Defect-Engineered Metal-Organic Frameworks

Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition Vol. 54; no. 25; pp. 7234 - 7254
Main Authors: Fang, Zhenlan, Bueken, Bart, De Vos, Dirk E., Fischer, Roland A.
Format: Journal Article
Language:English
Published: Weinheim WILEY-VCH Verlag 15.06.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Edition:International ed. in English
Subjects:
ISSN:1433-7851, 1521-3773, 1521-3773
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect‐engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect‐engineered CNCs. Designer defects: Defects in coordination network compounds (CNCs) are defined as “sites that locally break the regular periodic arrangement of atoms or ions of the static crystalline parent framework due to missing or incorrectly dislocated atoms or ions”. This Review provides both a concise overview of defects in CNCs (including their classification and characterizations) and applications of defective CNCs/MOFs.
AbstractList Defect engineering in metal-organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of "defect-engineering" concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect-engineered CNCs.
Defect engineering in metal-organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of "defect-engineering" concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect-engineered CNCs.Defect engineering in metal-organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of "defect-engineering" concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect-engineered CNCs.
Defect engineering in metal-organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of "defect-engineering" concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect-engineered CNCs. Designer defects: Defects in coordination network compounds (CNCs) are defined as "sites that locally break the regular periodic arrangement of atoms or ions of the static crystalline parent framework due to missing or incorrectly dislocated atoms or ions". This Review provides both a concise overview of defects in CNCs (including their classification and characterizations) and applications of defective CNCs/MOFs.
Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect‐engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect‐engineered CNCs. Designer defects: Defects in coordination network compounds (CNCs) are defined as “sites that locally break the regular periodic arrangement of atoms or ions of the static crystalline parent framework due to missing or incorrectly dislocated atoms or ions”. This Review provides both a concise overview of defects in CNCs (including their classification and characterizations) and applications of defective CNCs/MOFs.
Author De Vos, Dirk E.
Fischer, Roland A.
Fang, Zhenlan
Bueken, Bart
Author_xml – sequence: 1
  givenname: Zhenlan
  surname: Fang
  fullname: Fang, Zhenlan
  email: iamzlfang@njtech.edu.cn
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816 (V.R. China)
– sequence: 2
  givenname: Bart
  surname: Bueken
  fullname: Bueken, Bart
  email: bart.bueken@biw.kuleuven.be
  organization: Centre for Surface Chemistry and Catalysis, KULeuven, Kasteelpark Arenberg 23, 3001 Leuven (Belgien)
– sequence: 3
  givenname: Dirk E.
  surname: De Vos
  fullname: De Vos, Dirk E.
  email: dirk.devos@biw.kuleuven.be
  organization: Centre for Surface Chemistry and Catalysis, KULeuven, Kasteelpark Arenberg 23, 3001 Leuven (Belgien)
– sequence: 4
  givenname: Roland A.
  surname: Fischer
  fullname: Fischer, Roland A.
  email: roland.fischer@rub.de
  organization: Inorganic Chemistry II-Organometallics & Material Chemistry, Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum (Germany)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26036179$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9rFDEQx4NU7A999VEKvhRhz8mvye6LUOr1rPRaQUXxJWRzs2favd2a7Fn735vj2qMWpE8JzOfzzWRml211fUeMveQw4gDiresCjQRwxblW8ITtcC14IY2RW_mupCxMqfk2203pIvNlCfiMbQsEidxUO-zNe2rID8W4m4eOKNJsf0qDa4vzOM_Zfv84ugVd9_EyPWdPG9cmenF77rGvx-MvRx-K0_PJydHhaeFNKaDAGr2i_JQSCoSvuZNGgBCErpxpFI3SOpeUnuWCRAlOKF4DVqgblLWXe-zdOvdqWS9o5qkbomvtVQwLF29s74L9t9KFn3be_7ZKczAccsDBbUDsfy0pDXYRkqe2dR31y2S5UQpNBYCPo1gBahBSZfT1A_SiX8YuTyJTZVUKVCgy9ep-85uu7yaeAbUGfOxTitRYHwY3hH71l9BaDna1WLtarN0sNmujB9pd8n-Fai1ch5ZuHqHt4dnJ-L5brN2QBvqzcV28tGik0fbb2cTi5Pv088fpD_tJ_gVs-cF8
CODEN ACIEAY
CitedBy_id crossref_primary_10_1038_s41578_020_0225_x
crossref_primary_10_1038_nenergy_2016_184
crossref_primary_10_1016_j_jallcom_2022_165259
crossref_primary_10_1039_C5CC10072K
crossref_primary_10_1016_j_micromeso_2017_02_031
crossref_primary_10_1016_j_jallcom_2021_160886
crossref_primary_10_1039_D0CY01946A
crossref_primary_10_1039_D0CY00638F
crossref_primary_10_1016_j_fuel_2022_126012
crossref_primary_10_1002_ange_201610914
crossref_primary_10_1016_j_ccr_2024_216356
crossref_primary_10_1016_j_jcis_2018_04_063
crossref_primary_10_1016_j_jcis_2025_138233
crossref_primary_10_1002_ange_201700835
crossref_primary_10_1016_j_ccr_2024_216354
crossref_primary_10_1002_adma_201700213
crossref_primary_10_1002_ece2_70010
crossref_primary_10_1016_j_enconman_2016_07_069
crossref_primary_10_1039_C9RA10412G
crossref_primary_10_3390_ma14020310
crossref_primary_10_1002_aenm_202002091
crossref_primary_10_1039_D3NR05821B
crossref_primary_10_1016_j_apcatb_2021_120885
crossref_primary_10_1021_jacs_3c14739
crossref_primary_10_1002_anie_202210466
crossref_primary_10_1016_j_cej_2022_141063
crossref_primary_10_1038_s41570_017_0056
crossref_primary_10_1002_ange_201700962
crossref_primary_10_1016_j_chemosphere_2021_130997
crossref_primary_10_1039_D4TA07509A
crossref_primary_10_1016_j_mcat_2023_113116
crossref_primary_10_1021_acs_jpcb_8b08094
crossref_primary_10_3762_bjnano_13_67
crossref_primary_10_1039_C9CC07953J
crossref_primary_10_1016_j_ccr_2021_214107
crossref_primary_10_1002_ange_202218252
crossref_primary_10_1007_s40843_018_9393_x
crossref_primary_10_1016_j_matt_2021_06_045
crossref_primary_10_1016_j_jcat_2018_07_032
crossref_primary_10_1002_anie_202405676
crossref_primary_10_1002_ange_202000385
crossref_primary_10_1002_ejic_201700597
crossref_primary_10_1016_j_cej_2025_160671
crossref_primary_10_1002_cctc_201601689
crossref_primary_10_1021_acs_chemmater_5c00914
crossref_primary_10_1002_slct_202002897
crossref_primary_10_1016_j_jiec_2019_04_049
crossref_primary_10_3390_molecules26195736
crossref_primary_10_1007_s40820_023_01291_3
crossref_primary_10_1016_j_cej_2023_141326
crossref_primary_10_1002_smll_202103530
crossref_primary_10_1002_smll_202506717
crossref_primary_10_1016_j_foodchem_2024_139378
crossref_primary_10_1016_j_apcatb_2019_117746
crossref_primary_10_1016_j_jece_2022_108734
crossref_primary_10_1016_j_ccr_2015_08_001
crossref_primary_10_1002_smll_202001998
crossref_primary_10_1002_smll_202307236
crossref_primary_10_1016_j_apcatb_2023_123572
crossref_primary_10_1002_adfm_201702126
crossref_primary_10_1038_s41563_023_01541_0
crossref_primary_10_1016_j_cej_2016_01_019
crossref_primary_10_1016_j_envres_2023_115633
crossref_primary_10_1016_j_ica_2016_07_022
crossref_primary_10_1016_j_jcis_2025_137250
crossref_primary_10_1039_D0CY02163F
crossref_primary_10_1016_j_apsusc_2025_162323
crossref_primary_10_1021_jacs_7b07987
crossref_primary_10_1021_jacs_6b01414
crossref_primary_10_1016_j_jcis_2024_02_067
crossref_primary_10_1016_j_matt_2023_02_009
crossref_primary_10_1007_s13762_021_03489_7
crossref_primary_10_1016_j_cattod_2020_02_033
crossref_primary_10_1002_adsu_202500394
crossref_primary_10_1016_j_apcata_2025_120555
crossref_primary_10_1016_j_ccr_2025_216836
crossref_primary_10_3390_pr13020387
crossref_primary_10_1002_ange_201911384
crossref_primary_10_1038_s41467_023_38155_8
crossref_primary_10_1002_sstr_202100203
crossref_primary_10_1016_j_jphotochemrev_2021_100418
crossref_primary_10_1002_anie_201700962
crossref_primary_10_1002_ejic_202200679
crossref_primary_10_1016_j_ccr_2018_07_016
crossref_primary_10_1016_j_cej_2021_134050
crossref_primary_10_1016_j_ccr_2021_214259
crossref_primary_10_1021_jacs_0c08773
crossref_primary_10_1002_adma_201704501
crossref_primary_10_1002_smll_202401594
crossref_primary_10_1016_j_ccr_2021_214376
crossref_primary_10_1016_j_memsci_2016_12_068
crossref_primary_10_1002_aoc_7670
crossref_primary_10_1002_ange_202405676
crossref_primary_10_1016_j_ica_2022_121026
crossref_primary_10_1002_aenm_202303281
crossref_primary_10_1039_D1CS00976A
crossref_primary_10_1039_D2SC06120A
crossref_primary_10_1098_rsta_2022_0239
crossref_primary_10_1016_j_microc_2020_105417
crossref_primary_10_1016_j_seppur_2022_122526
crossref_primary_10_1016_j_mattod_2018_10_038
crossref_primary_10_1021_jacs_2c00952
crossref_primary_10_1039_C9RA10795A
crossref_primary_10_1016_j_seppur_2024_126845
crossref_primary_10_1016_j_fuel_2024_131252
crossref_primary_10_1002_adma_201906368
crossref_primary_10_1016_j_apsusc_2017_01_271
crossref_primary_10_1016_j_jcat_2015_10_026
crossref_primary_10_1038_s41467_019_10470_z
crossref_primary_10_1039_D1SC00607J
crossref_primary_10_1016_j_cej_2024_158011
crossref_primary_10_1039_C9NR09742B
crossref_primary_10_1002_adma_201703663
crossref_primary_10_1016_j_memsci_2022_120496
crossref_primary_10_1002_advs_201900053
crossref_primary_10_1002_anie_201700835
crossref_primary_10_1016_j_envres_2025_122705
crossref_primary_10_1038_s41467_021_22218_9
crossref_primary_10_1002_ange_201904834
crossref_primary_10_1002_advs_201901020
crossref_primary_10_1016_j_compchemeng_2022_108022
crossref_primary_10_1039_D2MH00914E
crossref_primary_10_1016_j_cej_2022_135432
crossref_primary_10_1016_j_micromeso_2020_110405
crossref_primary_10_1016_j_jece_2024_114819
crossref_primary_10_1016_j_tibtech_2021_01_002
crossref_primary_10_1039_C8CC04172E
crossref_primary_10_1002_adfm_202204499
crossref_primary_10_1080_01614940_2016_1128193
crossref_primary_10_1016_j_apmt_2025_102676
crossref_primary_10_1016_j_chemosphere_2022_136167
crossref_primary_10_1038_ncomms14457
crossref_primary_10_1039_D4CS00710G
crossref_primary_10_1038_s41467_019_10013_6
crossref_primary_10_1038_s41598_022_18932_z
crossref_primary_10_1016_j_jcat_2023_02_012
crossref_primary_10_1038_s41467_019_13692_3
crossref_primary_10_1063_5_0139208
crossref_primary_10_1016_j_watres_2024_121872
crossref_primary_10_1016_j_jcis_2021_12_132
crossref_primary_10_1016_j_ultsonch_2019_104714
crossref_primary_10_3389_fenrg_2016_00009
crossref_primary_10_1002_chem_201803887
crossref_primary_10_1016_j_microc_2022_107188
crossref_primary_10_3390_catal9040309
crossref_primary_10_1016_j_apcatb_2021_119941
crossref_primary_10_1016_j_ccr_2019_01_016
crossref_primary_10_1002_smll_202106893
crossref_primary_10_1002_jssc_202200346
crossref_primary_10_1016_j_apsusc_2021_151235
crossref_primary_10_1002_cctc_201700236
crossref_primary_10_1016_j_jcou_2022_102264
crossref_primary_10_1039_C9SC00513G
crossref_primary_10_1002_anie_202000385
crossref_primary_10_1002_adfm_201909267
crossref_primary_10_1016_j_jcis_2018_03_075
crossref_primary_10_1007_s40242_022_2250_3
crossref_primary_10_1016_j_cej_2024_151736
crossref_primary_10_1002_adts_202000211
crossref_primary_10_1039_C8SC05480K
crossref_primary_10_1016_j_ccr_2023_215175
crossref_primary_10_1002_aenm_202200389
crossref_primary_10_1016_j_apcata_2021_118203
crossref_primary_10_3390_cryst15030231
crossref_primary_10_1039_D1NR03829J
crossref_primary_10_1002_adma_201505320
crossref_primary_10_1016_j_poly_2018_07_026
crossref_primary_10_1039_D5GC02438B
crossref_primary_10_1107_S2052252518015749
crossref_primary_10_9767_bcrec_20136
crossref_primary_10_1007_s11814_022_1223_z
crossref_primary_10_1016_j_cclet_2025_111858
crossref_primary_10_1002_adma_202303065
crossref_primary_10_1038_s41578_018_0054_3
crossref_primary_10_1016_j_apsusc_2023_158459
crossref_primary_10_1016_j_cej_2023_147605
crossref_primary_10_1002_adsu_202400903
crossref_primary_10_1016_j_gee_2020_04_006
crossref_primary_10_1007_s11356_020_08316_z
crossref_primary_10_1016_j_ccr_2020_213487
crossref_primary_10_1016_j_cej_2020_127839
crossref_primary_10_1016_j_renene_2024_122148
crossref_primary_10_1016_j_ces_2025_122434
crossref_primary_10_1021_jacs_2c10672
crossref_primary_10_1002_smll_202405512
crossref_primary_10_1002_adts_202400110
crossref_primary_10_1002_anie_202017244
crossref_primary_10_1038_natrevmats_2015_13
crossref_primary_10_3390_nano11061517
crossref_primary_10_1016_j_jece_2023_109723
crossref_primary_10_1016_j_ijhydene_2022_10_108
crossref_primary_10_1039_D4SC01433B
crossref_primary_10_1016_j_seppur_2024_128300
crossref_primary_10_1002_anie_202100897
crossref_primary_10_1016_j_surfin_2024_105263
crossref_primary_10_1021_jacs_6b03662
crossref_primary_10_1016_j_cej_2025_163893
crossref_primary_10_1016_j_poly_2023_116733
crossref_primary_10_1016_j_inoche_2018_09_003
crossref_primary_10_1002_batt_201900012
crossref_primary_10_1002_cctc_201901579
crossref_primary_10_1016_j_aca_2019_05_030
crossref_primary_10_3390_molecules24071221
crossref_primary_10_1002_zaac_202100380
crossref_primary_10_1016_j_fuel_2021_120955
crossref_primary_10_1002_anie_201508407
crossref_primary_10_1016_j_desal_2024_118075
crossref_primary_10_1002_aoc_7523
crossref_primary_10_1016_j_nanoen_2016_04_003
crossref_primary_10_1016_j_jhazmat_2021_125933
crossref_primary_10_1002_aoc_6559
crossref_primary_10_1016_j_memsci_2022_121146
crossref_primary_10_1038_s41467_019_12754_w
crossref_primary_10_1002_chem_201901939
crossref_primary_10_1007_s11581_025_06604_7
crossref_primary_10_1002_chem_202400603
crossref_primary_10_1016_j_inoche_2017_07_009
crossref_primary_10_1016_j_seppur_2023_124111
crossref_primary_10_1039_C7CS00315C
crossref_primary_10_1002_ange_202102337
crossref_primary_10_1016_j_cej_2020_124101
crossref_primary_10_1002_chem_201504757
crossref_primary_10_1002_admi_202000494
crossref_primary_10_1016_j_jssc_2019_120948
crossref_primary_10_1039_D5NR01757B
crossref_primary_10_1038_s41598_017_11479_4
crossref_primary_10_3389_fchem_2020_00708
crossref_primary_10_1016_j_apsusc_2024_159840
crossref_primary_10_1016_j_cej_2019_05_228
crossref_primary_10_1002_adma_202308427
crossref_primary_10_1002_smll_202403354
crossref_primary_10_1002_chem_201700365
crossref_primary_10_1002_anie_201507692
crossref_primary_10_1002_anie_201904834
crossref_primary_10_1002_adhm_202402066
crossref_primary_10_1016_j_cjsc_2023_100210
crossref_primary_10_1002_anie_201911384
crossref_primary_10_1038_ncomms15356
crossref_primary_10_1039_C6CC00805D
crossref_primary_10_1038_s41467_018_06828_4
crossref_primary_10_1039_D4DT02975E
crossref_primary_10_1016_j_cej_2025_159260
crossref_primary_10_1002_ejic_202000656
crossref_primary_10_1016_j_asems_2023_100055
crossref_primary_10_1002_ange_202013422
crossref_primary_10_1016_j_jtice_2016_01_021
crossref_primary_10_1016_j_foodcont_2025_111497
crossref_primary_10_1016_j_inoche_2024_112881
crossref_primary_10_1016_j_mcat_2025_115038
crossref_primary_10_1063_1_5143590
crossref_primary_10_1002_anie_201915848
crossref_primary_10_1002_chem_201803157
crossref_primary_10_1016_j_jmst_2025_01_057
crossref_primary_10_3390_molecules27123829
crossref_primary_10_1016_j_apsusc_2023_157592
crossref_primary_10_1021_jacs_1c08356
crossref_primary_10_1002_adfm_202102511
crossref_primary_10_1016_j_apcatb_2019_118416
crossref_primary_10_1016_j_ccr_2017_03_027
crossref_primary_10_1016_j_apcatb_2023_122418
crossref_primary_10_1002_adma_202405898
crossref_primary_10_1002_ange_202210466
crossref_primary_10_1007_s10904_025_03973_4
crossref_primary_10_1039_D0NR02230F
crossref_primary_10_1039_D2QM01181F
crossref_primary_10_1038_s41570_021_00336_8
crossref_primary_10_1039_D2DT02142K
crossref_primary_10_1016_j_mtchem_2023_101694
crossref_primary_10_1016_j_seppur_2022_120620
crossref_primary_10_1002_smll_201801454
crossref_primary_10_1016_j_seppur_2021_119233
crossref_primary_10_1016_j_snb_2025_137709
crossref_primary_10_1002_anie_202318559
crossref_primary_10_1002_adma_202206421
crossref_primary_10_1016_j_cej_2017_10_078
crossref_primary_10_1016_j_jcat_2020_09_017
crossref_primary_10_1021_jacs_8b12124
crossref_primary_10_1016_j_ijhydene_2020_09_245
crossref_primary_10_1002_chem_202103102
crossref_primary_10_1016_j_cej_2021_132157
crossref_primary_10_1016_j_ces_2023_118891
crossref_primary_10_1002_adma_202402234
crossref_primary_10_1016_j_cclet_2022_04_025
crossref_primary_10_1038_s41467_025_60720_6
crossref_primary_10_1038_s41467_017_01478_4
crossref_primary_10_1038_s41467_021_24830_1
crossref_primary_10_1038_s41467_025_56575_6
crossref_primary_10_1016_j_ccr_2015_09_013
crossref_primary_10_1002_batt_202000163
crossref_primary_10_1016_j_trechm_2023_03_002
crossref_primary_10_1016_j_apsusc_2023_157211
crossref_primary_10_1016_j_electacta_2019_05_030
crossref_primary_10_1039_D1SC02408F
crossref_primary_10_1016_j_ccr_2022_214643
crossref_primary_10_1016_j_ccr_2022_214642
crossref_primary_10_1016_j_ccr_2022_214641
crossref_primary_10_1016_j_molliq_2021_116108
crossref_primary_10_1038_s41570_020_00228_3
crossref_primary_10_1016_j_seppur_2024_129821
crossref_primary_10_1021_acsaenm_5c00156
crossref_primary_10_1016_j_electacta_2019_06_141
crossref_primary_10_1016_j_micromeso_2023_112647
crossref_primary_10_1002_adfm_202005238
crossref_primary_10_1002_anie_201505461
crossref_primary_10_1016_j_jinorgbio_2019_110977
crossref_primary_10_1002_adma_201907619
crossref_primary_10_1016_j_seppur_2024_127409
crossref_primary_10_1016_j_ccr_2017_10_014
crossref_primary_10_1016_j_jechem_2021_10_011
crossref_primary_10_1016_j_molstruc_2025_143091
crossref_primary_10_1002_anie_201915537
crossref_primary_10_1021_jacs_4c12619
crossref_primary_10_1039_C9RA05003E
crossref_primary_10_1002_cctc_201500907
crossref_primary_10_1038_s42004_025_01492_4
crossref_primary_10_1002_adma_201704124
crossref_primary_10_1039_D1SC02833B
crossref_primary_10_1007_s11426_020_9798_2
crossref_primary_10_1016_j_jcat_2018_06_013
crossref_primary_10_1039_D3SE00823A
crossref_primary_10_3389_fchem_2021_673738
crossref_primary_10_1007_s12274_024_6621_6
crossref_primary_10_1016_j_nimb_2017_01_058
crossref_primary_10_1016_j_microc_2023_109379
crossref_primary_10_1039_D2EE00432A
crossref_primary_10_1016_j_jiec_2021_10_005
crossref_primary_10_1016_j_indcrop_2023_117233
crossref_primary_10_1002_chem_201704929
crossref_primary_10_1038_srep23676
crossref_primary_10_1038_s41586_020_1980_y
crossref_primary_10_1107_S1600576721002843
crossref_primary_10_1002_mame_202200469
crossref_primary_10_1039_C6CC05433A
crossref_primary_10_1002_qua_70013
crossref_primary_10_1021_jacs_1c09245
crossref_primary_10_1016_j_ccr_2017_04_010
crossref_primary_10_1021_acs_cgd_6b01533
crossref_primary_10_3390_molecules27175426
crossref_primary_10_1016_j_engfracmech_2024_110253
crossref_primary_10_1002_bkcs_12203
crossref_primary_10_1002_anie_201704579
crossref_primary_10_1039_C8RA10619C
crossref_primary_10_3390_molecules27196585
crossref_primary_10_1039_D1CS01011E
crossref_primary_10_1002_cnma_201900110
crossref_primary_10_1016_j_aca_2021_338924
crossref_primary_10_1002_adma_202413353
crossref_primary_10_1002_chem_202003716
crossref_primary_10_1016_j_cej_2022_135736
crossref_primary_10_1007_s40843_020_1656_0
crossref_primary_10_1016_j_memsci_2021_119515
crossref_primary_10_1002_adma_201905923
crossref_primary_10_1002_advs_201901758
crossref_primary_10_1002_smll_201800285
crossref_primary_10_1016_j_ijhydene_2024_10_060
crossref_primary_10_1021_jacs_4c03806
crossref_primary_10_1016_j_mtener_2025_101817
crossref_primary_10_1039_D1SC02617H
crossref_primary_10_1088_1361_648X_aba06c
crossref_primary_10_1002_adma_201705112
crossref_primary_10_1002_ifm2_8
crossref_primary_10_1021_jacs_5c01399
crossref_primary_10_1002_anie_202505978
crossref_primary_10_1039_C8CP00259B
crossref_primary_10_1039_D1NR07959J
crossref_primary_10_1007_s10876_022_02316_4
crossref_primary_10_1038_s41557_019_0374_y
crossref_primary_10_6023_A23040148
crossref_primary_10_1002_chem_202403607
crossref_primary_10_1016_j_snb_2022_131927
crossref_primary_10_1016_j_seppur_2025_131729
crossref_primary_10_1002_ente_202201203
crossref_primary_10_26599_NR_2025_94907229
crossref_primary_10_1002_anie_202103766
crossref_primary_10_1016_j_seppur_2023_124623
crossref_primary_10_1002_smll_202305999
crossref_primary_10_1016_j_colsurfa_2025_136806
crossref_primary_10_1007_s12274_020_3138_5
crossref_primary_10_1016_j_micromeso_2019_109943
crossref_primary_10_1002_smtd_202501470
crossref_primary_10_1016_j_indcrop_2024_118232
crossref_primary_10_1002_adma_202412005
crossref_primary_10_1107_S2052252516019072
crossref_primary_10_1007_s40820_024_01425_1
crossref_primary_10_1016_j_nantod_2025_102634
crossref_primary_10_1002_open_202000291
crossref_primary_10_1016_j_seppur_2022_122152
crossref_primary_10_1016_j_jcat_2017_08_012
crossref_primary_10_1002_adma_201705369
crossref_primary_10_1002_admt_201800666
crossref_primary_10_1016_j_arabjc_2018_07_004
crossref_primary_10_1088_1757_899X_383_1_012011
crossref_primary_10_1016_j_memsci_2019_117730
crossref_primary_10_1016_j_ccr_2017_08_017
crossref_primary_10_1016_j_apmt_2020_100632
crossref_primary_10_1002_ange_201507692
crossref_primary_10_1016_j_jiec_2020_12_023
crossref_primary_10_1002_slct_201904028
crossref_primary_10_1016_j_rser_2018_04_073
crossref_primary_10_1002_slct_202201566
crossref_primary_10_1016_j_pmatsci_2021_100904
crossref_primary_10_1038_s41467_022_29736_0
crossref_primary_10_1021_jacs_3c07778
crossref_primary_10_1002_celc_202201147
crossref_primary_10_1002_smll_201903380
crossref_primary_10_1016_j_cej_2025_165655
crossref_primary_10_1002_ejic_201600394
crossref_primary_10_1016_j_bej_2025_109661
crossref_primary_10_1021_jacs_9b07563
crossref_primary_10_1002_er_3492
crossref_primary_10_1016_j_jgsce_2023_205162
crossref_primary_10_1016_j_cej_2024_153398
crossref_primary_10_3390_chemosensors12070135
crossref_primary_10_1039_C8CC01153B
crossref_primary_10_1021_jacs_7b10112
crossref_primary_10_1038_s41557_019_0263_4
crossref_primary_10_1039_D0SC01204A
crossref_primary_10_1002_anie_202102337
crossref_primary_10_1038_s41467_018_05141_4
crossref_primary_10_1039_D0CY01479F
crossref_primary_10_1002_smtd_202100573
crossref_primary_10_1002_solr_202100762
crossref_primary_10_1016_j_ccr_2023_215411
crossref_primary_10_1155_2021_5512174
crossref_primary_10_1016_j_jcis_2018_07_140
crossref_primary_10_1016_j_jcis_2023_03_120
crossref_primary_10_1016_j_mcat_2022_112741
crossref_primary_10_1002_adma_202000791
crossref_primary_10_1039_C7CC07527H
crossref_primary_10_1002_adma_201601133
crossref_primary_10_1016_j_jhazmat_2023_133160
crossref_primary_10_1016_j_ccr_2020_213655
crossref_primary_10_1007_s11426_020_9781_7
crossref_primary_10_1016_j_ces_2024_120245
crossref_primary_10_1002_ange_202318559
crossref_primary_10_1016_j_cej_2022_139450
crossref_primary_10_1002_chem_201503951
crossref_primary_10_1016_j_cej_2024_152295
crossref_primary_10_1016_j_nanoen_2018_08_058
crossref_primary_10_1002_ceat_201800398
crossref_primary_10_1039_D1ME00085C
crossref_primary_10_1016_j_jcat_2021_09_006
crossref_primary_10_1016_j_cclet_2023_109418
crossref_primary_10_1021_jacs_5c08703
crossref_primary_10_1038_s41467_023_38170_9
crossref_primary_10_1016_j_chempr_2020_08_008
crossref_primary_10_1038_s41467_019_08972_x
crossref_primary_10_1016_j_cej_2021_133617
crossref_primary_10_1007_s11705_024_2427_z
crossref_primary_10_1016_j_cjche_2022_02_016
crossref_primary_10_1016_j_colsurfa_2015_10_048
crossref_primary_10_1002_adma_202414736
crossref_primary_10_1016_j_mcat_2022_112730
crossref_primary_10_1016_j_apsusc_2023_157047
crossref_primary_10_1016_j_watres_2019_04_043
crossref_primary_10_1016_j_seppur_2024_128588
crossref_primary_10_26599_NR_2025_94907382
crossref_primary_10_1016_j_fuel_2025_135043
crossref_primary_10_1515_zkri_2016_1968
crossref_primary_10_3390_ijms22094803
crossref_primary_10_1039_D1QM00442E
crossref_primary_10_1039_C9SC01018A
crossref_primary_10_1002_anie_202008100
crossref_primary_10_1016_j_chemosphere_2024_142707
crossref_primary_10_1002_agt2_145
crossref_primary_10_1002_adma_202411359
crossref_primary_10_1002_cphc_201800439
crossref_primary_10_1016_j_talanta_2023_124777
crossref_primary_10_1002_ange_202505978
crossref_primary_10_1039_D3SC00562C
crossref_primary_10_1039_D4CS01007H
crossref_primary_10_1016_j_chempr_2020_09_010
crossref_primary_10_1002_ejic_201601239
crossref_primary_10_1002_ange_202017244
crossref_primary_10_1039_D3QI01881D
crossref_primary_10_1016_j_micromeso_2021_111555
crossref_primary_10_1016_j_cej_2023_147992
crossref_primary_10_1002_ange_202008100
crossref_primary_10_1002_chem_201901213
crossref_primary_10_1039_C8CY01139G
crossref_primary_10_1016_j_mtcomm_2021_102419
crossref_primary_10_1007_s11356_024_32312_2
crossref_primary_10_1007_s11814_025_00559_1
crossref_primary_10_1002_cssc_202102217
crossref_primary_10_1016_j_apcatb_2022_121989
crossref_primary_10_1021_jacs_7b00106
crossref_primary_10_1016_j_ccr_2020_213220
crossref_primary_10_1002_smll_202407487
crossref_primary_10_1111_ijac_13807
crossref_primary_10_1002_chem_202103404
crossref_primary_10_3390_catal12030275
crossref_primary_10_1016_j_ccr_2018_08_005
crossref_primary_10_1038_s42004_020_00361_6
crossref_primary_10_1016_j_memsci_2020_118239
crossref_primary_10_1021_jacs_9b13070
crossref_primary_10_1039_C9SC04961D
crossref_primary_10_1016_j_cej_2023_142287
crossref_primary_10_1016_j_micromeso_2023_112595
crossref_primary_10_1002_cphc_202400283
crossref_primary_10_1039_D0SC01356K
crossref_primary_10_1038_s41467_022_29849_6
crossref_primary_10_1016_j_ccr_2018_08_012
crossref_primary_10_1039_C9RA08097J
crossref_primary_10_1039_C7FD90042B
crossref_primary_10_1016_j_cej_2021_131483
crossref_primary_10_1039_C9QI01119F
crossref_primary_10_1016_j_seppur_2024_130754
crossref_primary_10_1002_adfm_202315817
crossref_primary_10_1016_j_micromeso_2022_111877
crossref_primary_10_1016_j_ccr_2020_213447
crossref_primary_10_1016_j_seppur_2024_127585
crossref_primary_10_1002_chin_201531257
crossref_primary_10_1002_adma_201904969
crossref_primary_10_1002_ange_202103766
crossref_primary_10_1007_s10967_025_10299_5
crossref_primary_10_1016_j_fuel_2022_125917
crossref_primary_10_1016_j_jmst_2021_08_053
crossref_primary_10_1016_j_jhazmat_2020_124692
crossref_primary_10_1039_D1RE00214G
crossref_primary_10_1038_nmat4852
crossref_primary_10_1088_1361_6463_aa87e9
crossref_primary_10_1021_jacs_5b10666
crossref_primary_10_1016_j_ccr_2021_214178
crossref_primary_10_1002_jccs_202400289
crossref_primary_10_1002_slct_202202489
crossref_primary_10_1039_C7CC05927B
crossref_primary_10_1038_s42004_023_00891_9
crossref_primary_10_1016_j_micromeso_2020_110438
crossref_primary_10_1038_s41467_019_12268_5
crossref_primary_10_1002_chem_202005050
crossref_primary_10_1016_j_apsusc_2021_149064
crossref_primary_10_1007_s10562_018_2432_2
crossref_primary_10_1016_j_nanoen_2017_03_028
crossref_primary_10_1002_adfm_202010052
crossref_primary_10_1038_s41467_020_14671_9
crossref_primary_10_1016_j_indcrop_2024_120154
crossref_primary_10_1016_j_ica_2021_120416
crossref_primary_10_3390_nano12010121
crossref_primary_10_1002_aoc_4819
crossref_primary_10_1002_cplu_201900349
crossref_primary_10_1007_s10562_020_03098_y
crossref_primary_10_1007_s12274_018_2098_5
crossref_primary_10_1016_j_enchem_2021_100067
crossref_primary_10_1016_j_ccr_2019_213116
crossref_primary_10_1016_j_jcat_2022_06_015
crossref_primary_10_1038_s41467_022_35762_9
crossref_primary_10_1039_D4EN00194J
crossref_primary_10_1016_j_ccr_2019_02_001
crossref_primary_10_1002_adom_201701060
crossref_primary_10_1039_C8CC01627E
crossref_primary_10_1016_j_ssnmr_2022_101793
crossref_primary_10_1038_s41467_022_29710_w
crossref_primary_10_1002_adfm_201703765
crossref_primary_10_1016_j_talanta_2024_126580
crossref_primary_10_1002_slct_202000998
crossref_primary_10_1016_j_seppur_2022_121014
crossref_primary_10_1002_ange_201915848
crossref_primary_10_1002_cctc_201902079
crossref_primary_10_1002_chem_201800694
crossref_primary_10_1021_acs_inorgchem_5c02814
crossref_primary_10_1073_pnas_1706330114
crossref_primary_10_1002_anie_202013422
crossref_primary_10_1016_j_apcatb_2020_119540
crossref_primary_10_1002_chem_201801301
crossref_primary_10_1016_j_ccr_2024_215680
crossref_primary_10_1016_j_ccr_2023_215121
crossref_primary_10_1021_jacs_0c04468
crossref_primary_10_3390_molecules24244529
crossref_primary_10_1039_D2RA06587H
crossref_primary_10_1039_C7CS00033B
crossref_primary_10_1016_j_jcis_2022_10_122
crossref_primary_10_1016_j_pmatsci_2023_101123
crossref_primary_10_1039_C9NR02962A
crossref_primary_10_1016_j_jece_2020_104332
crossref_primary_10_3390_catal12121568
crossref_primary_10_1002_chem_202202441
crossref_primary_10_1038_s43246_024_00691_1
crossref_primary_10_1016_j_jclepro_2024_140704
crossref_primary_10_1038_s41467_018_04050_w
crossref_primary_10_1002_adma_201900617
crossref_primary_10_1016_j_ccr_2025_216928
crossref_primary_10_1002_inf2_70040
crossref_primary_10_1002_smll_202304008
crossref_primary_10_1002_slct_201601205
crossref_primary_10_1002_smll_201503187
crossref_primary_10_1002_smll_202403808
crossref_primary_10_1016_j_memsci_2022_120959
crossref_primary_10_1016_S1872_2067_23_64556_5
crossref_primary_10_1002_advs_201901129
crossref_primary_10_1002_ange_201505461
crossref_primary_10_1002_cssc_202201324
crossref_primary_10_1016_j_chemosphere_2021_131305
crossref_primary_10_1039_D5GC00030K
crossref_primary_10_1016_j_apsusc_2022_153252
crossref_primary_10_1016_j_molstruc_2024_137976
crossref_primary_10_1002_ijch_201800119
crossref_primary_10_1016_j_mtchem_2024_102197
crossref_primary_10_1016_j_cej_2021_130991
crossref_primary_10_1016_j_ccr_2023_215493
crossref_primary_10_1016_j_jcis_2022_10_015
crossref_primary_10_1002_ejic_201600566
crossref_primary_10_1021_jacs_3c12275
crossref_primary_10_1007_s12274_023_6351_1
crossref_primary_10_1016_j_porgcoat_2023_107814
crossref_primary_10_1002_chem_201600669
crossref_primary_10_1016_j_trechm_2020_02_004
crossref_primary_10_1021_jacs_2c12284
crossref_primary_10_1016_j_cattod_2021_08_027
crossref_primary_10_1038_s41467_018_06438_0
crossref_primary_10_1016_j_actphy_2025_100164
crossref_primary_10_1039_C5CP06798G
crossref_primary_10_1021_acs_inorgchem_5c00873
crossref_primary_10_1016_j_mtchem_2022_100776
crossref_primary_10_1016_j_micromeso_2025_113510
crossref_primary_10_1039_C7QI00711F
crossref_primary_10_1002_smtd_202400584
crossref_primary_10_1016_j_jpowsour_2025_237578
crossref_primary_10_1016_j_rser_2024_114482
crossref_primary_10_1016_j_cej_2024_155390
crossref_primary_10_1016_j_molliq_2024_124365
crossref_primary_10_1021_jacs_5c04345
crossref_primary_10_1063_5_0156044
crossref_primary_10_1016_j_ccr_2019_03_005
crossref_primary_10_1002_cssc_202000376
crossref_primary_10_1002_solr_202200362
crossref_primary_10_1016_j_seppur_2025_132855
crossref_primary_10_1016_j_ijhydene_2022_01_066
crossref_primary_10_1021_jacs_1c05357
crossref_primary_10_1016_j_cej_2020_127075
crossref_primary_10_1016_j_ijhydene_2022_12_313
crossref_primary_10_1016_j_jhazmat_2025_139877
crossref_primary_10_1002_ejic_202000031
crossref_primary_10_1016_j_comptc_2024_114748
crossref_primary_10_1016_j_fuel_2022_123904
crossref_primary_10_1016_j_psep_2024_10_027
crossref_primary_10_1002_chem_201905645
crossref_primary_10_1016_j_jcat_2017_09_014
crossref_primary_10_1246_cl_200683
crossref_primary_10_1016_j_jece_2025_118647
crossref_primary_10_1080_14686996_2023_2250705
crossref_primary_10_1021_jacs_5b09487
crossref_primary_10_1039_D0NR02899A
crossref_primary_10_1002_smsc_202100015
crossref_primary_10_1016_j_mencom_2021_01_018
crossref_primary_10_15541_jim20240333
crossref_primary_10_1016_j_jece_2023_111217
crossref_primary_10_1002_smtd_202401689
crossref_primary_10_1016_j_micromeso_2021_110985
crossref_primary_10_1016_j_apcatb_2024_124635
crossref_primary_10_1016_j_ijhydene_2024_01_331
crossref_primary_10_1016_j_jcat_2025_116379
crossref_primary_10_1016_j_cplett_2025_142059
crossref_primary_10_1016_j_seppur_2024_130133
crossref_primary_10_1016_j_est_2025_115928
crossref_primary_10_1016_j_jcat_2021_12_033
crossref_primary_10_1016_j_pmatsci_2022_100921
crossref_primary_10_1038_nchem_2691
crossref_primary_10_1002_cssc_201701438
crossref_primary_10_1080_01614940_2021_1948302
crossref_primary_10_1002_adma_202511250
crossref_primary_10_1039_C6CP03791G
crossref_primary_10_1002_anie_202218252
crossref_primary_10_1007_s11814_020_0730_z
crossref_primary_10_1002_adma_202211790
crossref_primary_10_1002_smll_202504212
crossref_primary_10_1002_ange_201508407
crossref_primary_10_1039_D0NR01673J
crossref_primary_10_1002_ange_201704579
crossref_primary_10_1021_jacs_0c13181
crossref_primary_10_1002_cctc_201700519
crossref_primary_10_1002_cssc_202001444
crossref_primary_10_1016_j_seppur_2025_132834
crossref_primary_10_1021_jacs_8b09682
crossref_primary_10_1016_j_micromeso_2020_110215
crossref_primary_10_1016_j_ccr_2020_213734
crossref_primary_10_1007_s40820_024_01558_3
crossref_primary_10_1038_s41467_023_41936_w
crossref_primary_10_1002_adfm_202303447
crossref_primary_10_1002_app_50519
crossref_primary_10_1016_j_matdes_2024_112688
crossref_primary_10_1016_j_micromeso_2020_110571
crossref_primary_10_1016_j_apcatb_2019_01_033
crossref_primary_10_1016_j_commatsci_2021_111033
crossref_primary_10_1002_admi_201902098
crossref_primary_10_1016_j_electacta_2023_143075
crossref_primary_10_1016_j_fuel_2025_135896
crossref_primary_10_1002_ange_201915537
crossref_primary_10_1002_cssc_202400602
crossref_primary_10_1002_zaac_201900046
crossref_primary_10_1016_j_inoche_2024_113495
crossref_primary_10_1039_D2ME00213B
crossref_primary_10_1002_smtd_202201170
crossref_primary_10_1016_j_cclet_2019_04_030
crossref_primary_10_1002_anie_201610914
crossref_primary_10_1016_j_matlet_2017_03_077
crossref_primary_10_1002_asia_202401532
crossref_primary_10_1016_j_ccr_2024_215751
crossref_primary_10_1002_cctc_202400906
crossref_primary_10_1002_smtd_201800406
crossref_primary_10_1016_j_partic_2018_09_007
crossref_primary_10_1002_ange_202100897
crossref_primary_10_1002_chem_201602641
crossref_primary_10_1002_chem_201900069
Cites_doi 10.1021/am200276x
10.1002/ange.201204806
10.1021/ja500330a
10.1002/chem.201202261
10.1039/c0ce00568a
10.1021/ja403810k
10.1038/nmat3343
10.1016/j.cbpa.2009.12.012
10.1002/cphc.201200222
10.1002/ange.200901177
10.1021/ja502765n
10.1021/cm501859p
10.1103/PhysRevB.86.125429
10.1021/ic801734x
10.1002/ange.201108565
10.1016/j.micromeso.2008.04.033
10.1039/c2cp41099k
10.1088/0022-3727/44/46/464011
10.1021/cr00039a005
10.1039/c0cs00147c
10.1126/science.1192759
10.1039/ft9969201401
10.1002/ange.201202925
10.1021/ja503218j
10.1021/ja0739887
10.1021/ar5000314
10.1038/nmat1560
10.1002/ange.201205627
10.1002/anie.201306923
10.1021/ja802741b
10.1002/adma.200903618
10.1002/ejic.201300591
10.1002/anie.201311128
10.1002/ange.201204963
10.1021/jz5012065
10.1021/ic901872g
10.1039/c3sc52666f
10.1002/anie.201202925
10.1021/ic500722n
10.1002/ange.201108462
10.1016/j.micromeso.2006.11.006
10.1039/c3cs60232j
10.1023/A:1019188105794
10.1002/anie.200300610
10.1021/ja056906s
10.1002/ange.201306923
10.1002/9783527630295
10.1016/j.micromeso.2011.12.058
10.1021/cr200077m
10.1021/ja8048767
10.1021/cm402136z
10.1002/ange.200803460
10.1126/science.1177582
10.1016/0920-5861(95)00161-1
10.1021/jp104441d
10.1002/chem.201003211
10.1021/ja204818q
10.1039/b803953b
10.1063/1.372595
10.1126/science.1246738
10.1038/nmat2228
10.1002/(SICI)1521-3757(20000417)112:8<1566::AID-ANGE1566>3.0.CO;2-9
10.1021/ja208140f
10.1038/nmat1213
10.1021/ja5063423
10.1021/cm101778g
10.1080/01614948508064741
10.1021/cr200101d
10.1016/S1002-0721(10)60611-4
10.1021/ja3079219
10.1016/j.ijheatmasstransfer.2006.10.001
10.1126/science.1238339
10.1038/ncomms5176
10.1021/ja405078u
10.1002/chem.201300326
10.1002/anie.201205627
10.1021/ja3085884
10.1039/C4CS90059F
10.1039/C1SC00394A
10.1039/c3cs35524a
10.1016/j.ijheatmasstransfer.2006.10.002
10.1039/b718890k
10.1107/S0021889812043026
10.1126/science.1181761
10.1039/c3ta10784a
10.1063/1.3257677
10.1002/anie.201204806
10.1039/C4CE01672F
10.1039/b704977c
10.1021/cm502399q
10.1016/j.jcat.2011.09.014
10.1016/j.micromeso.2009.06.008
10.1039/C4CC03764B
10.1016/j.jcat.2011.04.004
10.1021/ja3077654
10.1021/ja4064475
10.1021/cr9003924
10.1021/ja0752336
10.1039/C4CC04945D
10.1021/ja302991b
10.1039/b802158a
10.1021/cg900987r
10.1016/j.progsurf.2009.06.001
10.1039/b802352m
10.1002/(SICI)1521-3773(20000417)39:8<1506::AID-ANIE1506>3.0.CO;2-U
10.1016/S0022-3115(98)00034-8
10.1002/chem.201203145
10.1021/ja103365s
10.1021/ic402614w
10.1021/ja209156v
10.1103/PhysRevB.86.104113
10.1002/ange.201311128
10.1039/c3dt51637g
10.1039/C4SC01731E
10.1002/anie.201204963
10.1021/ja204233q
10.1021/ja2094316
10.2533/chimia.2001.510
10.1002/cctc.201402411
10.1002/cctc.201200164
10.1021/ja061681m
10.1021/cg501386j
10.1002/anie.201108462
10.1021/cr200324t
10.1038/nchem.1871
10.1039/c0cc01506g
10.1002/ange.200300610
10.1002/anie.200901177
10.1002/chem.200600220
10.1007/978-3-642-10500-5
10.1103/PhysRevB.84.125421
10.1021/cm102601v
10.1021/ja404514r
10.1039/b703643d
10.1002/anie.201108565
10.1039/c1cy00386k
10.1002/anie.200803460
10.1021/cm1022882
10.1039/c2jm16030g
ContentType Journal Article
Copyright 2015 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non‐Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2015
Copyright_xml – notice: 2015 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non‐Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
– notice: 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
– notice: 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2015
DBID BSCLL
24P
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
5PM
DOI 10.1002/anie.201411540
DatabaseName Istex
Wiley-Blackwell Open Access Titles
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Materials Research Database
PubMed

CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 7254
ExternalDocumentID PMC4510710
3719848261
26036179
10_1002_anie_201411540
ANIE201411540
ark_67375_WNG_6GXMSJMZ_P
Genre reviewArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61136003; 51173081
– fundername: Funded Access
– fundername: KULeuven
– fundername: National Basic Research Program of China
  funderid: 2015CB932200
– fundername: SBO
– fundername: Natural Science Foundation of Jiangsu Province, China
  funderid: BM2012010
– fundername: IAP
– fundername: FWO
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
24P
AAYXX
ABUFD
CITATION
O8X
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
5PM
ID FETCH-LOGICAL-c7820-6b6c4e02842402cb1a372022e6a8d562f45542445da373630a241b06965f63bc3
IEDL.DBID 24P
ISICitedReferencesCount 1052
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356390300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Tue Nov 04 01:51:29 EST 2025
Sun Nov 09 12:32:24 EST 2025
Sun Nov 09 11:58:13 EST 2025
Sat Nov 29 14:31:30 EST 2025
Thu Apr 03 07:07:56 EDT 2025
Sat Nov 29 05:33:35 EST 2025
Tue Nov 18 22:11:13 EST 2025
Wed Aug 20 07:25:35 EDT 2025
Sun Sep 21 06:20:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords porous materials
coordination chemistry
heterogeneity
defects engineering
metal-organic frameworks
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7820-6b6c4e02842402cb1a372022e6a8d562f45542445da373630a241b06965f63bc3
Notes SBO
Funded Access
ArticleID:ANIE201411540
Natural Science Foundation of Jiangsu Province, China - No. BM2012010
ark:/67375/WNG-6GXMSJMZ-P
IAP
National Basic Research Program of China - No. 2015CB932200
National Natural Science Foundation of China - No. 61136003; No. 51173081
KULeuven
istex:2A2F5071F096BDD5399014547601F25FEFC027B7
FWO
These two authors are the main authors of the manuscript and contributed equally in composing it.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201411540
PMID 26036179
PQID 1689826462
PQPubID 946352
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4510710
proquest_miscellaneous_1744679006
proquest_miscellaneous_1690650234
proquest_journals_1689826462
pubmed_primary_26036179
crossref_citationtrail_10_1002_anie_201411540
crossref_primary_10_1002_anie_201411540
wiley_primary_10_1002_anie_201411540_ANIE201411540
istex_primary_ark_67375_WNG_6GXMSJMZ_P
PublicationCentury 2000
PublicationDate June 15, 2015
PublicationDateYYYYMMDD 2015-06-15
PublicationDate_xml – month: 06
  year: 2015
  text: June 15, 2015
  day: 15
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References R. Ameloot, F. Vermoortele, J. Hofkens, F. C. De Schryver, D. E. De Vos, M. B. J. Roeffaers, Angew. Chem. Int. Ed. 2013, 52, 401-405
V. E. Fairbank, A. L. Thompson, R. I. Cooper, A. L. Goodwin, Phys. Rev. B 2012, 86, 144103-144105.
A. M. Walker, B. Slater, CrystEngComm 2008, 10, 790-791.
M. B. Roeffaers, R. Ameloot, A.-J. Bons, W. Mortier, G. De Cremer, R. de Kloe, J. Hofkens, D. E. De Vos, B. F. Sels, J. Am. Chem. Soc. 2008, 130, 13516-13517.
G. C. Shearer, S. Chavan, J. Ethiraj, J. G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, K. P. Lillerud, Chem. Mater. 2014, 26, 4068-4071.
R. Ameloot, M. Aubrey, B. M. Wiers, A. P. Gomora-Figueroa, S. N. Patel, N. P. Balsara, J. R. Long, Chem. Eur. J. 2013, 19, 5533-5536.
Angew. Chem. 2012, 124, 9401-9405.
B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, O. Yaghi, Int. J. Heat Mass Transfer 2007, 50, 405-411.
A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, M. D. Allendorf, Science 2014, 343, 66-69.
U. Ravon, M. Savonnet, S. Aguado, M. E. Domine, E. Janneau, D. Farrusseng, Microporous Mesoporous Mater. 2010, 129, 319-329.
J. C. Lavalley, Catal. Today 1996, 27, 377-401.
H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 4369-4381.
S. Takamizawa, M. A. Kohbara, Dalton Trans. 2007, 3640-3645.
Angew. Chem. 2009, 121, 4833-4837.
J. Hölsä, T. Laamanen, M. Lastusaari, P. Novák, J. Rare Earths 2011, 29, 1130-1136.
M. Vandichel, J. Hajek, F. Vermoortele, M. Waroquier, D. E. De Vos, V. Van Speybroeck, CrystEngComm 2015, 17, 395-406.
J. Čejka, A. Corma, S. Zones, Zeolites and Catalysis: Synthesis Reactions and Applications, Wiley-VCH, Weinheim, 2010.
A. M. Walker, B. Slater, J. D. Gale, K. Wright, Nat. Mater. 2004, 3, 715-720.
A. Corma, H. García, F. X. Llabres i Xamena, Chem. Rev. 2010, 110, 4606-4655.
F. Vermoortele, M. Vandichel, B. Van de Voorde, R. Ameloot, M. Waroquier, V. Van Speybroeck, D. E. De Vos, Angew. Chem. Int. Ed. 2012, 51, 4887-4890
H. B. Bürgi, T. Weber, Chimia 2001, 55, 510-516.
Angew. Chem. 2012, 124, 4971-4974.
C. K. Brozek, M. Dinca, J. Am. Chem. Soc. 2013, 135, 12886-12891.
O. Shekhah, J. Liu, R. A. Fischer, C. Woll, Chem. Soc. Rev. 2011, 40, 1081-1106.
S. H. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake, M. Schröder, Nat. Mater. 2012, 11, 710-716.
A. B. Cairns, A. L. Goodwin, Chem. Soc. Rev. 2013, 42, 4881-4893.
U. Ravon, M. E. Domine, C. Gaudillere, A. Desmartin-Chomel, D. Farrusseng, New J. Chem. 2008, 32, 937-940.
M. Moret, S. Rizzato, Cryst. Growth Des. 2009, 9, 5035-5042.
S. Marx, W. Kleist, A. Baiker, J. Catal. 2011, 281, 76-87.
A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Chem. Eur. J. 2011, 17, 6643-6665.
E. S. Božin, C. D. Malliakas, P. Souvatzis, T. Proffen, N. A. Spaldin, M. G. Kanatzidis, S. J. L. Billinge, Science 2010, 330, 1660-1663.
J. Park, Z. Y. U. Wang, L. B. Sun, Y. P. Chen, H. C. Zhou, J. Am. Chem. Soc. 2012, 134, 20110-20116.
Angew. Chem. 2014, 126, 7178-7182.
V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, G. Férey, A. Vittadini, S. Gross, C. Serre, Angew. Chem. Int. Ed. 2012, 51, 9267-9271
S. Jakobsen, D. Gianolio, D. S. Wragg, M. H. Nilsen, H. Emerich, S. Bordiga, C. Lamberti, U. Olsbye, M. Tilset, K. P. Lillerud, Phys. Rev. B 2012, 86, 125429.
C. H. Hendon, D. Tiana, A. Walsh, Phys. Chem. Chem. Phys. 2012, 14, 13120-13132.
Angew. Chem. 2000, 112, 1566-1570.
S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka, S. Kitagawa, Chem. Mater. 2010, 22, 4531-4538.
T. R. Welberry, B. D. Butler, Chem. Rev. 1995, 95, 2369-2403.
K. Leus, M. Vandichel, Y.-Y. Liu, I. Muylaert, J. Musschoot, S. Pyl, H. Vrielinck, F. Callens, G. B. Marin, C. Detavernier, P. V. Wiper, Y. Z. Khimyak, M. Waroquier, V. Van Speybroeck, P. Van Der Voort, J. Catal. 2012, 285, 196-207.
B. Bueken, H. Reinsch, N. Reimer, I. Stassen, F. Vermoortele, R. Ameloot, N. Stock, C. E. A. Kirschhocka, D. De Vos, Chem. Commun. 2014, 50, 10055-10058.
Angew. Chem. 2012, 124, 1921-1925.
B. Tu, Q. Pang, D. Wu, Y. Song, L. Weng, Q. Li, J. Am. Chem. Soc. 2014, 136, 14465-14471.
A. D. Burrows, CrystEngComm 2011, 13, 3623-3642.
F. Vermoortele, B. Bueken, G. Le Bars, B. V. de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock, D. E. De Vos, J. Am. Chem. Soc. 2013, 135, 11465-11468.
Y. J. Cui, Y. F. Yue, G. D. Qian, B. L. Chen, Chem. Rev. 2012, 112, 1126-1162.
Electronic and Optoelectronic Properties of Semiconductor Structures (Ed.: J. Singh), Cambridge University Press, Cambridge, 2003.
R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810-6918.
G. Barin, V. Krungleviciute, O. Gutov, J. T. Hupp, T. Yildirim, O. K. Farha, Inorg. Chem. 2014, 53, 6914-6919.
L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105-1125.
Angew. Chem. 2013, 125, 419-423.
X. X. Zhang, S. S. Y. Chui, I. D. Williams, J. Appl. Phys. 2000, 87, 6007-6009.
M. Tafipolsky, S. Amirjalayer, R. Schmid, J. Phys. Chem. C 2010, 114, 14402-14409.
M. Položij, M. Rubeš, J. Čejka, P. Nachtigall, ChemCatChem 2014, 6, 2821-2824.
C. S. Tsao, M.-S. Yu, T.-Y. Chung, H.-C. Wu, C.-Y. Wang, K.-S. Chang, H.-L. Chen, J. Am. Chem. Soc. 2007, 129, 15997-16004.
R. C. Huxford, J. D. Rocca, W. Lin, Curr. Opin. Chem. Biol. 2010, 14, 262-268.
S. Øien, D. Wragg, H. Reinsch, S. Svelle, S. Bordiga, C. Lamberti, K. P. Lillerud, Cryst. Growth Des. 2014, 14, 5370-5372.
O. Ourdjini, R. Pawlak, M. Abel, S. Clair, L. Chen, N. Bergeon, M. Sassi, V. Oison, J.-M. Debierre, R. Coratger, L. Porte, Phys. Rev. B 2011, 84, 125421.
S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334-2375
C. Baerlocher, D. Xie, L. B. McCusker, S.-J. Hwang, I. Y. Chan, K. Ong, A. W. Burton, S. I. Zones, Nat. Mater. 2008, 7, 631-635.
Y. W. Li, R. T. Yang, J. Am. Chem. Soc. 2006, 128, 8136-8137.
H. Noei, S. Amirjalayer, M. Müller, X. Zhang, R. Schmid, M. Muhler, R. A. Fischer, Y. Wang, ChemCatChem 2012, 4, 755-759.
M. C. Kunga, H. H. Kung, Catal. Rev. 1985, 27, 425-460.
L. Carlucci, G. Ciani, M. Moret, D. M. Proserpio, S. Rizzato, Angew. Chem. Int. Ed. 2000, 39, 1506-1510
M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino, K. P. Lillerud, Chem. Mater. 2010, 22, 6632-6640.
M. Ishizaki, M. Ishizaki, S. Akiba, A. Ohtani, Y. Hoshi, K. Ono, M. Matsuba, T. Togashi, K. Kananizuka, M. Sakamoto, A. Takahashi, T. Kawamoto, H. Tanaka, M. Watanabe, M. Arisaka, T. Nankawa, M. Kurihara, Dalton Trans. 2013, 42, 16049-16055.
T. H. Park, A. J. Hickman, K. Koh, S. Martin, A. G. Wong-Foy, M. S. Sanford, A. J. Matzger, J. Am. Chem. Soc. 2011, 133, 20138-20141.
Angew. Chem. 2014, 126, 4618-4628.
M. Liu, A. G. Wong-Foy, R. S. Vallery, W. E. Frieze, J. K. Schnobrich, D. W. Gidley, A. J. Matzger, Adv. Mater. 2010, 22, 1598-1601.
T. D. Bennett, A. K. Cheetham, Acc. Chem. Res. 2014, 47, 1555-1562.
S. Amirjalayer, M. Tafipolsky, R. Schmid, J. Phys. Chem. Lett. 2014, 5, 3206-3210.
L. Alaerts, E. Séguin, H. Poelman, F. Thibault-Starzyk, P. A. Jacobs, D. E. De Vos, Chem. Eur. J. 2006, 12, 7353-7363.
M. L. Foo, R. Matsuda, S. Kitagawa, Chem. Mater. 2014, 26, 310-322.
M. Kim, J. F. Cahill, Y. X. Su, K. A. Prather, S. M. Cohen, Chem. Sci. 2012, 3, 126-130.
H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, J. Am. Chem. Soc. 2013, 135, 10525-10532.
M. Shoaee, M. W. Anderson, M. P. Attfield, Angew. Chem. Int. Ed. 2008, 47, 8525-8528
M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J. M. Dieterich, T. Reimer, U. Kolb, D. de Vos, N. Stock, Angew. Chem. Int. Ed. 2012, 51, 10373-10376
S. Henke, A. Schneemann, A. Wuetscher, R. A. Fischer, J. Am. Chem. Soc. 2012, 134, 9464-9474.
M. Shöâeè, J. R. Agger, M. W. Anderson, M. P. Attfield, CrystEngComm 2008, 10, 646-648.
Angew. Chem. 2004, 116, 2388-2430.
J. Li, L. Porter, S. Yip, J. Nucl. Mater. 1998, 255, 139-152.
O. Kozachuk, M. Meilikhov, K. Yusenko, A. Schneemann, B. Jee, A. V. Kuttatheyil, M. Bertmer, C. Sternemann, A. Pöppl, R. A. Fischer, Eur. J. Inorg. Chem. 2013, 4546-4557.
Z. Q. Liang, M. O. Reese, B. A. Gregg, ACS Appl. Mater. Interfaces 2011, 3, 2042-2050.
O. Karagiaridi, W. Bury, J. E. Mondloch, J. T. Hupp, O. K. Farha, Angew. Chem. Int. Ed. 2014, 53, 4530-4540
M. Kind, C. Woll, Prog. Surf. Sci. 2009, 84, 230-278.
K. Leus, I. Muylaert, M. Vandichel, G. B. Marin, M. Waroquier, V. Van Speybroeck, P. Van Der Voort, Chem. Commun. 2010, 46, 5085-5087.
T. Barzetti, E. Selli, D. Moscotti, L. Forni, J. Chem. Soc. Faraday Trans. 1996, 92, 1401-1407.
P. Shen, W.-W. He, D.-Y. Du, H.-L. Jiang, S.-L. Li, Z.-L. Lang, Z.-M. Su, Q. Fu, Y.-Q. Lan, Chem. Sci. 2014, 5, 1368-1374.
T. Li, M. T. Kozlowski, E. A. Doud, M. N. Blakely, N. L. Rosi, J. Am. Chem. Soc. 2013, 135, 11688-11691.
Y. Wang, A. Glenz, M. Muhler, C. Woll, Rev. Sci. Instrum. 2009, 80, 113108.
D. N. Bunck, W. R. Dichtel, Chem. Eur. J. 2013, 19, 818-827.
R. A. Beyerlein, C. Choi-Feng, J. B. Hall, B. J. Huggins, G. J. Ray, Top. Catal. 1997, 4, 27-42.
Z. Fang, J. P. Dürholt, M. Kauer, W. Zhang, C. Lochenie, B. Jee, B. Albada, N. Metzler-Nolte, A. Pöppl, B. Weber, M. Muhler, Y. Wang, R. Schmid, R. A. Fischer, J. Am. Chem. Soc. 2014, 136, 9627-9636.
P. Valvekens, D. Jonckheere, T. De Baerdemaeker, A. V. Kubarev, M. Vandichel, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, E. Smolders, D. Depla, M. B. J. Roeffaersa, D. De Vos, Chem. Sci. 2014, 5, 4517-4524.
S. B. Choi, H. Furukawa, H. J. Nam, D.-Y. Jung, Y. H. Jhon, A. Walton, D. Book, M. O′Keeffe, O. M. Yaghi, J. Kim, Angew. Chem. Int. Ed. 2012, 51, 8791-8795
F. X. Llabres i Xamena, F. G. Cirujano, A. Corma, Microporous Mesoporous Mater. 2012, 157, 112-117.
H. X. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M.
2014 2014; 53 126
2007; 101
2012; 285
2009; 84
2010; 14
2013; 1
2000 2000; 39 112
2009 2009; 48 121
2009; 80
2000; 87
2014; 26
2004; 3
2008; 7
2011; 13
2012; 18
2008; 32
2008 2008; 47 120
2011; 17
2012; 14
2012; 13
1997; 4
2012; 11
2014; 136
2009; 48
2011; 111
1985; 27
2013 2013; 52 125
2013; 19
2010; 22
2014; 5
2012; 134
2012 2012; 51 124
2010; 114
2010; 110
2007; 9
2014; 14
2008; 116
2011; 23
2001; 55
2014; 50
1996; 27
2006; 128
2011; 281
2014; 6
2012; 22
2011; 29
2009; 326
2014; 53
1995; 95
2004 2004; 43 116
2015; 17
2007; 129
2010; 129
2010; 327
2006; 12
2011
2010
2013; 42
2011; 40
2011; 84
2009
2006; 5
2007
2014; 47
2005
2008; 10
2007; 50
2003
2013; 341
1996; 92
2009; 131
2011; 3
1998; 255
2011; 133
1999
2010; 49
2012; 2
2012; 3
2012; 112
2012; 157
2010; 46
2010; 330
2010; 132
2009; 9
2011; 44
2013; 135
2013
2012; 4
2012; 45
2008; 130
2009; 38
2012; 86
2014; 343
e_1_2_10_21_3
e_1_2_10_44_2
Batten S. R. (e_1_2_10_12_2) 2009
e_1_2_10_21_2
(e_1_2_10_2_2) 2005
e_1_2_10_109_2
e_1_2_10_40_2
e_1_2_10_131_2
e_1_2_10_70_2
e_1_2_10_116_2
e_1_2_10_93_2
e_1_2_10_18_2
e_1_2_10_74_2
e_1_2_10_37_3
e_1_2_10_112_2
e_1_2_10_37_2
e_1_2_10_97_2
e_1_2_10_55_2
e_1_2_10_78_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_79_3
(e_1_2_10_95_2) 1999
e_1_2_10_79_2
e_1_2_10_32_2
e_1_2_10_51_2
e_1_2_10_120_2
e_1_2_10_105_2
e_1_2_10_128_2
e_1_2_10_82_2
e_1_2_10_29_2
e_1_2_10_63_2
e_1_2_10_48_3
e_1_2_10_101_2
e_1_2_10_124_2
e_1_2_10_48_2
e_1_2_10_86_2
e_1_2_10_25_2
e_1_2_10_67_2
e_1_2_10_22_2
e_1_2_10_45_2
e_1_2_10_68_2
e_1_2_10_41_2
e_1_2_10_129_2
e_1_2_10_90_2
e_1_2_10_19_2
e_1_2_10_71_2
e_1_2_10_94_2
e_1_2_10_117_2
e_1_2_10_52_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_52_3
e_1_2_10_75_2
e_1_2_10_98_2
e_1_2_10_113_2
e_1_2_10_7_2
e_1_2_10_56_2
e_1_2_10_132_2
e_1_2_10_10_3
e_1_2_10_57_2
e_1_2_10_33_2
e_1_2_10_10_2
e_1_2_10_118_2
e_1_2_10_60_2
e_1_2_10_83_2
e_1_2_10_106_2
e_1_2_10_125_2
e_1_2_10_26_2
e_1_2_10_49_2
e_1_2_10_64_2
e_1_2_10_87_2
e_1_2_10_102_2
e_1_2_10_45_3
e_1_2_10_121_2
e_1_2_10_23_2
e_1_2_10_69_2
e_1_2_10_42_2
e_1_2_10_107_2
Bürgi H. B. (e_1_2_10_35_2) 2001; 55
e_1_2_10_91_3
e_1_2_10_91_2
e_1_2_10_72_2
e_1_2_10_114_2
e_1_2_10_39_2
e_1_2_10_53_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_53_3
e_1_2_10_76_2
e_1_2_10_110_2
e_1_2_10_133_2
e_1_2_10_99_2
e_1_2_10_11_2
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_58_2
e_1_2_10_30_2
e_1_2_10_119_2
e_1_2_10_80_2
e_1_2_10_61_2
e_1_2_10_126_3
e_1_2_10_103_2
e_1_2_10_126_2
e_1_2_10_84_2
e_1_2_10_27_2
e_1_2_10_65_2
e_1_2_10_122_2
e_1_2_10_46_2
e_1_2_10_88_2
e_1_2_10_20_2
e_1_2_10_43_2
(e_1_2_10_3_2) 2003
e_1_2_10_108_2
e_1_2_10_130_2
e_1_2_10_92_2
e_1_2_10_1_2
e_1_2_10_17_2
e_1_2_10_73_2
e_1_2_10_96_2
e_1_2_10_17_3
e_1_2_10_115_2
e_1_2_10_5_2
e_1_2_10_54_2
e_1_2_10_36_2
e_1_2_10_77_2
e_1_2_10_111_2
e_1_2_10_9_2
e_1_2_10_59_2
e_1_2_10_31_2
e_1_2_10_50_2
(e_1_2_10_13_2) 2010
e_1_2_10_81_2
e_1_2_10_127_2
e_1_2_10_28_2
e_1_2_10_62_2
e_1_2_10_85_2
e_1_2_10_104_2
e_1_2_10_100_3
e_1_2_10_123_2
e_1_2_10_24_2
e_1_2_10_47_2
e_1_2_10_66_2
e_1_2_10_89_2
e_1_2_10_100_2
18044895 - J Am Chem Soc. 2007 Dec 26;129(51):15997-6004
24310609 - Science. 2014 Jan 3;343(6166):66-9
15359343 - Nat Mater. 2004 Oct;3(10):715-20
23902330 - J Am Chem Soc. 2013 Aug 28;135(34):12886-91
19947718 - Rev Sci Instrum. 2009 Nov;80(11):113108
23471316 - Chem Soc Rev. 2013 Jun 21;42(12):4881-93
24652755 - Angew Chem Int Ed Engl. 2014 Apr 25;53(18):4530-40
19384441 - Chem Soc Rev. 2009 May;38(5):1330-52
23157426 - J Am Chem Soc. 2012 Dec 12;134(49):20110-6
23039827 - J Am Chem Soc. 2012 Oct 31;134(43):18082-8
16415875 - Nat Mater. 2006 Feb;5(2):134-40
20715825 - J Am Chem Soc. 2010 Sep 8;132(35):12365-77
23009199 - J Am Chem Soc. 2012 Oct 17;134(41):17286-90
23280516 - Chemistry. 2013 Jan 14;19(3):818-27
25036867 - Chem Commun (Camb). 2014 Sep 11;50(70):10055-8
24915512 - J Am Chem Soc. 2014 Jul 9;136(27):9627-36
24750124 - J Am Chem Soc. 2014 Jun 25;136(25):8859-62
23495187 - Chemistry. 2013 Apr 26;19(18):5533-6
21164012 - Science. 2010 Dec 17;330(6011):1660-3
22976879 - Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10373-6
17999502 - J Am Chem Soc. 2007 Dec 12;129(49):15192-201
24077361 - Chem Soc Rev. 2013 Dec 21;42(24):9232-42
24588307 - J Am Chem Soc. 2014 Mar 19;136(11):4369-81
20359232 - Chem Rev. 2010 Aug 11;110(8):4606-55
23055448 - Chemistry. 2012 Nov 26;18(48):15406-15
21863792 - Chem Rev. 2011 Nov 9;111(11):6810-918
21225034 - Chem Soc Rev. 2011 Feb;40(2):1081-106
16881030 - Chemistry. 2006 Sep 25;12(28):7353-63
23945598 - Dalton Trans. 2013 Dec 7;42(45):16049-55
24946837 - Nat Commun. 2014 Jun 20;5:4176
23143805 - Angew Chem Int Ed Engl. 2013 Jan 2;52(1):401-5
23887875 - Science. 2013 Aug 23;341(6148):882-5
22249947 - Angew Chem Int Ed Engl. 2012 Feb 20;51(8):1885-9
19472244 - Angew Chem Int Ed Engl. 2009;48(26):4739-43
21995563 - J Am Chem Soc. 2011 Nov 23;133(46):18950-6
18800795 - J Am Chem Soc. 2008 Oct 15;130(41):13516-7
24838592 - Angew Chem Int Ed Engl. 2014 Jul 1;53(27):7058-62
17700826 - Dalton Trans. 2007 Sep 7;(33):3640-5
21547962 - Chemistry. 2011 Jun 6;17(24):6643-51
24707980 - Acc Chem Res. 2014 May 20;47(5):1555-62
22517762 - Chemphyschem. 2012 Jun 4;13(8):2025-9
25229624 - J Am Chem Soc. 2014 Oct 15;136(41):14465-71
24903856 - Inorg Chem. 2014 Jul 7;53(13):6914-9
18622404 - Nat Mater. 2008 Aug;7(8):631-5
15114565 - Angew Chem Int Ed Engl. 2004 Apr 26;43(18):2334-75
22660661 - Nat Mater. 2012 Jun 03;11(8):710-6
21861521 - J Am Chem Soc. 2011 Oct 5;133(39):15506-13
21604784 - ACS Appl Mater Interfaces. 2011 Jun;3(6):2042-50
20095567 - Inorg Chem. 2010 Feb 15;49(4):1510-6
16522102 - J Am Chem Soc. 2006 Mar 15;128(10):3218-27
24328288 - Inorg Chem. 2014 Jan 6;53(1):160-6
23808838 - J Am Chem Soc. 2013 Jul 17;135(28):10525-32
22858739 - Phys Chem Chem Phys. 2012 Oct 14;14(38):13120-32
20071210 - Curr Opin Chem Biol. 2010 Apr;14(2):262-8
20496387 - Adv Mater. 2010 Apr 12;22(14):1598-601
21688849 - Chem Rev. 2012 Feb 8;112(2):1126-62
22575013 - J Am Chem Soc. 2012 Jun 6;134(22):9464-74
17627311 - Phys Chem Chem Phys. 2007 Jun 7;9(21):2676-85
22887718 - Angew Chem Int Ed Engl. 2012 Sep 10;51(37):9267-71
22080843 - J Am Chem Soc. 2012 Jan 11;134(1):588-98
22070233 - Chem Rev. 2012 Feb 8;112(2):1105-25
25116653 - Chem Commun (Camb). 2014 Oct 7;50(77):11329-31
23688075 - J Am Chem Soc. 2013 Aug 14;135(32):11688-91
19046076 - Inorg Chem. 2009 Jan 5;48(1):267-76
10777657 - Angew Chem Int Ed Engl. 2000 Apr;39(8):1506-1510
24651203 - Nat Chem. 2014 Apr;6(4):343-51
16787068 - J Am Chem Soc. 2006 Jun 28;128(25):8136-7
20563337 - Chem Commun (Camb). 2010 Jul 28;46(28):5085-7
20150497 - Science. 2010 Feb 12;327(5967):846-50
19729619 - Science. 2009 Oct 16;326(5951):415-7
21749096 - J Am Chem Soc. 2011 Aug 10;133(31):11920-3
26276333 - J Phys Chem Lett. 2014 Sep 18;5(18):3206-10
23875753 - J Am Chem Soc. 2013 Aug 7;135(31):11465-8
18846529 - Angew Chem Int Ed Engl. 2008;47(44):8525-8
19140765 - J Am Chem Soc. 2009 Feb 4;131(4):1404-6
22807234 - Angew Chem Int Ed Engl. 2012 Aug 27;51(35):8791-5
22122560 - J Am Chem Soc. 2011 Dec 21;133(50):20138-41
22488675 - Angew Chem Int Ed Engl. 2012 May 14;51(20):4887-90
References_xml – reference: M. Shöâeè, J. R. Agger, M. W. Anderson, M. P. Attfield, CrystEngComm 2008, 10, 646-648.
– reference: M. Tafipolsky, S. Amirjalayer, R. Schmid, J. Phys. Chem. C 2010, 114, 14402-14409.
– reference: M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino, K. P. Lillerud, Chem. Mater. 2010, 22, 6632-6640.
– reference: R. C. Huxford, J. D. Rocca, W. Lin, Curr. Opin. Chem. Biol. 2010, 14, 262-268.
– reference: J. Heine, K. Muller-Buschbaum, Chem. Soc. Rev. 2013, 42, 9232-9242.
– reference: P. St.  Petkov, G. N. Vayssilov, J. Liu, O. Shekhah, Y. Wang, C. Wöll, T. Heine, ChemPhysChem 2012, 13, 2025-2029.
– reference: L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilsen, S. Jakobsen, K. P. Lillerud, C. Lamberti, Chem. Mater. 2011, 23, 1700-1718.
– reference: M. Kim, J. F. Cahill, H. H. Fei, K. A. Prather, S. M. Cohen, J. Am. Chem. Soc. 2012, 134, 18082-18088.
– reference: S. B. Choi, H. Furukawa, H. J. Nam, D.-Y. Jung, Y. H. Jhon, A. Walton, D. Book, M. O′Keeffe, O. M. Yaghi, J. Kim, Angew. Chem. Int. Ed. 2012, 51, 8791-8795;
– reference: M. Lackinger, W. M. Heckl, J. Phys. D 2011, 44, 464011.
– reference: M. B. Roeffaers, R. Ameloot, A.-J. Bons, W. Mortier, G. De Cremer, R. de Kloe, J. Hofkens, D. E. De Vos, B. F. Sels, J. Am. Chem. Soc. 2008, 130, 13516-13517.
– reference: S. Amirjalayer, M. Tafipolsky, R. Schmid, J. Phys. Chem. Lett. 2014, 5, 3206-3210.
– reference: Angew. Chem. 2012, 124, 8921-8925.
– reference: M. Kim, J. F. Cahill, Y. X. Su, K. A. Prather, S. M. Cohen, Chem. Sci. 2012, 3, 126-130.
– reference: T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D. Prabhakaran, A. T. Boothroyd, R. J. Aldus, D. F. McMorrow, S. T. Bramwell, Science 2009, 326, 415-417.
– reference: X. X. Zhang, S. S. Y. Chui, I. D. Williams, J. Appl. Phys. 2000, 87, 6007-6009.
– reference: M. Liu, A. G. Wong-Foy, R. S. Vallery, W. E. Frieze, J. K. Schnobrich, D. W. Gidley, A. J. Matzger, Adv. Mater. 2010, 22, 1598-1601.
– reference: C. L. Whittington, L. Wojtas, R. W. Larsen, Inorg. Chem. 2014, 53, 160-166.
– reference: J. S. Choi, W. J. Son, J. Kim, W. S. Ahn, Microporous Mesoporous Mater. 2008, 116, 727-731.
– reference: Y. Wang, A. Glenz, M. Muhler, C. Woll, Rev. Sci. Instrum. 2009, 80, 113108.
– reference: H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, J. Am. Chem. Soc. 2013, 135, 10525-10532.
– reference: G. C. Shearer, S. Chavan, J. Ethiraj, J. G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, K. P. Lillerud, Chem. Mater. 2014, 26, 4068-4071.
– reference: Y. J. Cui, Y. F. Yue, G. D. Qian, B. L. Chen, Chem. Rev. 2012, 112, 1126-1162.
– reference: D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade, C. K. Brozek, A. Aspuru-Guzik, M. Dincă, J. Am. Chem. Soc. 2014, 136, 8859-8862.
– reference: U. Ravon, M. E. Domine, C. Gaudillere, A. Desmartin-Chomel, D. Farrusseng, New J. Chem. 2008, 32, 937-940.
– reference: J. Li, L. Porter, S. Yip, J. Nucl. Mater. 1998, 255, 139-152.
– reference: O. Karagiaridi, W. Bury, J. E. Mondloch, J. T. Hupp, O. K. Farha, Angew. Chem. Int. Ed. 2014, 53, 4530-4540;
– reference: H. Furukawa, F. Gándara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 4369-4381.
– reference: U. Ravon, M. Savonnet, S. Aguado, M. E. Domine, E. Janneau, D. Farrusseng, Microporous Mesoporous Mater. 2010, 129, 319-329.
– reference: S. R. Batten, D. R. Turner, M. S. Neville, Coordination Polymers: Design, Analysis and Application, RSC, Cambridge, 2009.
– reference: L. I. Meza, M. W. Anderson, J. R. Agger, C. S. Cundy, C. B. Chong, R. J. Plaisted, J. Am. Chem. Soc. 2007, 129, 15192-15201.
– reference: R. Ameloot, M. Aubrey, B. M. Wiers, A. P. Gomora-Figueroa, S. N. Patel, N. P. Balsara, J. R. Long, Chem. Eur. J. 2013, 19, 5533-5536.
– reference: T. R. Welberry, B. D. Butler, Chem. Rev. 1995, 95, 2369-2403.
– reference: A. Corma, H. García, F. X. Llabres i Xamena, Chem. Rev. 2010, 110, 4606-4655.
– reference: P. Shen, W.-W. He, D.-Y. Du, H.-L. Jiang, S.-L. Li, Z.-L. Lang, Z.-M. Su, Q. Fu, Y.-Q. Lan, Chem. Sci. 2014, 5, 1368-1374.
– reference: C. S. Tsao, M.-S. Yu, C.-Y. Wang, P.-Y. Liao, H.-L. Chen, U.-S. Jeng, Y.-R. Tzeng, T.-Y. Chung, H.-C. Wu, J. Am. Chem. Soc. 2009, 131, 1404-1406.
– reference: P. Valvekens, D. Jonckheere, T. De Baerdemaeker, A. V. Kubarev, M. Vandichel, K. Hemelsoet, M. Waroquier, V. Van Speybroeck, E. Smolders, D. Depla, M. B. J. Roeffaersa, D. De Vos, Chem. Sci. 2014, 5, 4517-4524.
– reference: B. Bueken, H. Reinsch, N. Reimer, I. Stassen, F. Vermoortele, R. Ameloot, N. Stock, C. E. A. Kirschhocka, D. De Vos, Chem. Commun. 2014, 50, 10055-10058.
– reference: D. N. Bunck, W. R. Dichtel, Chem. Eur. J. 2013, 19, 818-827.
– reference: Angew. Chem. 2012, 124, 9401-9405.
– reference: D. N. Bunck, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 1885-1889;
– reference: M. Položij, M. Rubeš, J. Čejka, P. Nachtigall, ChemCatChem 2014, 6, 2821-2824.
– reference: M. J. Cliffe, A. L. Goodwin, J. Appl. Crystallogr. 2012, 45, 1321-1329.
– reference: Y. Yoshida, K. Inoue, M. Kurmoo, Inorg. Chem. 2009, 48, 267-276.
– reference: S. Bordiga, L. Regli, F. Bonino, E. Groppo, C. Lamberti, B. Xiao, P. S. Wheatley, R. E. Morris, A. Zecchina, Phys. Chem. Chem. Phys. 2007, 9, 2676-2685.
– reference: P. Cubillas, M. W. Anderson, M. P. Attfield, Chem. Eur. J. 2012, 18, 15406-15415.
– reference: V. E. Fairbank, A. L. Thompson, R. I. Cooper, A. L. Goodwin, Phys. Rev. B 2012, 86, 144103-144105.
– reference: M. Vandichel, J. Hajek, F. Vermoortele, M. Waroquier, D. E. De Vos, V. Van Speybroeck, CrystEngComm 2015, 17, 395-406.
– reference: T. Hasell, S. Y. Chong, K. E. Jelfs, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc. 2012, 134, 588-598.
– reference: M. Shoaee, M. W. Anderson, M. P. Attfield, Angew. Chem. Int. Ed. 2008, 47, 8525-8528;
– reference: C. Marti-Gastaldo, D. Antypov, J. E. Warren, M. E. Briggs, P. A. Chater, P. V. Wiper, G. J. Miller, Y. Z. Khimyak, G. R. Darling, G. Berry, M. J. Rosseinsky, Nat. Chem. 2014, 6, 343-351.
– reference: F. X. Llabres i Xamena, F. G. Cirujano, A. Corma, Microporous Mesoporous Mater. 2012, 157, 112-117.
– reference: F. Vermoortele, R. Ameloot, L. Alaerts, R. Matthessen, B. Carlier, E. V. R. Fernandez, J. Gascon, F. Kapteijn, D. E. De Vos, J. Mater. Chem. 2012, 22, 10313-10321.
– reference: K. Leus, M. Vandichel, Y.-Y. Liu, I. Muylaert, J. Musschoot, S. Pyl, H. Vrielinck, F. Callens, G. B. Marin, C. Detavernier, P. V. Wiper, Y. Z. Khimyak, M. Waroquier, V. Van Speybroeck, P. Van Der Voort, J. Catal. 2012, 285, 196-207.
– reference: O. Kozachuk, M. Meilikhov, K. Yusenko, A. Schneemann, B. Jee, A. V. Kuttatheyil, M. Bertmer, C. Sternemann, A. Pöppl, R. A. Fischer, Eur. J. Inorg. Chem. 2013, 4546-4557.
– reference: G. Barin, V. Krungleviciute, O. Gutov, J. T. Hupp, T. Yildirim, O. K. Farha, Inorg. Chem. 2014, 53, 6914-6919.
– reference: Electronic and Optoelectronic Properties of Semiconductor Structures (Ed.: J. Singh), Cambridge University Press, Cambridge, 2003.
– reference: A. Umemura, S. Diring, S. Furukawa, H. Uehara, T. Tsuruoka, S. Kitagawa, J. Am. Chem. Soc. 2011, 133, 15506-15513.
– reference: F. Vermoortele, B. Bueken, G. Le Bars, B. V. de Voorde, M. Vandichel, K. Houthoofd, A. Vimont, M. Daturi, M. Waroquier, V. Van Speybroeck, C. Kirschhock, D. E. De Vos, J. Am. Chem. Soc. 2013, 135, 11465-11468.
– reference: G. Y. Xu, Z. Zhong, Y. Bing, Z. G. Ye, G. Shirane, Nat. Mater. 2006, 5, 134-140.
– reference: A. M. Walker, B. Slater, CrystEngComm 2008, 10, 790-791.
– reference: Z. Fang, J. P. Dürholt, M. Kauer, W. Zhang, C. Lochenie, B. Jee, B. Albada, N. Metzler-Nolte, A. Pöppl, B. Weber, M. Muhler, Y. Wang, R. Schmid, R. A. Fischer, J. Am. Chem. Soc. 2014, 136, 9627-9636.
– reference: Angew. Chem. 2000, 112, 1566-1570.
– reference: J. Park, Z. Y. U. Wang, L. B. Sun, Y. P. Chen, H. C. Zhou, J. Am. Chem. Soc. 2012, 134, 20110-20116.
– reference: A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Chem. Eur. J. 2011, 17, 6643-6665.
– reference: V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, G. Férey, A. Vittadini, S. Gross, C. Serre, Angew. Chem. Int. Ed. 2012, 51, 9267-9271;
– reference: T. Tsuruoka, S. Furukawa, Y. Takashima, K. Yoshida, S. Isoda, S. Kitagawa, Angew. Chem. Int. Ed. 2009, 48, 4739-4743;
– reference: A. Vimont, J.-M. Goupil, J.-C. Lavalley, M. Daturi, S. Surblé, C. Serre, F. Millange, G. Férey, N. Audebrand, J. Am. Chem. Soc. 2006, 128, 3218-3227.
– reference: O. Shekhah, J. Liu, R. A. Fischer, C. Woll, Chem. Soc. Rev. 2011, 40, 1081-1106.
– reference: B. L. Huang, Z. Ni, A. Millward, A. J. H. McGaughey, C. Uher, M. Kaviany, O. Yaghi, Int. J. Heat Mass Transfer 2007, 50, 405-411.
– reference: H. B. Bürgi, T. Weber, Chimia 2001, 55, 510-516.
– reference: Angew. Chem. 2012, 124, 1921-1925.
– reference: Angew. Chem. 2004, 116, 2388-2430.
– reference: M. L. Foo, R. Matsuda, S. Kitagawa, Chem. Mater. 2014, 26, 310-322.
– reference: A. B. Cairns, A. L. Goodwin, Chem. Soc. Rev. 2013, 42, 4881-4893.
– reference: L. Carlucci, G. Ciani, M. Moret, D. M. Proserpio, S. Rizzato, Angew. Chem. Int. Ed. 2000, 39, 1506-1510;
– reference: Catalysis and Zeolites: Fundamentals and Applications (Eds.: J. Weitkamp, L. Puppe), Springer, Berlin, Heidelberg, 1999.
– reference: Angew. Chem. 2008, 120, 8653-8656.
– reference: L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105-1125.
– reference: M. C. Kunga, H. H. Kung, Catal. Rev. 1985, 27, 425-460.
– reference: M. Moret, S. Rizzato, Cryst. Growth Des. 2009, 9, 5035-5042.
– reference: O. Kozachuk, I. Luz, F. X. Llabres i Xamena, H. Noei, M. Kauer, H. B. Albada, E. D. Bloch, B. Marler, Y. Wang, M. Muhler, R. A. Fischer, Angew. Chem. Int. Ed. 2014, 53, 7058-7062;
– reference: H. X. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. Yaghi, Science 2010, 327, 846-850.
– reference: C. S. Tsao, M.-S. Yu, T.-Y. Chung, H.-C. Wu, C.-Y. Wang, K.-S. Chang, H.-L. Chen, J. Am. Chem. Soc. 2007, 129, 15997-16004.
– reference: Angew. Chem. 2013, 125, 419-423.
– reference: M. Kind, C. Woll, Prog. Surf. Sci. 2009, 84, 230-278.
– reference: R. Ameloot, F. Vermoortele, J. Hofkens, F. C. De Schryver, D. E. De Vos, M. B. J. Roeffaers, Angew. Chem. Int. Ed. 2013, 52, 401-405;
– reference: K. M. Choi, H. J. Jeon, J. K. Kang, O. M. Yaghi, J. Am. Chem. Soc. 2011, 133, 11920-11923.
– reference: A. M. Walker, B. Slater, J. D. Gale, K. Wright, Nat. Mater. 2004, 3, 715-720.
– reference: M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J. M. Dieterich, T. Reimer, U. Kolb, D. de Vos, N. Stock, Angew. Chem. Int. Ed. 2012, 51, 10373-10376;
– reference: B. Bonelli, L. Forni, A. Aloise, J. B. Nagy, G. Fornasari, E. Garrone, A. Gedeon, G. Giordano, F. Trifirò, Microporous Mesoporous Mater. 2007, 101, 153-160.
– reference: M. Lalonde, W. Bury, O. Karagiaridi, Z. Brown, J. T. Hupp, O. K. Farha, J. Mater. Chem. A 2013, 1, 5453-5468.
– reference: A. D. Burrows, CrystEngComm 2011, 13, 3623-3642.
– reference: H. Noei, S. Amirjalayer, M. Müller, X. Zhang, R. Schmid, M. Muhler, R. A. Fischer, Y. Wang, ChemCatChem 2012, 4, 755-759.
– reference: S. Takamizawa, M. A. Kohbara, Dalton Trans. 2007, 3640-3645.
– reference: J. Čejka, A. Corma, S. Zones, Zeolites and Catalysis: Synthesis Reactions and Applications, Wiley-VCH, Weinheim, 2010.
– reference: R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810-6918.
– reference: J. C. Lavalley, Catal. Today 1996, 27, 377-401.
– reference: P. Ghosh, Y. J. Colón, R. Q. Snurr, Chem. Commun. 2014, 50, 11329-11331.
– reference: O. Ourdjini, R. Pawlak, M. Abel, S. Clair, L. Chen, N. Bergeon, M. Sassi, V. Oison, J.-M. Debierre, R. Coratger, L. Porte, Phys. Rev. B 2011, 84, 125421.
– reference: C. Chizallet, S. Lazare, D. Bazer-Bachi, F. Bonnier, V. Lecocq, E. Soyer, A.-A. Quoineaud, N. Bats, J. Am. Chem. Soc. 2010, 132, 12365-12377.
– reference: L. Alaerts, E. Séguin, H. Poelman, F. Thibault-Starzyk, P. A. Jacobs, D. E. De Vos, Chem. Eur. J. 2006, 12, 7353-7363.
– reference: Bulk Crystal Growth in Electronic, Optical and Optoelectronic Materials (Ed.: P. Capper), Wiley, New York, 2005.
– reference: M. Sánchez-Andújar, S. Presedo, S. Yáñez-Vilar, S. Castro-García, J. Shamir, M. A. Señarís-Rodríguez, Inorg. Chem. 2010, 49, 1510-1516.
– reference: S. Marx, W. Kleist, A. Baiker, J. Catal. 2011, 281, 76-87.
– reference: L. T. L. Nguyen, K. K. A. Le, H. X. Truong, N. T. S. Phan, Catal. Sci. Technol. 2012, 2, 521-528.
– reference: T. Li, M. T. Kozlowski, E. A. Doud, M. N. Blakely, N. L. Rosi, J. Am. Chem. Soc. 2013, 135, 11688-11691.
– reference: B. L. Huang, A. J. H. McGaughey, M. Kaviany, Int. J. Heat Mass Transfer 2007, 50, 393-404.
– reference: C. H. Hendon, D. Tiana, A. Walsh, Phys. Chem. Chem. Phys. 2012, 14, 13120-13132.
– reference: K. Leus, I. Muylaert, M. Vandichel, G. B. Marin, M. Waroquier, V. Van Speybroeck, P. Van Der Voort, Chem. Commun. 2010, 46, 5085-5087.
– reference: Angew. Chem. 2014, 126, 7178-7182.
– reference: S. Henke, A. Schneemann, A. Wuetscher, R. A. Fischer, J. Am. Chem. Soc. 2012, 134, 9464-9474.
– reference: L. Shen, S.-W. Yang, S. Xiang, T. Liu, B. Zhao, M.-F. Ng, J. Göettlicher, J. Yi, S. Li, L. Wang, J. Ding, B. Chen, S.-H. Wei, Y. P. Feng, J. Am. Chem. Soc. 2012, 134, 17286-17290.
– reference: C. K. Brozek, M. Dinca, J. Am. Chem. Soc. 2013, 135, 12886-12891.
– reference: S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka, S. Kitagawa, Chem. Mater. 2010, 22, 4531-4538.
– reference: S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334-2375;
– reference: Y. W. Li, R. T. Yang, J. Am. Chem. Soc. 2006, 128, 8136-8137.
– reference: V. Valtchev, E. Balanzat, V. Mavrodinova, I. Diaz, J. E. Fallah, J.-M. Goupil, J. Am. Chem. Soc. 2011, 133, 18950-18956.
– reference: Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis (Ed.: M. Schröder), Springer, Berlin, Heidelberg, 2010.
– reference: S. Gadipelli, Z. Guo, Chem. Mater. 2014, 26, 6333-6338.
– reference: S. Øien, D. Wragg, H. Reinsch, S. Svelle, S. Bordiga, C. Lamberti, K. P. Lillerud, Cryst. Growth Des. 2014, 14, 5370-5372.
– reference: B. Tu, Q. Pang, D. Wu, Y. Song, L. Weng, Q. Li, J. Am. Chem. Soc. 2014, 136, 14465-14471.
– reference: X. Q. Kong, H. Deng, F. Yan, J. Kim, J. A. Swisher, B. Smit, O. M. Yaghi, J. A. Reimer, Science 2013, 341, 882-885.
– reference: T. D. Bennett, A. K. Cheetham, Acc. Chem. Res. 2014, 47, 1555-1562.
– reference: S. H. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake, M. Schröder, Nat. Mater. 2012, 11, 710-716.
– reference: C. Baerlocher, D. Xie, L. B. McCusker, S.-J. Hwang, I. Y. Chan, K. Ong, A. W. Burton, S. I. Zones, Nat. Mater. 2008, 7, 631-635.
– reference: T. Barzetti, E. Selli, D. Moscotti, L. Forni, J. Chem. Soc. Faraday Trans. 1996, 92, 1401-1407.
– reference: Angew. Chem. 2014, 126, 4618-4628.
– reference: Angew. Chem. 2012, 124, 10519-10522.
– reference: F. Vermoortele, M. Vandichel, B. Van de Voorde, R. Ameloot, M. Waroquier, V. Van Speybroeck, D. E. De Vos, Angew. Chem. Int. Ed. 2012, 51, 4887-4890;
– reference: Angew. Chem. 2012, 124, 4971-4974.
– reference: Z. Q. Liang, M. O. Reese, B. A. Gregg, ACS Appl. Mater. Interfaces 2011, 3, 2042-2050.
– reference: T. H. Park, A. J. Hickman, K. Koh, S. Martin, A. G. Wong-Foy, M. S. Sanford, A. J. Matzger, J. Am. Chem. Soc. 2011, 133, 20138-20141.
– reference: A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Léonard, M. D. Allendorf, Science 2014, 343, 66-69.
– reference: M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330-1352.
– reference: R. A. Beyerlein, C. Choi-Feng, J. B. Hall, B. J. Huggins, G. J. Ray, Top. Catal. 1997, 4, 27-42.
– reference: M. J. Cliffe, W. Wan, X. Zou, P. A. Chater, A. K. Kleppe, M. G. Tucker, H. Wilhelm, N. P. Funnell, F.-X. Coudert, A. L. Goodwin, Nat. Commun. 2014, 5, 4176.
– reference: J. Hölsä, T. Laamanen, M. Lastusaari, P. Novák, J. Rare Earths 2011, 29, 1130-1136.
– reference: E. S. Božin, C. D. Malliakas, P. Souvatzis, T. Proffen, N. A. Spaldin, M. G. Kanatzidis, S. J. L. Billinge, Science 2010, 330, 1660-1663.
– reference: M. Ishizaki, M. Ishizaki, S. Akiba, A. Ohtani, Y. Hoshi, K. Ono, M. Matsuba, T. Togashi, K. Kananizuka, M. Sakamoto, A. Takahashi, T. Kawamoto, H. Tanaka, M. Watanabe, M. Arisaka, T. Nankawa, M. Kurihara, Dalton Trans. 2013, 42, 16049-16055.
– reference: S. Jakobsen, D. Gianolio, D. S. Wragg, M. H. Nilsen, H. Emerich, S. Bordiga, C. Lamberti, U. Olsbye, M. Tilset, K. P. Lillerud, Phys. Rev. B 2012, 86, 125429.
– reference: Angew. Chem. 2009, 121, 4833-4837.
– volume: 5
  start-page: 4176
  year: 2014
  publication-title: Nat. Commun.
– volume: 27
  start-page: 425
  year: 1985
  end-page: 460
  publication-title: Catal. Rev.
– volume: 42
  start-page: 4881
  year: 2013
  end-page: 4893
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 160
  year: 2014
  end-page: 166
  publication-title: Inorg. Chem.
– volume: 51 124
  start-page: 1885 1921
  year: 2012 2012
  end-page: 1889 1925
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2005
– volume: 18
  start-page: 15406
  year: 2012
  end-page: 15415
  publication-title: Chem. Eur. J.
– volume: 285
  start-page: 196
  year: 2012
  end-page: 207
  publication-title: J. Catal.
– volume: 3
  start-page: 2042
  year: 2011
  end-page: 2050
  publication-title: ACS Appl. Mater. Interfaces
– volume: 101
  start-page: 153
  year: 2007
  end-page: 160
  publication-title: Microporous Mesoporous Mater.
– volume: 136
  start-page: 9627
  year: 2014
  end-page: 9636
  publication-title: J. Am. Chem. Soc.
– volume: 53 126
  start-page: 7058 7178
  year: 2014 2014
  end-page: 7062 7182
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55
  start-page: 510
  year: 2001
  end-page: 516
  publication-title: Chimia
– volume: 3
  start-page: 715
  year: 2004
  end-page: 720
  publication-title: Nat. Mater.
– volume: 135
  start-page: 11688
  year: 2013
  end-page: 11691
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 755
  year: 2012
  end-page: 759
  publication-title: ChemCatChem
– volume: 51 124
  start-page: 9267 9401
  year: 2012 2012
  end-page: 9271 9405
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 17286
  year: 2012
  end-page: 17290
  publication-title: J. Am. Chem. Soc.
– volume: 129
  start-page: 15192
  year: 2007
  end-page: 15201
  publication-title: J. Am. Chem. Soc.
– volume: 52 125
  start-page: 401 419
  year: 2013 2013
  end-page: 405 423
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 1510
  year: 2010
  end-page: 1516
  publication-title: Inorg. Chem.
– volume: 95
  start-page: 2369
  year: 1995
  end-page: 2403
  publication-title: Chem. Rev.
– volume: 22
  start-page: 6632
  year: 2010
  end-page: 6640
  publication-title: Chem. Mater.
– volume: 29
  start-page: 1130
  year: 2011
  end-page: 1136
  publication-title: J. Rare Earths
– volume: 14
  start-page: 262
  year: 2010
  end-page: 268
  publication-title: Curr. Opin. Chem. Biol.
– volume: 26
  start-page: 4068
  year: 2014
  end-page: 4071
  publication-title: Chem. Mater.
– volume: 136
  start-page: 14465
  year: 2014
  end-page: 14471
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 464011
  year: 2011
  publication-title: J. Phys. D
– volume: 116
  start-page: 727
  year: 2008
  end-page: 731
  publication-title: Microporous Mesoporous Mater.
– volume: 26
  start-page: 310
  year: 2014
  end-page: 322
  publication-title: Chem. Mater.
– volume: 50
  start-page: 11329
  year: 2014
  end-page: 11331
  publication-title: Chem. Commun.
– volume: 341
  start-page: 882
  year: 2013
  end-page: 885
  publication-title: Science
– volume: 92
  start-page: 1401
  year: 1996
  end-page: 1407
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 135
  start-page: 10525
  year: 2013
  end-page: 10532
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 937
  year: 2008
  end-page: 940
  publication-title: New J. Chem.
– volume: 22
  start-page: 4531
  year: 2010
  end-page: 4538
  publication-title: Chem. Mater.
– volume: 50
  start-page: 10055
  year: 2014
  end-page: 10058
  publication-title: Chem. Commun.
– volume: 343
  start-page: 66
  year: 2014
  end-page: 69
  publication-title: Science
– volume: 86
  start-page: 144103
  year: 2012
  end-page: 144105
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 6643
  year: 2011
  end-page: 6665
  publication-title: Chem. Eur. J.
– volume: 53 126
  start-page: 4530 4618
  year: 2014 2014
  end-page: 4540 4628
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 80
  start-page: 113108
  year: 2009
  publication-title: Rev. Sci. Instrum.
– volume: 136
  start-page: 4369
  year: 2014
  end-page: 4381
  publication-title: J. Am. Chem. Soc.
– volume: 255
  start-page: 139
  year: 1998
  end-page: 152
  publication-title: J. Nucl. Mater.
– volume: 129
  start-page: 15997
  year: 2007
  end-page: 16004
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 9464
  year: 2012
  end-page: 9474
  publication-title: J. Am. Chem. Soc.
– year: 2010
– volume: 2
  start-page: 521
  year: 2012
  end-page: 528
  publication-title: Catal. Sci. Technol.
– volume: 133
  start-page: 15506
  year: 2011
  end-page: 15513
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 3623
  year: 2011
  end-page: 3642
  publication-title: CrystEngComm
– volume: 6
  start-page: 343
  year: 2014
  end-page: 351
  publication-title: Nat. Chem.
– volume: 114
  start-page: 14402
  year: 2010
  end-page: 14409
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 3206
  year: 2014
  end-page: 3210
  publication-title: J. Phys. Chem. Lett.
– volume: 86
  start-page: 125429
  year: 2012
  publication-title: Phys. Rev. B
– volume: 134
  start-page: 20110
  year: 2012
  end-page: 20116
  publication-title: J. Am. Chem. Soc.
– volume: 43 116
  start-page: 2334 2388
  year: 2004 2004
  end-page: 2375 2430
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51 124
  start-page: 10373 10519
  year: 2012 2012
  end-page: 10376 10522
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 393
  year: 2007
  end-page: 404
  publication-title: Int. J. Heat Mass Transfer
– volume: 84
  start-page: 230
  year: 2009
  end-page: 278
  publication-title: Prog. Surf. Sci.
– volume: 129
  start-page: 319
  year: 2010
  end-page: 329
  publication-title: Microporous Mesoporous Mater.
– volume: 5
  start-page: 4517
  year: 2014
  end-page: 4524
  publication-title: Chem. Sci.
– volume: 84
  start-page: 125421
  year: 2011
  publication-title: Phys. Rev. B
– volume: 330
  start-page: 1660
  year: 2010
  end-page: 1663
  publication-title: Science
– volume: 136
  start-page: 8859
  year: 2014
  end-page: 8862
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 1105
  year: 2012
  end-page: 1125
  publication-title: Chem. Rev.
– volume: 128
  start-page: 3218
  year: 2006
  end-page: 3227
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 1126
  year: 2012
  end-page: 1162
  publication-title: Chem. Rev.
– year: 2009
– volume: 23
  start-page: 1700
  year: 2011
  end-page: 1718
  publication-title: Chem. Mater.
– volume: 47 120
  start-page: 8525 8653
  year: 2008 2008
  end-page: 8528 8656
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 11465
  year: 2013
  end-page: 11468
  publication-title: J. Am. Chem. Soc.
– volume: 157
  start-page: 112
  year: 2012
  end-page: 117
  publication-title: Microporous Mesoporous Mater.
– volume: 131
  start-page: 1404
  year: 2009
  end-page: 1406
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 1555
  year: 2014
  end-page: 1562
  publication-title: Acc. Chem. Res.
– volume: 27
  start-page: 377
  year: 1996
  end-page: 401
  publication-title: Catal. Today
– volume: 110
  start-page: 4606
  year: 2010
  end-page: 4655
  publication-title: Chem. Rev.
– volume: 26
  start-page: 6333
  year: 2014
  end-page: 6338
  publication-title: Chem. Mater.
– volume: 281
  start-page: 76
  year: 2011
  end-page: 87
  publication-title: J. Catal.
– volume: 53
  start-page: 6914
  year: 2014
  end-page: 6919
  publication-title: Inorg. Chem.
– volume: 38
  start-page: 1330
  year: 2009
  end-page: 1352
  publication-title: Chem. Soc. Rev.
– volume: 133
  start-page: 11920
  year: 2011
  end-page: 11923
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 395
  year: 2015
  end-page: 406
  publication-title: CrystEngComm
– volume: 128
  start-page: 8136
  year: 2006
  end-page: 8137
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 6810
  year: 2011
  end-page: 6918
  publication-title: Chem. Rev.
– start-page: 3640
  year: 2007
  end-page: 3645
  publication-title: Dalton Trans.
– volume: 5
  start-page: 134
  year: 2006
  end-page: 140
  publication-title: Nat. Mater.
– volume: 51 124
  start-page: 4887 4971
  year: 2012 2012
  end-page: 4890 4974
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 631
  year: 2008
  end-page: 635
  publication-title: Nat. Mater.
– volume: 133
  start-page: 20138
  year: 2011
  end-page: 20141
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 18950
  year: 2011
  end-page: 18956
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 7353
  year: 2006
  end-page: 7363
  publication-title: Chem. Eur. J.
– volume: 19
  start-page: 818
  year: 2013
  end-page: 827
  publication-title: Chem. Eur. J.
– volume: 46
  start-page: 5085
  year: 2010
  end-page: 5087
  publication-title: Chem. Commun.
– volume: 327
  start-page: 846
  year: 2010
  end-page: 850
  publication-title: Science
– volume: 4
  start-page: 27
  year: 1997
  end-page: 42
  publication-title: Top. Catal.
– volume: 42
  start-page: 9232
  year: 2013
  end-page: 9242
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 5035
  year: 2009
  end-page: 5042
  publication-title: Cryst. Growth Des.
– volume: 42
  start-page: 16049
  year: 2013
  end-page: 16055
  publication-title: Dalton Trans.
– volume: 135
  start-page: 12886
  year: 2013
  end-page: 12891
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 13120
  year: 2012
  end-page: 13132
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 710
  year: 2012
  end-page: 716
  publication-title: Nat. Mater.
– volume: 48 121
  start-page: 4739 4833
  year: 2009 2009
  end-page: 4743 4837
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 5370
  year: 2014
  end-page: 5372
  publication-title: Cryst. Growth Des.
– volume: 45
  start-page: 1321
  year: 2012
  end-page: 1329
  publication-title: J. Appl. Crystallogr.
– volume: 22
  start-page: 1598
  year: 2010
  end-page: 1601
  publication-title: Adv. Mater.
– start-page: 4546
  year: 2013
  end-page: 4557
  publication-title: Eur. J. Inorg. Chem.
– volume: 134
  start-page: 18082
  year: 2012
  end-page: 18088
  publication-title: J. Am. Chem. Soc.
– year: 2003
– volume: 22
  start-page: 10313
  year: 2012
  end-page: 10321
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 2821
  year: 2014
  end-page: 2824
  publication-title: ChemCatChem
– volume: 87
  start-page: 6007
  year: 2000
  end-page: 6009
  publication-title: J. Appl. Phys.
– volume: 10
  start-page: 646
  year: 2008
  end-page: 648
  publication-title: CrystEngComm
– volume: 39 112
  start-page: 1506 1566
  year: 2000 2000
  end-page: 1510 1570
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 130
  start-page: 13516
  year: 2008
  end-page: 13517
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 405
  year: 2007
  end-page: 411
  publication-title: Int. J. Heat Mass Transfer
– volume: 19
  start-page: 5533
  year: 2013
  end-page: 5536
  publication-title: Chem. Eur. J.
– volume: 13
  start-page: 2025
  year: 2012
  end-page: 2029
  publication-title: ChemPhysChem
– volume: 1
  start-page: 5453
  year: 2013
  end-page: 5468
  publication-title: J. Mater. Chem. A
– start-page: 201
  year: 2011
  end-page: 244
– volume: 51 124
  start-page: 8791 8921
  year: 2012 2012
  end-page: 8795 8925
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 132
  start-page: 12365
  year: 2010
  end-page: 12377
  publication-title: J. Am. Chem. Soc.
– volume: 326
  start-page: 415
  year: 2009
  end-page: 417
  publication-title: Science
– volume: 5
  start-page: 1368
  year: 2014
  end-page: 1374
  publication-title: Chem. Sci.
– volume: 9
  start-page: 2676
  year: 2007
  end-page: 2685
  publication-title: Phys. Chem. Chem. Phys.
– volume: 134
  start-page: 588
  year: 2012
  end-page: 598
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 790
  year: 2008
  end-page: 791
  publication-title: CrystEngComm
– volume: 40
  start-page: 1081
  year: 2011
  end-page: 1106
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 126
  year: 2012
  end-page: 130
  publication-title: Chem. Sci.
– volume: 48
  start-page: 267
  year: 2009
  end-page: 276
  publication-title: Inorg. Chem.
– year: 1999
– ident: e_1_2_10_102_2
  doi: 10.1021/am200276x
– ident: e_1_2_10_53_3
  doi: 10.1002/ange.201204806
– ident: e_1_2_10_73_2
  doi: 10.1021/ja500330a
– ident: e_1_2_10_60_2
  doi: 10.1002/chem.201202261
– ident: e_1_2_10_31_2
  doi: 10.1039/c0ce00568a
– ident: e_1_2_10_127_2
  doi: 10.1021/ja403810k
– ident: e_1_2_10_36_2
  doi: 10.1038/nmat3343
– ident: e_1_2_10_15_2
  doi: 10.1016/j.cbpa.2009.12.012
– ident: e_1_2_10_47_2
  doi: 10.1002/cphc.201200222
– ident: e_1_2_10_91_3
  doi: 10.1002/ange.200901177
– ident: e_1_2_10_133_2
  doi: 10.1021/ja502765n
– ident: e_1_2_10_22_2
  doi: 10.1021/cm501859p
– ident: e_1_2_10_112_2
  doi: 10.1103/PhysRevB.86.125429
– ident: e_1_2_10_32_2
  doi: 10.1021/ic801734x
– ident: e_1_2_10_21_3
  doi: 10.1002/ange.201108565
– ident: e_1_2_10_18_2
  doi: 10.1016/j.micromeso.2008.04.033
– ident: e_1_2_10_131_2
  doi: 10.1039/c2cp41099k
– ident: e_1_2_10_121_2
  doi: 10.1088/0022-3727/44/46/464011
– ident: e_1_2_10_42_2
  doi: 10.1021/cr00039a005
– ident: e_1_2_10_84_2
  doi: 10.1039/c0cs00147c
– ident: e_1_2_10_5_2
  doi: 10.1126/science.1192759
– ident: e_1_2_10_106_2
  doi: 10.1039/ft9969201401
– ident: e_1_2_10_37_3
  doi: 10.1002/ange.201202925
– ident: e_1_2_10_24_2
  doi: 10.1021/ja503218j
– ident: e_1_2_10_98_2
  doi: 10.1021/ja0739887
– ident: e_1_2_10_34_2
  doi: 10.1021/ar5000314
– ident: e_1_2_10_6_2
  doi: 10.1038/nmat1560
– volume-title: Catalysis and Zeolites: Fundamentals and Applications
  year: 1999
  ident: e_1_2_10_95_2
– ident: e_1_2_10_17_3
  doi: 10.1002/ange.201205627
– ident: e_1_2_10_126_2
  doi: 10.1002/anie.201306923
– ident: e_1_2_10_25_2
  doi: 10.1021/ja802741b
– ident: e_1_2_10_61_2
  doi: 10.1002/adma.200903618
– ident: e_1_2_10_78_2
  doi: 10.1002/ejic.201300591
– ident: e_1_2_10_96_2
– ident: e_1_2_10_48_2
  doi: 10.1002/anie.201311128
– ident: e_1_2_10_79_3
  doi: 10.1002/ange.201204963
– ident: e_1_2_10_123_2
  doi: 10.1021/jz5012065
– ident: e_1_2_10_38_2
  doi: 10.1021/ic901872g
– ident: e_1_2_10_41_2
  doi: 10.1039/c3sc52666f
– ident: e_1_2_10_37_2
  doi: 10.1002/anie.201202925
– ident: e_1_2_10_59_2
  doi: 10.1021/ic500722n
– ident: e_1_2_10_100_3
  doi: 10.1002/ange.201108462
– ident: e_1_2_10_8_2
  doi: 10.1016/j.micromeso.2006.11.006
– ident: e_1_2_10_113_2
  doi: 10.1039/c3cs60232j
– ident: e_1_2_10_7_2
  doi: 10.1023/A:1019188105794
– ident: e_1_2_10_10_2
  doi: 10.1002/anie.200300610
– ident: e_1_2_10_107_2
  doi: 10.1021/ja056906s
– ident: e_1_2_10_126_3
  doi: 10.1002/ange.201306923
– ident: e_1_2_10_97_2
  doi: 10.1002/9783527630295
– ident: e_1_2_10_64_2
  doi: 10.1016/j.micromeso.2011.12.058
– ident: e_1_2_10_94_2
  doi: 10.1021/cr200077m
– ident: e_1_2_10_103_2
  doi: 10.1021/ja8048767
– ident: e_1_2_10_30_2
  doi: 10.1021/cm402136z
– ident: e_1_2_10_52_3
  doi: 10.1002/ange.200803460
– volume-title: Functional Metal‐Organic Frameworks: Gas Storage, Separation and Catalysis
  year: 2010
  ident: e_1_2_10_13_2
– ident: e_1_2_10_4_2
  doi: 10.1126/science.1177582
– ident: e_1_2_10_104_2
  doi: 10.1016/0920-5861(95)00161-1
– ident: e_1_2_10_122_2
  doi: 10.1021/jp104441d
– volume-title: Coordination Polymers: Design, Analysis and Application
  year: 2009
  ident: e_1_2_10_12_2
– ident: e_1_2_10_93_2
  doi: 10.1002/chem.201003211
– volume-title: Electronic and Optoelectronic Properties of Semiconductor Structures
  year: 2003
  ident: e_1_2_10_3_2
– ident: e_1_2_10_66_2
  doi: 10.1021/ja204818q
– ident: e_1_2_10_63_2
  doi: 10.1039/b803953b
– ident: e_1_2_10_118_2
  doi: 10.1063/1.372595
– ident: e_1_2_10_132_2
  doi: 10.1126/science.1246738
– ident: e_1_2_10_9_2
  doi: 10.1038/nmat2228
– ident: e_1_2_10_45_3
  doi: 10.1002/(SICI)1521-3757(20000417)112:8<1566::AID-ANGE1566>3.0.CO;2-9
– ident: e_1_2_10_120_2
  doi: 10.1021/ja208140f
– ident: e_1_2_10_43_2
  doi: 10.1038/nmat1213
– ident: e_1_2_10_55_2
  doi: 10.1021/ja5063423
– ident: e_1_2_10_92_2
  doi: 10.1021/cm101778g
– ident: e_1_2_10_105_2
  doi: 10.1080/01614948508064741
– ident: e_1_2_10_114_2
  doi: 10.1021/cr200101d
– ident: e_1_2_10_116_2
  doi: 10.1016/S1002-0721(10)60611-4
– ident: e_1_2_10_124_2
  doi: 10.1021/ja3079219
– ident: e_1_2_10_68_2
  doi: 10.1016/j.ijheatmasstransfer.2006.10.001
– volume-title: Bulk Crystal Growth in Electronic, Optical and Optoelectronic Materials
  year: 2005
  ident: e_1_2_10_2_2
– ident: e_1_2_10_87_2
  doi: 10.1126/science.1238339
– ident: e_1_2_10_23_2
  doi: 10.1038/ncomms5176
– ident: e_1_2_10_46_2
  doi: 10.1021/ja405078u
– ident: e_1_2_10_130_2
  doi: 10.1002/chem.201300326
– ident: e_1_2_10_17_2
  doi: 10.1002/anie.201205627
– ident: e_1_2_10_27_2
  doi: 10.1021/ja3085884
– ident: e_1_2_10_11_2
  doi: 10.1039/C4CS90059F
– ident: e_1_2_10_125_2
  doi: 10.1039/C1SC00394A
– ident: e_1_2_10_29_2
  doi: 10.1039/c3cs35524a
– ident: e_1_2_10_67_2
  doi: 10.1016/j.ijheatmasstransfer.2006.10.002
– ident: e_1_2_10_44_2
  doi: 10.1039/b718890k
– ident: e_1_2_10_119_2
  doi: 10.1107/S0021889812043026
– ident: e_1_2_10_88_2
  doi: 10.1126/science.1181761
– ident: e_1_2_10_129_2
  doi: 10.1039/c3ta10784a
– ident: e_1_2_10_110_2
  doi: 10.1063/1.3257677
– ident: e_1_2_10_53_2
  doi: 10.1002/anie.201204806
– ident: e_1_2_10_51_2
  doi: 10.1039/C4CE01672F
– ident: e_1_2_10_33_2
  doi: 10.1039/b704977c
– ident: e_1_2_10_69_2
  doi: 10.1021/cm502399q
– ident: e_1_2_10_77_2
  doi: 10.1016/j.jcat.2011.09.014
– ident: e_1_2_10_20_2
  doi: 10.1016/j.micromeso.2009.06.008
– ident: e_1_2_10_72_2
  doi: 10.1039/C4CC03764B
– ident: e_1_2_10_28_2
  doi: 10.1016/j.jcat.2011.04.004
– ident: e_1_2_10_80_2
  doi: 10.1021/ja3077654
– ident: e_1_2_10_128_2
  doi: 10.1021/ja4064475
– ident: e_1_2_10_16_2
  doi: 10.1021/cr9003924
– ident: e_1_2_10_62_2
  doi: 10.1021/ja0752336
– ident: e_1_2_10_71_2
  doi: 10.1039/C4CC04945D
– ident: e_1_2_10_89_2
  doi: 10.1021/ja302991b
– ident: e_1_2_10_56_2
  doi: 10.1039/b802158a
– ident: e_1_2_10_82_2
  doi: 10.1021/cg900987r
– ident: e_1_2_10_85_2
  doi: 10.1016/j.progsurf.2009.06.001
– ident: e_1_2_10_115_2
  doi: 10.1039/b802352m
– ident: e_1_2_10_45_2
  doi: 10.1002/(SICI)1521-3773(20000417)39:8<1506::AID-ANIE1506>3.0.CO;2-U
– ident: e_1_2_10_117_2
  doi: 10.1016/S0022-3115(98)00034-8
– ident: e_1_2_10_86_2
  doi: 10.1002/chem.201203145
– ident: e_1_2_10_74_2
  doi: 10.1021/ja103365s
– ident: e_1_2_10_83_2
  doi: 10.1021/ic402614w
– ident: e_1_2_10_101_2
  doi: 10.1021/ja209156v
– ident: e_1_2_10_39_2
  doi: 10.1103/PhysRevB.86.104113
– ident: e_1_2_10_48_3
  doi: 10.1002/ange.201311128
– ident: e_1_2_10_81_2
  doi: 10.1039/c3dt51637g
– ident: e_1_2_10_50_2
  doi: 10.1039/C4SC01731E
– ident: e_1_2_10_79_2
  doi: 10.1002/anie.201204963
– ident: e_1_2_10_90_2
  doi: 10.1021/ja204233q
– ident: e_1_2_10_65_2
  doi: 10.1021/ja2094316
– volume: 55
  start-page: 510
  year: 2001
  ident: e_1_2_10_35_2
  publication-title: Chimia
  doi: 10.2533/chimia.2001.510
– ident: e_1_2_10_58_2
  doi: 10.1002/cctc.201402411
– ident: e_1_2_10_109_2
  doi: 10.1002/cctc.201200164
– ident: e_1_2_10_26_2
  doi: 10.1021/ja061681m
– ident: e_1_2_10_70_2
  doi: 10.1021/cg501386j
– ident: e_1_2_10_100_2
  doi: 10.1002/anie.201108462
– ident: e_1_2_10_14_2
  doi: 10.1021/cr200324t
– ident: e_1_2_10_40_2
  doi: 10.1038/nchem.1871
– ident: e_1_2_10_76_2
  doi: 10.1039/c0cc01506g
– ident: e_1_2_10_10_3
  doi: 10.1002/ange.200300610
– ident: e_1_2_10_91_2
  doi: 10.1002/anie.200901177
– ident: e_1_2_10_108_2
  doi: 10.1002/chem.200600220
– ident: e_1_2_10_1_2
  doi: 10.1007/978-3-642-10500-5
– ident: e_1_2_10_99_2
  doi: 10.1103/PhysRevB.84.125421
– ident: e_1_2_10_111_2
  doi: 10.1021/cm102601v
– ident: e_1_2_10_19_2
  doi: 10.1021/ja404514r
– ident: e_1_2_10_57_2
  doi: 10.1039/b703643d
– ident: e_1_2_10_21_2
  doi: 10.1002/anie.201108565
– ident: e_1_2_10_75_2
  doi: 10.1039/c1cy00386k
– ident: e_1_2_10_52_2
  doi: 10.1002/anie.200803460
– ident: e_1_2_10_54_2
  doi: 10.1021/cm1022882
– ident: e_1_2_10_49_2
  doi: 10.1039/c2jm16030g
– reference: 24328288 - Inorg Chem. 2014 Jan 6;53(1):160-6
– reference: 22488675 - Angew Chem Int Ed Engl. 2012 May 14;51(20):4887-90
– reference: 16522102 - J Am Chem Soc. 2006 Mar 15;128(10):3218-27
– reference: 23009199 - J Am Chem Soc. 2012 Oct 17;134(41):17286-90
– reference: 21604784 - ACS Appl Mater Interfaces. 2011 Jun;3(6):2042-50
– reference: 23055448 - Chemistry. 2012 Nov 26;18(48):15406-15
– reference: 22887718 - Angew Chem Int Ed Engl. 2012 Sep 10;51(37):9267-71
– reference: 22976879 - Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10373-6
– reference: 23945598 - Dalton Trans. 2013 Dec 7;42(45):16049-55
– reference: 17700826 - Dalton Trans. 2007 Sep 7;(33):3640-5
– reference: 22807234 - Angew Chem Int Ed Engl. 2012 Aug 27;51(35):8791-5
– reference: 24903856 - Inorg Chem. 2014 Jul 7;53(13):6914-9
– reference: 21547962 - Chemistry. 2011 Jun 6;17(24):6643-51
– reference: 22070233 - Chem Rev. 2012 Feb 8;112(2):1105-25
– reference: 10777657 - Angew Chem Int Ed Engl. 2000 Apr;39(8):1506-1510
– reference: 21164012 - Science. 2010 Dec 17;330(6011):1660-3
– reference: 17999502 - J Am Chem Soc. 2007 Dec 12;129(49):15192-201
– reference: 24652755 - Angew Chem Int Ed Engl. 2014 Apr 25;53(18):4530-40
– reference: 20359232 - Chem Rev. 2010 Aug 11;110(8):4606-55
– reference: 21688849 - Chem Rev. 2012 Feb 8;112(2):1126-62
– reference: 23495187 - Chemistry. 2013 Apr 26;19(18):5533-6
– reference: 21749096 - J Am Chem Soc. 2011 Aug 10;133(31):11920-3
– reference: 26276333 - J Phys Chem Lett. 2014 Sep 18;5(18):3206-10
– reference: 19947718 - Rev Sci Instrum. 2009 Nov;80(11):113108
– reference: 18044895 - J Am Chem Soc. 2007 Dec 26;129(51):15997-6004
– reference: 19472244 - Angew Chem Int Ed Engl. 2009;48(26):4739-43
– reference: 18800795 - J Am Chem Soc. 2008 Oct 15;130(41):13516-7
– reference: 22575013 - J Am Chem Soc. 2012 Jun 6;134(22):9464-74
– reference: 16415875 - Nat Mater. 2006 Feb;5(2):134-40
– reference: 24838592 - Angew Chem Int Ed Engl. 2014 Jul 1;53(27):7058-62
– reference: 19046076 - Inorg Chem. 2009 Jan 5;48(1):267-76
– reference: 23808838 - J Am Chem Soc. 2013 Jul 17;135(28):10525-32
– reference: 20095567 - Inorg Chem. 2010 Feb 15;49(4):1510-6
– reference: 23039827 - J Am Chem Soc. 2012 Oct 31;134(43):18082-8
– reference: 23688075 - J Am Chem Soc. 2013 Aug 14;135(32):11688-91
– reference: 22249947 - Angew Chem Int Ed Engl. 2012 Feb 20;51(8):1885-9
– reference: 16787068 - J Am Chem Soc. 2006 Jun 28;128(25):8136-7
– reference: 15359343 - Nat Mater. 2004 Oct;3(10):715-20
– reference: 16881030 - Chemistry. 2006 Sep 25;12(28):7353-63
– reference: 23887875 - Science. 2013 Aug 23;341(6148):882-5
– reference: 23471316 - Chem Soc Rev. 2013 Jun 21;42(12):4881-93
– reference: 20071210 - Curr Opin Chem Biol. 2010 Apr;14(2):262-8
– reference: 22517762 - Chemphyschem. 2012 Jun 4;13(8):2025-9
– reference: 15114565 - Angew Chem Int Ed Engl. 2004 Apr 26;43(18):2334-75
– reference: 20496387 - Adv Mater. 2010 Apr 12;22(14):1598-601
– reference: 24707980 - Acc Chem Res. 2014 May 20;47(5):1555-62
– reference: 20715825 - J Am Chem Soc. 2010 Sep 8;132(35):12365-77
– reference: 24915512 - J Am Chem Soc. 2014 Jul 9;136(27):9627-36
– reference: 23875753 - J Am Chem Soc. 2013 Aug 7;135(31):11465-8
– reference: 22122560 - J Am Chem Soc. 2011 Dec 21;133(50):20138-41
– reference: 23902330 - J Am Chem Soc. 2013 Aug 28;135(34):12886-91
– reference: 22660661 - Nat Mater. 2012 Jun 03;11(8):710-6
– reference: 24588307 - J Am Chem Soc. 2014 Mar 19;136(11):4369-81
– reference: 18846529 - Angew Chem Int Ed Engl. 2008;47(44):8525-8
– reference: 23143805 - Angew Chem Int Ed Engl. 2013 Jan 2;52(1):401-5
– reference: 19384441 - Chem Soc Rev. 2009 May;38(5):1330-52
– reference: 25116653 - Chem Commun (Camb). 2014 Oct 7;50(77):11329-31
– reference: 22858739 - Phys Chem Chem Phys. 2012 Oct 14;14(38):13120-32
– reference: 23157426 - J Am Chem Soc. 2012 Dec 12;134(49):20110-6
– reference: 19729619 - Science. 2009 Oct 16;326(5951):415-7
– reference: 24946837 - Nat Commun. 2014 Jun 20;5:4176
– reference: 22080843 - J Am Chem Soc. 2012 Jan 11;134(1):588-98
– reference: 21225034 - Chem Soc Rev. 2011 Feb;40(2):1081-106
– reference: 25229624 - J Am Chem Soc. 2014 Oct 15;136(41):14465-71
– reference: 17627311 - Phys Chem Chem Phys. 2007 Jun 7;9(21):2676-85
– reference: 21995563 - J Am Chem Soc. 2011 Nov 23;133(46):18950-6
– reference: 23280516 - Chemistry. 2013 Jan 14;19(3):818-27
– reference: 21861521 - J Am Chem Soc. 2011 Oct 5;133(39):15506-13
– reference: 19140765 - J Am Chem Soc. 2009 Feb 4;131(4):1404-6
– reference: 20150497 - Science. 2010 Feb 12;327(5967):846-50
– reference: 24651203 - Nat Chem. 2014 Apr;6(4):343-51
– reference: 20563337 - Chem Commun (Camb). 2010 Jul 28;46(28):5085-7
– reference: 18622404 - Nat Mater. 2008 Aug;7(8):631-5
– reference: 24310609 - Science. 2014 Jan 3;343(6166):66-9
– reference: 21863792 - Chem Rev. 2011 Nov 9;111(11):6810-918
– reference: 24077361 - Chem Soc Rev. 2013 Dec 21;42(24):9232-42
– reference: 25036867 - Chem Commun (Camb). 2014 Sep 11;50(70):10055-8
– reference: 24750124 - J Am Chem Soc. 2014 Jun 25;136(25):8859-62
SSID ssj0028806
Score 2.6662447
Snippet Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in...
Defect engineering in metal-organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7234
SubjectTerms Catalysis
Classification
Computer numerical control
coordination chemistry
Crystal defects
Crystal structure
Defects
defects engineering
Electrically conductive
heterogeneity
Metal-organic frameworks
Networks
Physical properties
porous materials
Review
Zeolites
Title Defect-Engineered Metal-Organic Frameworks
URI https://api.istex.fr/ark:/67375/WNG-6GXMSJMZ-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201411540
https://www.ncbi.nlm.nih.gov/pubmed/26036179
https://www.proquest.com/docview/1689826462
https://www.proquest.com/docview/1690650234
https://www.proquest.com/docview/1744679006
https://pubmed.ncbi.nlm.nih.gov/PMC4510710
Volume 54
WOSCitedRecordID wos000356390300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-kJ-iL1q8abcsJok-xye5mk30sba8qveNQi4cvy34dFiWVu1Z87J8g9D_sX9KZ5LL28As0DyFhJ5DMzu7-JjvzG4CnuCblKvgi9QheU1GZLDWlt6nPHJOhsIjAG57Zg3I0qiYTNb6Sxd_yQ8QfbjQymvmaBrix860fpKGUgU2hWYIIZdBp7-U5r6h4AxPj6HKhdbb5RZynVIa-o23M2Nby80vLUo80_O1XmPPn0MmrkLZZkwa3__9rVuHWAo_2t1sDugPXQn0Xbux0ZeDuwYvdQBEfF2ffO-rC4PvDgJj94uy8zeR0_UEX4jW_D4eDvXc7L9NFkYXUEVVeKq10IqCmBO2zOJsbqlvDWJCm8giOpgIBB2KAwmMDlzwzuObbTCpZTCW3jj-Alfq4Dg-hz6gYJboglXNW4KHY1IspZ8ZYW6jKJ5B2OtZuwUBOhTA-65Y7mWnSgo5aSOB5lP_Scm_8VvJZ02VRzMw-UcRaWej3o30t9yfDt6-HH_Q4gfWuT_VisM51LiuFXpaQLIEnsRnVTHsnpg7HpySjCMwyLv4gU6JvXSqcxxJYa80kvhC6jRzBokqgXDKgKEA038st9dHHhu5b4LSJODAB1hjQX1Sht0ev9uLdo3956DHcxOuCAuLyYh1WTmanYQOuu68nR_PZZjPA8FxOqk3o7b4ZHB5cAouKJlc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hFqlceD8CBRYJwck0aztOfKxKty3sRitRxIqL5dheUYFStNsijv0JSPzD_hJm8jCseEmI3BJPpGQ89nxjj78BeIw-aaiDz5hH8MpkYVNmc18xnzquQlYhAm94Zsd5WRazmZ522YR0Fqblh4gLbjQymvmaBjgtSG99Zw2lI9iUmyWJUQaj9nWJroZMnctpjLnQPNsDRkIwqkPf8zamfGv1_RW_tE4q_vwr0Plz7uSPmLZxSqMr_-F3rsLlDpEOtlsTugYXQn0dNnb6QnA34NnzQDkf52dfevLC4AeTgKj9_Oxre5bTDUZ9ktfyJrwe7R7u7LOuzAJzRJbHVKWcDKgqSTstrhpaqlzDeVC28AiP5hIhB6KAzGODUCK16PWrVGmVzZWonLgFa_VxHe7AgFM5SgxCCucqiZfmcy_ngltbVZkufAKsV7JxHQc5lcL4YFr2ZG5ICyZqIYGnUf5jy77xW8knTZ9FMbt4TzlreWbelHtG7c0mr15M3pppApt9p5puuC7NUBUa4yypeAKPYjOqmXZPbB2OT0lGE5zlQv5BJsfoOtc4kyVwu7WT-EEYOAqEizqBfMWCogARfa-21EfvGsJviRMnIsEEeGNBf1GF2S4PduPd3X956SFs7B9OxmZ8UL68B5fweUbpccNsE9ZOFqfhPlx0n06OlosHzWj7Bu_WJ7o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXQRceD8CBRYJwck06zhOfKy6TSnsRiugYsXFSmxHVKC02m0Rx_4EJP5hfwkzeRhWvCREboknUTIe29_EM98APMY1aaycjZlF8MpEWoSsSGzJbGi4dHGJCLzhmZ0meZ4uFmreRRNSLkzLD-F_uNHIaOZrGuDuyFab31lDKQWbYrMEMcqg1z4UVElmAMPJq2x_6r0uNNA2xSiKGFWi75kbQ765_oS1lWlISv78K9j5c_Tkj6i2WZayK__hg67C5Q6TjrZaI7oG51x9HS5u96XgbsCziaOoj7PTLz19obOjmUPcfnb6tc3mNKOsD_Na3YT9bOfN9nPWFVpghujymCylEQ5VJWivxZTjgmrXcO5kkVoESJVA0IE4ILbYEMkoLHDdL0OpZFzJqDTRLRjUh7W7AyNOBSnRDUmNKQUeildWVBEvirKMVWoDYL2StelYyKkYxkfd8idzTVrQXgsBPPXyRy3_xm8lnzR95sWK5QeKWkti_Tbf1XJ3MXv9YvZOzwPY6DtVdwN2pccyVehpCckDeOSbUc20f1LU7vCEZBQBWh6JP8gk6F8nCueyAG63duJfCF3HCAGjCiBZsyAvQFTf6y31wfuG8lvg1IlYMADeWNBfVKG38r0df3b3X256CBfmk0xP9_KX9-ASXo4pPm4cb8DgeHni7sN58-n4YLV80A23b6oJKNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect-Engineered+Metal-Organic+Frameworks&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Fang%2C+Zhenlan&rft.au=Bueken%2C+Bart&rft.au=De+Vos%2C+Dirk+E&rft.au=Fischer%2C+Roland+A&rft.date=2015-06-15&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=54&rft.issue=25&rft.spage=7234&rft_id=info:doi/10.1002%2Fanie.201411540&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon