):631-5 – reference: 24310609 - Science. 2014 Jan 3;343(6166):66-9 – reference: 21863792 - Chem Rev. 2011 Nov 9;111(11):6810-918 – reference: 24077361 - Chem Soc Rev. 2013 Dec 21;42(24):9232-42 – reference: 25036867 - Chem Commun (Camb). 2014 Sep 11;50(70):10055-8 – reference: 24750124 - J Am Chem Soc. 2014 Jun 25;136(25):8859-62 |
| SSID | ssj0028806 |
| Score | 2.6662447 |
| Snippet | Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in... Defect engineering in metal-organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7234 |
| SubjectTerms | Catalysis Classification Computer numerical control coordination chemistry Crystal defects Crystal structure Defects defects engineering Electrically conductive heterogeneity Metal-organic frameworks Networks Physical properties porous materials Review Zeolites |
| Title | Defect-Engineered Metal-Organic Frameworks |
| URI | https://api.istex.fr/ark:/67375/WNG-6GXMSJMZ-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201411540 https://www.ncbi.nlm.nih.gov/pubmed/26036179 https://www.proquest.com/docview/1689826462 https://www.proquest.com/docview/1690650234 https://www.proquest.com/docview/1744679006 https://pubmed.ncbi.nlm.nih.gov/PMC4510710 |
| Volume | 54 |
| WOSCitedRecordID | wos000356390300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-kJ-iL1q8abcsJok-xye5mk30sba8qveNQi4cvy34dFiWVu1Z87J8g9D_sX9KZ5LL28As0DyFhJ5DMzu7-JjvzG4CnuCblKvgi9QheU1GZLDWlt6nPHJOhsIjAG57Zg3I0qiYTNb6Sxd_yQ8QfbjQymvmaBrix860fpKGUgU2hWYIIZdBp7-U5r6h4AxPj6HKhdbb5RZynVIa-o23M2Nby80vLUo80_O1XmPPn0MmrkLZZkwa3__9rVuHWAo_2t1sDugPXQn0Xbux0ZeDuwYvdQBEfF2ffO-rC4PvDgJj94uy8zeR0_UEX4jW_D4eDvXc7L9NFkYXUEVVeKq10IqCmBO2zOJsbqlvDWJCm8giOpgIBB2KAwmMDlzwzuObbTCpZTCW3jj-Alfq4Dg-hz6gYJboglXNW4KHY1IspZ8ZYW6jKJ5B2OtZuwUBOhTA-65Y7mWnSgo5aSOB5lP_Scm_8VvJZ02VRzMw-UcRaWej3o30t9yfDt6-HH_Q4gfWuT_VisM51LiuFXpaQLIEnsRnVTHsnpg7HpySjCMwyLv4gU6JvXSqcxxJYa80kvhC6jRzBokqgXDKgKEA038st9dHHhu5b4LSJODAB1hjQX1Sht0ev9uLdo3956DHcxOuCAuLyYh1WTmanYQOuu68nR_PZZjPA8FxOqk3o7b4ZHB5cAouKJlc |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hFqlceD8CBRYJwck0aztOfKxKty3sRitRxIqL5dheUYFStNsijv0JSPzD_hJm8jCseEmI3BJPpGQ89nxjj78BeIw-aaiDz5hH8MpkYVNmc18xnzquQlYhAm94Zsd5WRazmZ522YR0Fqblh4gLbjQymvmaBjgtSG99Zw2lI9iUmyWJUQaj9nWJroZMnctpjLnQPNsDRkIwqkPf8zamfGv1_RW_tE4q_vwr0Plz7uSPmLZxSqMr_-F3rsLlDpEOtlsTugYXQn0dNnb6QnA34NnzQDkf52dfevLC4AeTgKj9_Oxre5bTDUZ9ktfyJrwe7R7u7LOuzAJzRJbHVKWcDKgqSTstrhpaqlzDeVC28AiP5hIhB6KAzGODUCK16PWrVGmVzZWonLgFa_VxHe7AgFM5SgxCCucqiZfmcy_ngltbVZkufAKsV7JxHQc5lcL4YFr2ZG5ICyZqIYGnUf5jy77xW8knTZ9FMbt4TzlreWbelHtG7c0mr15M3pppApt9p5puuC7NUBUa4yypeAKPYjOqmXZPbB2OT0lGE5zlQv5BJsfoOtc4kyVwu7WT-EEYOAqEizqBfMWCogARfa-21EfvGsJviRMnIsEEeGNBf1GF2S4PduPd3X956SFs7B9OxmZ8UL68B5fweUbpccNsE9ZOFqfhPlx0n06OlosHzWj7Bu_WJ7o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXQRceD8CBRYJwck06zhOfKy6TSnsRiugYsXFSmxHVKC02m0Rx_4EJP5hfwkzeRhWvCREboknUTIe29_EM98APMY1aaycjZlF8MpEWoSsSGzJbGi4dHGJCLzhmZ0meZ4uFmreRRNSLkzLD-F_uNHIaOZrGuDuyFab31lDKQWbYrMEMcqg1z4UVElmAMPJq2x_6r0uNNA2xSiKGFWi75kbQ765_oS1lWlISv78K9j5c_Tkj6i2WZayK__hg67C5Q6TjrZaI7oG51x9HS5u96XgbsCziaOoj7PTLz19obOjmUPcfnb6tc3mNKOsD_Na3YT9bOfN9nPWFVpghujymCylEQ5VJWivxZTjgmrXcO5kkVoESJVA0IE4ILbYEMkoLHDdL0OpZFzJqDTRLRjUh7W7AyNOBSnRDUmNKQUeildWVBEvirKMVWoDYL2StelYyKkYxkfd8idzTVrQXgsBPPXyRy3_xm8lnzR95sWK5QeKWkti_Tbf1XJ3MXv9YvZOzwPY6DtVdwN2pccyVehpCckDeOSbUc20f1LU7vCEZBQBWh6JP8gk6F8nCueyAG63duJfCF3HCAGjCiBZsyAvQFTf6y31wfuG8lvg1IlYMADeWNBfVKG38r0df3b3X256CBfmk0xP9_KX9-ASXo4pPm4cb8DgeHni7sN58-n4YLV80A23b6oJKNA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect-Engineered+Metal-Organic+Frameworks&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fang%2C+Zhenlan&rft.au=Bueken%2C+Bart&rft.au=De+Vos%2C+Dirk+E&rft.au=Fischer%2C+Roland+A&rft.date=2015-06-15&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=54&rft.issue=25&rft.spage=7234&rft_id=info:doi/10.1002%2Fanie.201411540&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |