PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells

Single-cell RNA-seq quantifies biological heterogeneity across both discrete cell types and continuous cell transitions. Partition-based graph abstraction (PAGA) provides an interpretable graph-like map of the arising data manifold, based on estimating connectivity of manifold partitions ( https://g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology Jg. 20; H. 1; S. 59
Hauptverfasser: Wolf, F. Alexander, Hamey, Fiona K., Plass, Mireya, Solana, Jordi, Dahlin, Joakim S., Göttgens, Berthold, Rajewsky, Nikolaus, Simon, Lukas, Theis, Fabian J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 19.03.2019
Springer Nature B.V
BMC
Schlagworte:
ISSN:1474-760X, 1474-7596, 1474-760X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-cell RNA-seq quantifies biological heterogeneity across both discrete cell types and continuous cell transitions. Partition-based graph abstraction (PAGA) provides an interpretable graph-like map of the arising data manifold, based on estimating connectivity of manifold partitions ( https://github.com/theislab/paga ). PAGA maps preserve the global topology of data, allow analyzing data at different resolutions, and result in much higher computational efficiency of the typical exploratory data analysis workflow. We demonstrate the method by inferring structure-rich cell maps with consistent topology across four hematopoietic datasets, adult planaria and the zebrafish embryo and benchmark computational performance on one million neurons.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-019-1663-x