Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors 1 – 4 , followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are...
Uložené v:
| Vydané v: | Nature (London) Ročník 588; číslo 7837; s. 327 - 330 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
10.12.2020
Nature Publishing Group |
| Predmet: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors
1
–
4
, followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein
5
–
7
. As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage
8
–
10
. Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2′), cleavage of which is required for the release of the fusion peptide
11
,
12
. Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp614
13
–
15
and leads to the destabilization of the structure of S2 proximal to the secondary (S2′) cleavage site.
Cryo-electron microscopy structures of consecutive binding events of ACE2 in complex with the spike protein of SARS-CoV-2 reveal the mechanisms of receptor binding by the spike protein and activation for membrane fusion by the spike protein of SARS-CoV-2. |
|---|---|
| AbstractList | Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors.sup.1-4, followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein.sup.5-7. As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage.sup.8-10. Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2'), cleavage of which is required for the release of the fusion peptide.sup.11,12. Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp614.sup.13-15 and leads to the destabilization of the structure of S2 proximal to the secondary (S2') cleavage site. Cryo-electron microscopy structures of consecutive binding events of ACE2 in complex with the spike protein of SARS-CoV-2 reveal the mechanisms of receptor binding by the spike protein and activation for membrane fusion by the spike protein of SARS-CoV-2. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors1-4, followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein5-7. As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage8-10. Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2'), cleavage of which is required for the release of the fusion peptide11,12. Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp61413-15 and leads to the destabilization of the structure of S2 proximal to the secondary (S2') cleavage site.Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors1-4, followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein5-7. As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage8-10. Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2'), cleavage of which is required for the release of the fusion peptide11,12. Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp61413-15 and leads to the destabilization of the structure of S2 proximal to the secondary (S2') cleavage site. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors 1 – 4 , followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein 5 – 7 . As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage 8 – 10 . Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2′), cleavage of which is required for the release of the fusion peptide 11 , 12 . Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp614 13 – 15 and leads to the destabilization of the structure of S2 proximal to the secondary (S2′) cleavage site. Cryo-electron microscopy structures of consecutive binding events of ACE2 in complex with the spike protein of SARS-CoV-2 reveal the mechanisms of receptor binding by the spike protein and activation for membrane fusion by the spike protein of SARS-CoV-2. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors.sup.1-4, followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein.sup.5-7. As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage.sup.8-10. Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2'), cleavage of which is required for the release of the fusion peptide.sup.11,12. Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp614.sup.13-15 and leads to the destabilization of the structure of S2 proximal to the secondary (S2') cleavage site. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors , followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein . As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage . Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2'), cleavage of which is required for the release of the fusion peptide . Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp614 and leads to the destabilization of the structure of S2 proximal to the secondary (S2') cleavage site. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors1–4, followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein5–7. As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage8–10. Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2′), cleavage of which is required for the release of the fusion peptide11,12. Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp61413–15 and leads to the destabilization of the structure of S2 proximal to the secondary (S2′) cleavage site. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors1-4, followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein5-7. As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage8-10. Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2'), cleavage of which is required for the release ofthe fusion peptide11,12. Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp61413-15 and leads to the destabilization ofthe structure of S2 proximal to the secondary (S2') cleavage site. |
| Audience | Academic |
| Author | Xu, Pengqi Rosenthal, Peter B. Benton, Donald J. Roustan, Chloë Skehel, John J. Martin, Stephen R. Gamblin, Steven J. Wrobel, Antoni G. |
| AuthorAffiliation | 1 Strutural Biology of Disease Processes Laboratory, Francis Crick Institute, London, UK 4 Structural Biology Science Technology Platform, Francis Crick Institute, London, UK 2 Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China 3 Francis Crick Institute, London, Uk 5 Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, UK |
| AuthorAffiliation_xml | – name: 2 Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China – name: 3 Francis Crick Institute, London, Uk – name: 4 Structural Biology Science Technology Platform, Francis Crick Institute, London, UK – name: 1 Strutural Biology of Disease Processes Laboratory, Francis Crick Institute, London, UK – name: 5 Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, UK |
| Author_xml | – sequence: 1 givenname: Donald J. orcidid: 0000-0001-6748-9339 surname: Benton fullname: Benton, Donald J. email: donald.benton@crick.ac.uk organization: Strutural Biology of Disease Processes Laboratory, Francis Crick Institute – sequence: 2 givenname: Antoni G. orcidid: 0000-0002-6680-5587 surname: Wrobel fullname: Wrobel, Antoni G. email: antoni.wrobel@crick.ac.uk organization: Strutural Biology of Disease Processes Laboratory, Francis Crick Institute – sequence: 3 givenname: Pengqi surname: Xu fullname: Xu, Pengqi organization: Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Francis Crick Institute – sequence: 4 givenname: Chloë surname: Roustan fullname: Roustan, Chloë organization: Structural Biology Science Technology Platform, Francis Crick Institute – sequence: 5 givenname: Stephen R. surname: Martin fullname: Martin, Stephen R. organization: Strutural Biology of Disease Processes Laboratory, Francis Crick Institute – sequence: 6 givenname: Peter B. orcidid: 0000-0002-0387-2862 surname: Rosenthal fullname: Rosenthal, Peter B. organization: Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute – sequence: 7 givenname: John J. surname: Skehel fullname: Skehel, John J. organization: Strutural Biology of Disease Processes Laboratory, Francis Crick Institute – sequence: 8 givenname: Steven J. orcidid: 0000-0001-5331-639X surname: Gamblin fullname: Gamblin, Steven J. email: steve.gamblin@crick.ac.uk organization: Strutural Biology of Disease Processes Laboratory, Francis Crick Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32942285$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhS1URKeFH8AGRbABoRTHj9jZII1GPCpVIM0UWFoe5zp1SexpnCD49zia0naqKfLC1vV3jn11zxE68MEDQs8LfFJgKt9FVnBZ5pjgnAhBcvwIzQomypyVUhygGcZE5ljS8hAdxXiJMeaFYE_QISUVI0TyGVotwcBmCH22dr52vsm0r7NN77rpHGw2XEAWN-4npGIYwPmpuJovV_kifM9JZpO0g27daw-ZHaML_il6bHUb4dn1foy-ffxwvvicn339dLqYn-VGUDnknGtcSUqZNBivsSFMcKvLCjQuRcVrbDVdG8ttBXWhAVtBdcEI10BxTaWlx-j91nczrjuoDfih162aPq_7Pypop3ZvvLtQTfilRFGUgohk8PraoA9XI8RBdS4aaNvUSxijIowxKjkVE_rqHnoZxt6n9hIlKGMCE3pLNboF5bwN6V0zmap5ySrOeClwovI9VAMe0ifThK1L5R3-5R7ebNyVugud7IHSqqFzZq_rmx1BYgb4PTR6jFGdrpa77NuH2fn5j8WXXfrF3bncDORf6hJQbAHThxh7sDdIgdWUbLVNtkrJVlOy1WQq7mmMG_SQ4pb6dO1_lWSrjOkV30B_O7qHRX8BhlMGhw |
| CitedBy_id | crossref_primary_10_1002_cnma_202400614 crossref_primary_10_1371_journal_ppat_1010583 crossref_primary_10_3390_v13061126 crossref_primary_10_1093_abt_tbab015 crossref_primary_10_3390_ijms22168963 crossref_primary_10_1038_s41467_022_28768_w crossref_primary_10_3390_v14051092 crossref_primary_10_3390_pr8121539 crossref_primary_10_15252_embr_202154199 crossref_primary_10_1016_j_csbj_2024_05_037 crossref_primary_10_1080_17460441_2021_1960819 crossref_primary_10_1038_s42003_025_08514_w crossref_primary_10_1371_journal_ppat_1011788 crossref_primary_10_1371_journal_ppat_1012757 crossref_primary_10_3389_fcvm_2021_619690 crossref_primary_10_1038_s41565_025_01908_1 crossref_primary_10_1128_jvi_00416_24 crossref_primary_10_1002_mas_21813 crossref_primary_10_3389_fimmu_2022_836232 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_3389_fimmu_2021_729837 crossref_primary_10_3390_v12111289 crossref_primary_10_1038_s41598_021_96950_z crossref_primary_10_1080_17460441_2023_2218083 crossref_primary_10_1002_jmv_29163 crossref_primary_10_1016_j_ejmech_2023_115118 crossref_primary_10_1038_s41586_024_08121_5 crossref_primary_10_3389_fvets_2021_719834 crossref_primary_10_3390_molecules27061882 crossref_primary_10_1128_spectrum_01213_22 crossref_primary_10_1016_j_carbon_2023_118058 crossref_primary_10_1016_j_talanta_2024_125994 crossref_primary_10_3389_fsens_2022_917380 crossref_primary_10_1016_j_chembiol_2023_09_009 crossref_primary_10_1016_j_virs_2023_06_005 crossref_primary_10_1038_s41579_022_00841_7 crossref_primary_10_3390_vaccines11020204 crossref_primary_10_3390_biochem2020009 crossref_primary_10_1016_j_jbc_2021_100375 crossref_primary_10_3390_microorganisms9071542 crossref_primary_10_1097_COH_0000000000000658 crossref_primary_10_1371_journal_ppat_1010799 crossref_primary_10_1002_advs_202301478 crossref_primary_10_1126_scitranslmed_adf4100 crossref_primary_10_1038_s41594_024_01295_6 crossref_primary_10_3390_v15102073 crossref_primary_10_1002_tbio_202100008 crossref_primary_10_1016_j_jinf_2023_01_010 crossref_primary_10_1007_s00284_023_03315_y crossref_primary_10_3389_fmicb_2021_675528 crossref_primary_10_3390_ijms26010151 crossref_primary_10_1016_j_phymed_2024_155582 crossref_primary_10_1038_s41467_022_31300_9 crossref_primary_10_3389_fphar_2022_955648 crossref_primary_10_1103_PhysRevE_111_024408 crossref_primary_10_1038_s41557_021_00707_0 crossref_primary_10_1016_j_virol_2025_110467 crossref_primary_10_1016_j_ijid_2021_07_015 crossref_primary_10_1038_s41467_021_27881_6 crossref_primary_10_3389_fimmu_2024_1383612 crossref_primary_10_1111_cmi_13319 crossref_primary_10_3103_S0096392523700153 crossref_primary_10_3390_jcm12186079 crossref_primary_10_1002_pro_4575 crossref_primary_10_1016_j_diabres_2022_110146 crossref_primary_10_1038_s41421_022_00419_w crossref_primary_10_1186_s12985_025_02667_0 crossref_primary_10_1016_j_biopha_2022_112682 crossref_primary_10_1038_s41421_021_00349_z crossref_primary_10_7554_eLife_73027 crossref_primary_10_1146_annurev_virology_111821_093413 crossref_primary_10_1016_j_csbj_2022_10_017 crossref_primary_10_3390_ijms221910836 crossref_primary_10_1038_s41579_023_01003_z crossref_primary_10_3389_fcimb_2021_676451 crossref_primary_10_3390_ijms23042172 crossref_primary_10_15252_embr_202357724 crossref_primary_10_1007_s11033_025_10736_4 crossref_primary_10_3390_vaccines11091472 crossref_primary_10_1089_vim_2021_0121 crossref_primary_10_1080_0889311X_2023_2253735 crossref_primary_10_1002_bies_202200060 crossref_primary_10_1016_j_mehy_2022_110778 crossref_primary_10_1016_j_sbi_2023_102619 crossref_primary_10_1016_j_bmc_2021_116389 crossref_primary_10_1016_j_jmb_2021_167280 crossref_primary_10_1007_s10989_021_10324_7 crossref_primary_10_1371_journal_pbio_3001237 crossref_primary_10_1002_jmv_26931 crossref_primary_10_3390_microorganisms9051094 crossref_primary_10_1073_pnas_2505505122 crossref_primary_10_3390_v14102103 crossref_primary_10_1016_j_ijbiomac_2021_06_017 crossref_primary_10_1016_j_micinf_2022_105077 crossref_primary_10_3390_v17060741 crossref_primary_10_1016_j_jddst_2021_102512 crossref_primary_10_1038_s41598_022_19886_y crossref_primary_10_1038_s41564_025_02075_8 crossref_primary_10_1128_jvi_00139_24 crossref_primary_10_1039_D1RA02293H crossref_primary_10_3390_v13050883 crossref_primary_10_12688_f1000research_108667_1 crossref_primary_10_12688_f1000research_108667_2 crossref_primary_10_1038_s41598_023_37037_9 crossref_primary_10_1371_journal_ppat_1012808 crossref_primary_10_1128_jvi_00128_22 crossref_primary_10_3390_biom15091340 crossref_primary_10_1016_j_str_2021_12_011 crossref_primary_10_3390_molecules25235605 crossref_primary_10_1016_j_fmre_2021_02_001 crossref_primary_10_1186_s13578_022_00899_z crossref_primary_10_1016_j_talanta_2025_128040 crossref_primary_10_1016_j_virs_2022_10_006 crossref_primary_10_3390_cells13020123 crossref_primary_10_1021_acscentsci_2c01190 crossref_primary_10_1038_s41467_021_27610_z crossref_primary_10_1038_s41594_022_00735_5 crossref_primary_10_1016_j_bpj_2021_05_026 crossref_primary_10_1186_s13020_022_00587_7 crossref_primary_10_3390_v16091458 crossref_primary_10_1080_22221751_2022_2059403 crossref_primary_10_1016_j_str_2021_04_006 crossref_primary_10_1016_j_str_2021_04_005 crossref_primary_10_1002_bmm2_12024 crossref_primary_10_1038_s41422_021_00558_x crossref_primary_10_1016_j_tibs_2021_06_001 crossref_primary_10_1016_j_mbm_2023_100015 crossref_primary_10_1016_j_celrep_2025_115499 crossref_primary_10_1016_j_chom_2020_11_004 crossref_primary_10_1016_j_chom_2020_11_001 crossref_primary_10_1039_D3RA01764H crossref_primary_10_1128_Spectrum_00965_21 crossref_primary_10_1126_scitranslmed_abf1906 crossref_primary_10_3390_ijms242216069 crossref_primary_10_2147_OAJCT_S307144 crossref_primary_10_3390_ijms231911542 crossref_primary_10_1128_jvi_01853_24 crossref_primary_10_1007_s12291_021_01008_6 crossref_primary_10_1016_j_cger_2022_03_004 crossref_primary_10_1038_s41576_021_00408_x crossref_primary_10_1038_s41467_021_21767_3 crossref_primary_10_1038_s41598_023_38548_1 crossref_primary_10_1016_j_coviro_2021_05_005 crossref_primary_10_1073_pnas_2205412119 crossref_primary_10_1016_j_compchemeng_2024_108626 crossref_primary_10_1073_pnas_2111199119 crossref_primary_10_1165_rcmb_2021_0005OC crossref_primary_10_1128_spectrum_03530_23 crossref_primary_10_1016_j_nantod_2024_102183 crossref_primary_10_3390_ijms23062928 crossref_primary_10_7554_eLife_77444 crossref_primary_10_1093_glycob_cwac077 crossref_primary_10_3389_fmicb_2023_1190463 crossref_primary_10_3390_biomedicines9070710 crossref_primary_10_1016_j_vaccine_2023_10_051 crossref_primary_10_1016_j_scib_2023_11_020 crossref_primary_10_1038_s42003_025_07827_0 crossref_primary_10_3390_v15102009 crossref_primary_10_1080_17453054_2023_2237087 crossref_primary_10_1128_jvi_01070_23 crossref_primary_10_1186_s12929_021_00784_w crossref_primary_10_1038_s42003_023_04689_2 crossref_primary_10_1080_14756366_2023_2244693 crossref_primary_10_1128_jvi_00922_23 crossref_primary_10_3390_microorganisms9071389 crossref_primary_10_1016_j_scr_2021_102219 crossref_primary_10_1002_anie_202100316 crossref_primary_10_1080_07391102_2021_1933594 crossref_primary_10_3390_v16020223 crossref_primary_10_3390_vaccines12040417 crossref_primary_10_1038_s41422_022_00672_4 crossref_primary_10_3390_pathogens11101152 crossref_primary_10_1038_s41596_021_00623_0 crossref_primary_10_3390_ijms25094955 crossref_primary_10_1038_s41467_023_36761_0 crossref_primary_10_1001_jamanetworkopen_2021_7939 crossref_primary_10_3390_ph15060739 crossref_primary_10_1016_j_csbj_2021_08_049 crossref_primary_10_1128_jvi_01992_22 crossref_primary_10_1038_s41564_022_01155_3 crossref_primary_10_1039_D2CP00469K crossref_primary_10_1016_j_bbrc_2021_07_062 crossref_primary_10_7554_eLife_79639 crossref_primary_10_1038_s41586_021_03402_9 crossref_primary_10_1038_s41586_021_03676_z crossref_primary_10_3390_vaccines12070795 crossref_primary_10_3390_v16020177 crossref_primary_10_1097_MS9_0000000000000950 crossref_primary_10_1016_j_genrep_2024_102039 crossref_primary_10_1051_wujns_2022274349 crossref_primary_10_3389_fimmu_2022_834942 crossref_primary_10_7554_eLife_86764_3 crossref_primary_10_3390_app112210697 crossref_primary_10_3390_v15081752 crossref_primary_10_1016_j_jmgm_2022_108379 crossref_primary_10_1007_s00232_025_00350_7 crossref_primary_10_1016_j_mib_2021_04_006 crossref_primary_10_1002_slct_202405064 crossref_primary_10_3389_fcimb_2023_1161445 crossref_primary_10_3390_molecules28176413 crossref_primary_10_1093_glycob_cwab032 crossref_primary_10_1038_s42003_024_07081_w crossref_primary_10_1007_s12551_022_01013_w crossref_primary_10_1038_s41467_022_28528_w crossref_primary_10_1002_rmv_2213 crossref_primary_10_3389_fimmu_2022_901217 crossref_primary_10_3389_fviro_2025_1612630 crossref_primary_10_1016_j_apsb_2023_02_010 crossref_primary_10_3389_fimmu_2022_960733 crossref_primary_10_1111_cpr_13091 crossref_primary_10_1016_j_ijid_2021_10_045 crossref_primary_10_1016_j_cell_2021_07_007 crossref_primary_10_3389_fmicb_2021_806902 crossref_primary_10_1038_s41467_022_28317_5 crossref_primary_10_1016_j_bcp_2022_115401 crossref_primary_10_1016_j_celrep_2025_116135 crossref_primary_10_3390_v13050826 crossref_primary_10_3389_fimmu_2022_864775 crossref_primary_10_1134_S0006297921070026 crossref_primary_10_3390_microorganisms9112331 crossref_primary_10_1126_science_abf2303 crossref_primary_10_1016_j_ymthe_2023_08_010 crossref_primary_10_3389_fimmu_2021_707977 crossref_primary_10_1002_anie_202015362 crossref_primary_10_5802_crbiol_53 crossref_primary_10_1016_j_sbi_2023_102664 crossref_primary_10_1038_s41564_021_00908_w crossref_primary_10_3390_ijms24119202 crossref_primary_10_1016_j_sbi_2022_102388 crossref_primary_10_3390_vaccines9020178 crossref_primary_10_1038_s41586_022_04581_9 crossref_primary_10_1021_jacs_2c09229 crossref_primary_10_3389_fimmu_2023_1244556 crossref_primary_10_1246_bcsj_20210030 crossref_primary_10_1038_s41397_021_00209_9 crossref_primary_10_3390_ijms22168714 crossref_primary_10_1073_pnas_2100425118 crossref_primary_10_3390_v13091687 crossref_primary_10_1039_D2CP01893D crossref_primary_10_1038_s41467_023_39158_1 crossref_primary_10_3390_pharmaceutics15051412 crossref_primary_10_3389_fimmu_2023_1166924 crossref_primary_10_1016_j_jmgm_2023_108666 crossref_primary_10_1021_jacs_1c00556 crossref_primary_10_1039_D1CS00707F crossref_primary_10_1016_j_jviromet_2021_114221 crossref_primary_10_1080_1040841X_2023_2274840 crossref_primary_10_1016_j_jbc_2021_101151 crossref_primary_10_1038_s41401_021_00851_w crossref_primary_10_1016_j_cell_2023_06_005 crossref_primary_10_3390_v13112243 crossref_primary_10_1002_wnan_1785 crossref_primary_10_1016_j_heliyon_2023_e15083 crossref_primary_10_1080_0889311X_2024_2363756 crossref_primary_10_1016_j_biopha_2024_116603 crossref_primary_10_1007_s12257_021_0327_3 crossref_primary_10_1016_j_antiviral_2023_105752 crossref_primary_10_1007_s00508_021_01835_w crossref_primary_10_1099_jgv_0_001584 crossref_primary_10_1038_s41564_021_00972_2 crossref_primary_10_1016_j_bcp_2023_115617 crossref_primary_10_1039_D5CP02468D crossref_primary_10_3390_ijms23063409 crossref_primary_10_7554_eLife_83710 crossref_primary_10_1016_j_chom_2021_03_005 crossref_primary_10_1038_s41392_022_00954_8 crossref_primary_10_1038_s41467_021_27350_0 crossref_primary_10_1016_j_antiviral_2022_105365 crossref_primary_10_1002_jmv_27542 crossref_primary_10_1038_s42003_021_02835_2 crossref_primary_10_3389_fimmu_2022_1056272 crossref_primary_10_3390_cells10092427 crossref_primary_10_1002_ange_202100316 crossref_primary_10_1021_jacs_3c10704 crossref_primary_10_1038_s41422_020_00430_4 crossref_primary_10_5858_arpa_2021_0604_SA crossref_primary_10_1128_jvi_02077_21 crossref_primary_10_1038_s41467_021_25478_7 crossref_primary_10_1038_s41467_025_60406_z crossref_primary_10_1038_s41467_022_35590_x crossref_primary_10_1038_s41467_022_33911_8 crossref_primary_10_3390_cells11081274 crossref_primary_10_1186_s12985_025_02737_3 crossref_primary_10_3390_v16010027 crossref_primary_10_1007_s12519_023_00790_y crossref_primary_10_1016_j_micpath_2025_107687 crossref_primary_10_1021_jacs_1c09856 crossref_primary_10_1002_ijch_202300170 crossref_primary_10_1002_jev2_12231 crossref_primary_10_1186_s13567_025_01606_9 crossref_primary_10_1128_jvi_00342_24 crossref_primary_10_1039_D2SC06967A crossref_primary_10_1016_j_antiviral_2024_105901 crossref_primary_10_1038_s41467_022_32665_7 crossref_primary_10_1080_08830185_2020_1840567 crossref_primary_10_1016_j_antiviral_2022_105383 crossref_primary_10_1128_JVI_02304_20 crossref_primary_10_1038_s41598_021_93931_0 crossref_primary_10_1128_mmbr_00260_24 crossref_primary_10_3390_v14102094 crossref_primary_10_1021_jacs_2c02764 crossref_primary_10_1021_jacs_4c04934 crossref_primary_10_1089_vim_2022_0122 crossref_primary_10_1016_j_scr_2020_102115 crossref_primary_10_1021_jacs_1c08226 crossref_primary_10_1016_j_antiviral_2024_105834 crossref_primary_10_1016_j_cell_2021_04_033 crossref_primary_10_3390_v13020332 crossref_primary_10_1038_s41598_021_92641_x crossref_primary_10_3390_life12111758 crossref_primary_10_1016_j_cellsig_2023_110798 crossref_primary_10_1007_s00894_024_06236_0 crossref_primary_10_3390_v15051143 crossref_primary_10_1002_adma_202300575 crossref_primary_10_1002_jev2_12269 crossref_primary_10_3390_v14040827 crossref_primary_10_1016_j_jcp_2021_110591 crossref_primary_10_1371_journal_ppat_1012158 crossref_primary_10_3390_ijms24043255 crossref_primary_10_1111_jcmm_17103 crossref_primary_10_3390_ma13235362 crossref_primary_10_1038_s41422_021_00490_0 crossref_primary_10_1126_science_abh2315 crossref_primary_10_3390_v15061297 crossref_primary_10_3390_ijms23084376 crossref_primary_10_1016_j_bios_2025_117311 crossref_primary_10_1002_bies_202000312 crossref_primary_10_1134_S1990750822040035 crossref_primary_10_3390_bios13020204 crossref_primary_10_3390_molecules27123851 crossref_primary_10_1016_j_carbpol_2022_120167 crossref_primary_10_1038_s41467_024_48503_x crossref_primary_10_1007_s12274_023_5765_0 crossref_primary_10_1080_17460441_2023_2175812 crossref_primary_10_3389_fmedt_2022_867982 crossref_primary_10_1002_jmv_29893 crossref_primary_10_1002_jmv_27117 crossref_primary_10_3389_fimmu_2021_752227 crossref_primary_10_3390_ijms24021701 crossref_primary_10_1080_14760584_2023_2211153 crossref_primary_10_3390_ijms23052558 crossref_primary_10_1002_pep2_24375 crossref_primary_10_1093_ajhp_zxac295 crossref_primary_10_3390_ijms241310837 crossref_primary_10_1038_s41598_023_29588_8 crossref_primary_10_1186_s12951_025_03243_y crossref_primary_10_1038_s41598_025_85153_5 crossref_primary_10_1016_j_ymeth_2022_02_004 crossref_primary_10_3389_fgene_2022_888025 crossref_primary_10_1038_s41598_022_11248_y crossref_primary_10_1099_mgen_0_000684 crossref_primary_10_3389_fmolb_2021_671923 crossref_primary_10_1080_22221751_2022_2125348 crossref_primary_10_1097_WCO_0000000000001049 crossref_primary_10_3390_biom13101467 crossref_primary_10_1016_j_jbc_2021_100902 crossref_primary_10_1002_mco2_356 crossref_primary_10_1007_s12250_021_00409_4 crossref_primary_10_1038_s41392_023_01510_8 crossref_primary_10_1016_j_bios_2025_117691 crossref_primary_10_1111_1348_0421_12945 crossref_primary_10_3390_ijms23031646 crossref_primary_10_1016_j_cell_2024_06_007 crossref_primary_10_1128_spectrum_00665_22 crossref_primary_10_1007_s12551_022_00999_7 crossref_primary_10_1038_s41467_023_36745_0 crossref_primary_10_1039_D3RA01382K crossref_primary_10_3389_fcimb_2021_720357 crossref_primary_10_3390_cells11213411 crossref_primary_10_1002_jcb_30142 crossref_primary_10_3390_biom12020298 crossref_primary_10_1002_jev2_12170 crossref_primary_10_1016_j_ijbiomac_2022_09_184 crossref_primary_10_1038_s41467_022_28654_5 crossref_primary_10_1038_s41467_022_35641_3 crossref_primary_10_3389_fmedt_2021_694347 crossref_primary_10_1007_s40121_024_01031_z crossref_primary_10_1080_01913123_2022_2035475 crossref_primary_10_3390_biom14030282 crossref_primary_10_3390_vaccines10020301 crossref_primary_10_1016_j_vaccine_2024_126448 crossref_primary_10_3390_cells11010146 crossref_primary_10_1021_jacs_1c02394 crossref_primary_10_1128_spectrum_03244_24 crossref_primary_10_1002_slct_202302780 crossref_primary_10_1016_j_tim_2020_12_006 crossref_primary_10_1002_pro_4523 crossref_primary_10_1371_journal_pone_0251426 crossref_primary_10_1177_10943420221128233 crossref_primary_10_1038_s41467_021_24013_y crossref_primary_10_1128_mbio_00464_25 crossref_primary_10_3390_ijms26031367 crossref_primary_10_1016_j_virol_2024_110383 crossref_primary_10_1002_2211_5463_13454 crossref_primary_10_1016_j_addr_2020_12_004 crossref_primary_10_1038_s41423_022_00924_8 crossref_primary_10_1016_j_jbc_2023_105460 crossref_primary_10_1038_s41538_024_00261_2 crossref_primary_10_1128_aem_02106_22 crossref_primary_10_4103_2311_8571_353502 crossref_primary_10_7554_eLife_73641 crossref_primary_10_3390_vaccines12080914 crossref_primary_10_3390_cells9112343 crossref_primary_10_1371_journal_ppat_1011123 crossref_primary_10_1038_s41421_022_00449_4 crossref_primary_10_1038_s41467_022_28446_x crossref_primary_10_1016_j_cell_2024_06_016 crossref_primary_10_1007_s10930_021_09967_8 crossref_primary_10_1126_science_abe6230 crossref_primary_10_1007_s11427_022_2215_6 crossref_primary_10_1016_j_bbadis_2022_166551 crossref_primary_10_1177_1721727X221095382 crossref_primary_10_1016_j_bpj_2024_03_018 crossref_primary_10_1016_j_cell_2025_01_012 crossref_primary_10_3390_ijms25010679 crossref_primary_10_1039_D0SC06528E crossref_primary_10_1093_abt_tbad024 crossref_primary_10_3390_vaccines9121383 crossref_primary_10_1073_pnas_2022586118 crossref_primary_10_3389_fimmu_2021_708184 crossref_primary_10_1056_NEJMoa2102685 crossref_primary_10_1111_febs_15651 crossref_primary_10_3390_ijms24076642 crossref_primary_10_1016_j_virol_2022_06_006 crossref_primary_10_1016_j_ccst_2025_100423 crossref_primary_10_1016_j_imbio_2022_152302 crossref_primary_10_1021_acscentsci_3c00158 crossref_primary_10_1038_s41467_023_41453_w crossref_primary_10_1016_j_carres_2021_108326 crossref_primary_10_1093_bib_bbab056 crossref_primary_10_3390_ijms25084281 crossref_primary_10_3390_biomedicines9050525 crossref_primary_10_1073_pnas_2414583121 crossref_primary_10_3390_life12020170 crossref_primary_10_3390_v17081029 crossref_primary_10_1038_s41581_021_00461_z crossref_primary_10_3389_fmicb_2021_676314 crossref_primary_10_1016_j_cis_2023_103033 crossref_primary_10_1038_s41467_022_28882_9 crossref_primary_10_1038_s42003_021_02029_w crossref_primary_10_1038_s41467_021_24123_7 crossref_primary_10_3390_biomedicines9060689 crossref_primary_10_1016_j_csbj_2021_10_038 crossref_primary_10_3390_v16030407 crossref_primary_10_3390_ijms24054523 crossref_primary_10_1007_s00018_021_03985_6 crossref_primary_10_1002_smll_202200125 crossref_primary_10_1038_s42003_022_03207_0 crossref_primary_10_1134_S0026893324020122 crossref_primary_10_1038_s41598_021_91809_9 crossref_primary_10_1038_s41598_022_17009_1 crossref_primary_10_3389_fimmu_2021_808932 crossref_primary_10_1111_aji_13528 crossref_primary_10_1038_s41579_021_00573_0 crossref_primary_10_1038_s41598_021_99827_3 crossref_primary_10_1002_btm2_10650 crossref_primary_10_1126_science_adn5658 crossref_primary_10_1016_j_biopha_2024_116900 crossref_primary_10_1128_jvi_01626_21 crossref_primary_10_1002_psp4_12784 crossref_primary_10_1107_S2059798323000049 crossref_primary_10_3390_biom12070964 crossref_primary_10_1080_21505594_2024_2310450 crossref_primary_10_1097_CM9_0000000000002158 crossref_primary_10_3389_fgeed_2023_1231656 crossref_primary_10_1038_s41557_021_00758_3 crossref_primary_10_1038_s41467_021_21006_9 crossref_primary_10_1128_jvi_01301_22 crossref_primary_10_1039_D5RA00373C crossref_primary_10_3389_fmicb_2021_805472 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_1038_s41467_023_44504_4 crossref_primary_10_1038_s41579_023_00878_2 crossref_primary_10_1002_cmdc_202100456 crossref_primary_10_1002_slct_202302608 crossref_primary_10_3892_mmr_2024_13272 crossref_primary_10_3390_ijms252111762 crossref_primary_10_1002_ange_202015362 crossref_primary_10_3390_molecules27217572 crossref_primary_10_3389_fimmu_2022_906687 crossref_primary_10_3390_v15030639 crossref_primary_10_3390_ijms25031798 crossref_primary_10_3389_fimmu_2021_701501 crossref_primary_10_1038_s41467_023_39942_z crossref_primary_10_3389_fcimb_2024_1415356 crossref_primary_10_1016_j_molliq_2024_126100 crossref_primary_10_1021_acscentsci_2c01349 crossref_primary_10_7554_eLife_86764 crossref_primary_10_1007_s00253_022_12112_9 crossref_primary_10_1038_s41586_022_04411_y crossref_primary_10_3389_fimmu_2021_790415 crossref_primary_10_3389_fmolb_2021_725528 crossref_primary_10_1073_pnas_2403260121 crossref_primary_10_15252_emmm_202115230 |
| Cites_doi | 10.1073/pnas.0809524106 10.1016/j.jsb.2015.08.008 10.1016/j.cell.2020.02.058 10.1126/science.1116480 10.1038/s42003-019-0437-z 10.1016/j.jsb.2012.09.006 10.1107/S205225251801463X 10.1038/s41586-020-2180-5 10.1038/s41586-020-2179-y 10.1371/journal.ppat.1007236 10.1038/s41586-020-2333-6 10.1126/science.abb2762 10.1016/j.jmb.2017.10.017 10.1016/j.jsb.2013.08.002 10.1038/s41467-020-17371-6 10.1016/j.jmb.2007.05.022 10.1107/S0907444911007281 10.1073/pnas.1708727114 10.1038/nmeth.4193 10.1038/nature16988 10.1107/S2052252519007619 10.1073/pnas.1407087111 10.1038/nmeth.4169 10.1016/j.cell.2020.06.043 10.1038/s41594-019-0233-y 10.1016/j.cell.2020.06.025 10.1038/cr.2016.152 10.1126/science.abb2507 10.1038/s41594-020-0468-7 10.1038/nature02145 10.1038/s41598-018-34171-7 10.1016/j.jmb.2003.07.013 10.1016/j.cell.2020.02.052 10.1146/annurev-virology-110615-042301 10.1038/ncomms15092 10.1073/pnas.1707304114 10.1101/2020.06.20.161323 10.1101/2020.06.12.148726 10.1107/S0907444910007493 10.1107/S0907444909052925 10.1126/science.abd4251 10.1038/s41586-020-2012-7 10.1002/jcc.20084 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 COPYRIGHT 2020 Nature Publishing Group Copyright Nature Publishing Group Dec 10, 2020 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: Copyright Nature Publishing Group Dec 10, 2020 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
| DOI | 10.1038/s41586-020-2772-0 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest MSED ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection eLibrary ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database ProQuest research library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 330 |
| ExternalDocumentID | PMC7116727 A649545670 32942285 10_1038_s41586_020_2772_0 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GrantInformation_xml | – fundername: Cancer Research UK grantid: FC001078 – fundername: Wellcome Trust grantid: FC001078 – fundername: Medical Research Council grantid: FC001143 – fundername: Wellcome Trust grantid: FC001143 |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC I-F J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT SV3 TH9 TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 ACMFV AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c738t-55a0983348c00b0c2475fa69ea06795d0fa3bcf5f9ed1ae0f73a1425ae30d38f3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 578 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587990400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Tue Nov 04 02:04:36 EST 2025 Fri Sep 05 13:23:18 EDT 2025 Tue Oct 07 07:23:21 EDT 2025 Tue Nov 11 10:29:09 EST 2025 Sat Nov 29 11:39:07 EST 2025 Tue Jun 10 15:34:07 EDT 2025 Tue Nov 04 17:30:31 EST 2025 Thu Nov 13 15:55:34 EST 2025 Thu Nov 13 15:31:01 EST 2025 Mon Jul 21 06:04:55 EDT 2025 Sat Nov 29 03:48:39 EST 2025 Tue Nov 18 21:54:24 EST 2025 Fri Feb 21 02:37:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7837 |
| Language | English |
| License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c738t-55a0983348c00b0c2475fa69ea06795d0fa3bcf5f9ed1ae0f73a1425ae30d38f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6680-5587 0000-0002-0387-2862 0000-0001-6748-9339 0000-0001-5331-639X |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7116727 |
| PMID | 32942285 |
| PQID | 2473447023 |
| PQPubID | 40569 |
| PageCount | 4 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7116727 proquest_miscellaneous_2444385377 proquest_journals_2473447023 gale_infotracmisc_A649545670 gale_infotracgeneralonefile_A649545670 gale_infotraccpiq_649545670 gale_infotracacademiconefile_A649545670 gale_incontextgauss_ISR_A649545670 gale_incontextgauss_ATWCN_A649545670 pubmed_primary_32942285 crossref_primary_10_1038_s41586_020_2772_0 crossref_citationtrail_10_1038_s41586_020_2772_0 springer_journals_10_1038_s41586_020_2772_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-10 |
| PublicationDateYYYYMMDD | 2020-12-10 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Walls (CR6) 2020; 181 Kirchdoerfer (CR19) 2018; 8 Cardone, Heymann, Steven (CR37) 2013; 184 Gui (CR23) 2017; 27 Rosenthal, Henderson (CR38) 2003; 333 Zhou (CR1) 2020; 579 Wan, Shang, Graham, Baric, Li (CR2) 2020; 94 Shang (CR7) 2020; 581 Yuan (CR18) 2017; 8 Li, Li, Farzan, Harrison (CR3) 2005; 309 Adams (CR40) 2010; 66 CR14 Walls (CR21) 2016; 531 CR13 Fan, Cao, Kong, Zhang (CR29) 2020; 11 Belouzard, Chu, Whittaker (CR8) 2009; 106 Scheres (CR32) 2012; 180 Wagner (CR34) 2019; 2 Pettersen (CR42) 2004; 25 Rohou, Grigorieff (CR33) 2015; 192 McNicholas, Potterton, Wilson, Noble (CR43) 2011; 67 Krissinel, Henrick (CR44) 2007; 372 Barnes (CR27) 2020; 182 Wrobel (CR26) 2020; 27 Wrapp (CR16) 2020; 367 Li (CR4) 2003; 426 Emsley, Lohkamp, Scott, Cowtan (CR39) 2010; 66 Korber (CR15) 2020; 182 Walls (CR28) 2017; 114 Zheng (CR31) 2017; 14 Cai (CR22) 2020; 369 Li (CR5) 2016; 3 Pallesen (CR20) 2017; 114 Lan (CR24) 2020; 581 Millet, Whittaker (CR9) 2014; 111 Yan (CR25) 2020; 367 Benton, Gamblin, Rosenthal, Skehel (CR30) 2020; 583 Punjani, Rubinstein, Fleet, Brubaker (CR35) 2017; 14 Zivanov, Nakane, Scheres (CR36) 2019; 6 Lai, Millet, Daniel, Freed, Whittaker (CR11) 2017; 429 Kidmose (CR41) 2019; 6 Hoffmann (CR10) 2020; 181 Tortorici (CR17) 2019; 26 Song, Gui, Wang, Xiang (CR12) 2018; 14 A Rohou (2772_CR33) 2015; 192 Y Yuan (2772_CR18) 2017; 8 W Song (2772_CR12) 2018; 14 S McNicholas (2772_CR43) 2011; 67 Y Wan (2772_CR2) 2020; 94 MA Tortorici (2772_CR17) 2019; 26 CO Barnes (2772_CR27) 2020; 182 AL Lai (2772_CR11) 2017; 429 J Pallesen (2772_CR20) 2017; 114 PD Adams (2772_CR40) 2010; 66 RN Kirchdoerfer (2772_CR19) 2018; 8 A Punjani (2772_CR35) 2017; 14 P Zhou (2772_CR1) 2020; 579 J Lan (2772_CR24) 2020; 581 F Li (2772_CR3) 2005; 309 SQ Zheng (2772_CR31) 2017; 14 J Shang (2772_CR7) 2020; 581 X Fan (2772_CR29) 2020; 11 DJ Benton (2772_CR30) 2020; 583 E Krissinel (2772_CR44) 2007; 372 AG Wrobel (2772_CR26) 2020; 27 M Gui (2772_CR23) 2017; 27 SHW Scheres (2772_CR32) 2012; 180 PB Rosenthal (2772_CR38) 2003; 333 AC Walls (2772_CR6) 2020; 181 Y Cai (2772_CR22) 2020; 369 EF Pettersen (2772_CR42) 2004; 25 AC Walls (2772_CR28) 2017; 114 T Wagner (2772_CR34) 2019; 2 2772_CR14 2772_CR13 AC Walls (2772_CR21) 2016; 531 J Zivanov (2772_CR36) 2019; 6 F Li (2772_CR5) 2016; 3 P Emsley (2772_CR39) 2010; 66 R Yan (2772_CR25) 2020; 367 D Wrapp (2772_CR16) 2020; 367 G Cardone (2772_CR37) 2013; 184 B Korber (2772_CR15) 2020; 182 S Belouzard (2772_CR8) 2009; 106 W Li (2772_CR4) 2003; 426 JK Millet (2772_CR9) 2014; 111 M Hoffmann (2772_CR10) 2020; 181 RT Kidmose (2772_CR41) 2019; 6 |
| References_xml | – volume: 106 start-page: 5871 year: 2009 end-page: 5876 ident: CR8 article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0809524106 – volume: 192 start-page: 216 year: 2015 end-page: 221 ident: CR33 article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.008 – volume: 181 start-page: 281 year: 2020 end-page: 292 ident: CR6 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 309 start-page: 1864 year: 2005 end-page: 1868 ident: CR3 article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor publication-title: Science doi: 10.1126/science.1116480 – volume: 2 start-page: 218 year: 2019 ident: CR34 article-title: SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM publication-title: Commun. Biol. doi: 10.1038/s42003-019-0437-z – volume: 180 start-page: 519 year: 2012 end-page: 530 ident: CR32 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – ident: CR14 – volume: 6 start-page: 5 year: 2019 end-page: 17 ident: CR36 article-title: A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis publication-title: IUCrJ doi: 10.1107/S205225251801463X – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: CR24 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 581 start-page: 221 year: 2020 end-page: 224 ident: CR7 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2179-y – volume: 14 start-page: e1007236 year: 2018 ident: CR12 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007236 – volume: 583 start-page: 150 year: 2020 end-page: 153 ident: CR30 article-title: Structural transitions in influenza haemagglutinin at membrane fusion pH publication-title: Nature doi: 10.1038/s41586-020-2333-6 – volume: 367 start-page: 1444 year: 2020 end-page: 1448 ident: CR25 article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 publication-title: Science doi: 10.1126/science.abb2762 – volume: 429 start-page: 3875 year: 2017 end-page: 3892 ident: CR11 article-title: The SARS-CoV fusion peptide forms an extended bipartite fusion platform that perturbs membrane order in a calcium-dependent manner publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.10.017 – volume: 184 start-page: 226 year: 2013 end-page: 236 ident: CR37 article-title: One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2013.08.002 – volume: 11 year: 2020 ident: CR29 article-title: Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein publication-title: Nat. Commun. doi: 10.1038/s41467-020-17371-6 – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: CR39 article-title: Features and development of Coot publication-title: Acta Crystallogr. D – volume: 372 start-page: 774 year: 2007 end-page: 797 ident: CR44 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – volume: 67 start-page: 386 year: 2011 end-page: 394 ident: CR43 article-title: Presenting your structures: the CCP4mg molecular-graphics software publication-title: Acta Crystallogr. D doi: 10.1107/S0907444911007281 – volume: 114 start-page: 11157 year: 2017 end-page: 11162 ident: CR28 article-title: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708727114 – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: CR31 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: CR40 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D – volume: 531 start-page: 114 year: 2016 end-page: 117 ident: CR21 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature doi: 10.1038/nature16988 – volume: 6 start-page: 526 year: 2019 end-page: 531 ident: CR41 article-title: Namdinator - automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps publication-title: IUCrJ doi: 10.1107/S2052252519007619 – volume: 111 start-page: 15214 year: 2014 end-page: 15219 ident: CR9 article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1407087111 – ident: CR13 – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: CR1 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: CR35 article-title: A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 182 start-page: 812 year: 2020 end-page: 827 ident: CR15 article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus publication-title: Cell doi: 10.1016/j.cell.2020.06.043 – volume: 26 start-page: 481 year: 2019 end-page: 489 ident: CR17 article-title: Structural basis for human coronavirus attachment to sialic acid receptors publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0233-y – volume: 182 start-page: 828 year: 2020 end-page: 842 ident: CR27 article-title: Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies publication-title: Cell doi: 10.1016/j.cell.2020.06.025 – volume: 369 start-page: 1586 year: 2020 end-page: 1592 ident: CR22 article-title: Distinct conformational states of SARS-CoV-2 spike protein publication-title: Science – volume: 27 start-page: 119 year: 2017 end-page: 129 ident: CR23 article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding publication-title: Cell Res. doi: 10.1038/cr.2016.152 – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: CR16 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 27 start-page: 763 year: 2020 end-page: 767 ident: CR26 article-title: SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0468-7 – volume: 426 start-page: 450 year: 2003 end-page: 454 ident: CR4 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature doi: 10.1038/nature02145 – volume: 8 year: 2018 ident: CR19 article-title: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis publication-title: Sci. Rep. doi: 10.1038/s41598-018-34171-7 – volume: 333 start-page: 721 year: 2003 end-page: 745 ident: CR38 article-title: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2003.07.013 – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: CR42 article-title: UCSF Chimera—a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 181 start-page: 271 year: 2020 end-page: 280 ident: CR10 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 94 start-page: e00127 year: 2020 end-page: 20 ident: CR2 article-title: Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus publication-title: J. Virol. – volume: 3 start-page: 237 year: 2016 end-page: 261 ident: CR5 article-title: Structure, function, and evolution of coronavirus spike proteins publication-title: Annu. Rev. Virol. doi: 10.1146/annurev-virology-110615-042301 – volume: 8 year: 2017 ident: CR18 article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. doi: 10.1038/ncomms15092 – volume: 114 start-page: E7348 year: 2017 end-page: E7357 ident: CR20 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1707304114 – volume: 309 start-page: 1864 year: 2005 ident: 2772_CR3 publication-title: Science doi: 10.1126/science.1116480 – volume: 11 year: 2020 ident: 2772_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17371-6 – volume: 8 year: 2017 ident: 2772_CR18 publication-title: Nat. Commun. doi: 10.1038/ncomms15092 – volume: 181 start-page: 271 year: 2020 ident: 2772_CR10 publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 14 start-page: 290 year: 2017 ident: 2772_CR35 publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 111 start-page: 15214 year: 2014 ident: 2772_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1407087111 – volume: 182 start-page: 828 year: 2020 ident: 2772_CR27 publication-title: Cell doi: 10.1016/j.cell.2020.06.025 – ident: 2772_CR14 doi: 10.1101/2020.06.20.161323 – volume: 114 start-page: 11157 year: 2017 ident: 2772_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708727114 – volume: 14 start-page: e1007236 year: 2018 ident: 2772_CR12 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007236 – volume: 367 start-page: 1260 year: 2020 ident: 2772_CR16 publication-title: Science doi: 10.1126/science.abb2507 – volume: 184 start-page: 226 year: 2013 ident: 2772_CR37 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2013.08.002 – volume: 94 start-page: e00127 year: 2020 ident: 2772_CR2 publication-title: J. Virol. – volume: 367 start-page: 1444 year: 2020 ident: 2772_CR25 publication-title: Science doi: 10.1126/science.abb2762 – volume: 372 start-page: 774 year: 2007 ident: 2772_CR44 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – ident: 2772_CR13 doi: 10.1101/2020.06.12.148726 – volume: 66 start-page: 486 year: 2010 ident: 2772_CR39 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444910007493 – volume: 583 start-page: 150 year: 2020 ident: 2772_CR30 publication-title: Nature doi: 10.1038/s41586-020-2333-6 – volume: 192 start-page: 216 year: 2015 ident: 2772_CR33 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.008 – volume: 6 start-page: 526 year: 2019 ident: 2772_CR41 publication-title: IUCrJ doi: 10.1107/S2052252519007619 – volume: 67 start-page: 386 year: 2011 ident: 2772_CR43 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444911007281 – volume: 182 start-page: 812 year: 2020 ident: 2772_CR15 publication-title: Cell doi: 10.1016/j.cell.2020.06.043 – volume: 581 start-page: 215 year: 2020 ident: 2772_CR24 publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 27 start-page: 763 year: 2020 ident: 2772_CR26 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0468-7 – volume: 333 start-page: 721 year: 2003 ident: 2772_CR38 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2003.07.013 – volume: 27 start-page: 119 year: 2017 ident: 2772_CR23 publication-title: Cell Res. doi: 10.1038/cr.2016.152 – volume: 2 start-page: 218 year: 2019 ident: 2772_CR34 publication-title: Commun. Biol. doi: 10.1038/s42003-019-0437-z – volume: 181 start-page: 281 year: 2020 ident: 2772_CR6 publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 3 start-page: 237 year: 2016 ident: 2772_CR5 publication-title: Annu. Rev. Virol. doi: 10.1146/annurev-virology-110615-042301 – volume: 180 start-page: 519 year: 2012 ident: 2772_CR32 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – volume: 66 start-page: 213 year: 2010 ident: 2772_CR40 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909052925 – volume: 114 start-page: E7348 year: 2017 ident: 2772_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1707304114 – volume: 106 start-page: 5871 year: 2009 ident: 2772_CR8 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0809524106 – volume: 26 start-page: 481 year: 2019 ident: 2772_CR17 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0233-y – volume: 369 start-page: 1586 year: 2020 ident: 2772_CR22 publication-title: Science doi: 10.1126/science.abd4251 – volume: 8 year: 2018 ident: 2772_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-018-34171-7 – volume: 581 start-page: 221 year: 2020 ident: 2772_CR7 publication-title: Nature doi: 10.1038/s41586-020-2179-y – volume: 6 start-page: 5 year: 2019 ident: 2772_CR36 publication-title: IUCrJ doi: 10.1107/S205225251801463X – volume: 531 start-page: 114 year: 2016 ident: 2772_CR21 publication-title: Nature doi: 10.1038/nature16988 – volume: 14 start-page: 331 year: 2017 ident: 2772_CR31 publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 579 start-page: 270 year: 2020 ident: 2772_CR1 publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 426 start-page: 450 year: 2003 ident: 2772_CR4 publication-title: Nature doi: 10.1038/nature02145 – volume: 429 start-page: 3875 year: 2017 ident: 2772_CR11 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.10.017 – volume: 25 start-page: 1605 year: 2004 ident: 2772_CR42 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 |
| SSID | ssj0005174 |
| Score | 2.728731 |
| Snippet | Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors
1
–
4
, followed... Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors , followed by... Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors.sup.1-4, followed... Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors1-4, followed by... Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors1–4, followed by... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 327 |
| SubjectTerms | 101/28 631/326/596/4130 631/535/1258/1259 82/80 ACE2 Angiotensin-converting enzyme 2 Angiotensin-Converting Enzyme 2 - chemistry Angiotensin-Converting Enzyme 2 - metabolism Angiotensin-Converting Enzyme 2 - ultrastructure Binding Binding sites Binding sites (Biochemistry) Cell membranes Cell receptors Cell surface Cleavage Coronaviruses COVID-19 Cryoelectron Microscopy Destabilization Dissociation Electron microscopy Furin Furin - metabolism Fusion protein Genomes Glycoproteins Health aspects Humanities and Social Sciences Humans Membrane fusion Membrane Fusion - physiology Membrane proteins Membranes Microscopy Models, Molecular Monomers multidisciplinary Observations Peptides Physiological aspects Post-translation Priming Protein Binding Protein Folding Protein Subunits - chemistry Protein Subunits - metabolism Proteins Proteolysis Receptors Receptors, Coronavirus - chemistry Receptors, Coronavirus - metabolism Receptors, Coronavirus - ultrastructure Science Science (multidisciplinary) Severe acute respiratory syndrome coronavirus 2 Species classification Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - metabolism Spike Glycoprotein, Coronavirus - ultrastructure Spike protein Trimers Viral diseases Viral proteins Viruses |
| Title | Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion |
| URI | https://link.springer.com/article/10.1038/s41586-020-2772-0 https://www.ncbi.nlm.nih.gov/pubmed/32942285 https://www.proquest.com/docview/2473447023 https://www.proquest.com/docview/2444385377 https://pubmed.ncbi.nlm.nih.gov/PMC7116727 |
| Volume | 588 |
| WOSCitedRecordID | wos000587990400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature: CUNY Collection customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvwMZX2agMmvhUmBsndfKEumoTaFqp2m1UvFiuY5cIlmRLy9_PnZt2SzX2wstJyV2iOHc-n-3z7wjZDSOECInBeEHjXgDhm4eQKF7CmE0gPrWJ0q7YhOj1otEo7lcLbmWVVrnwic5RJ7nGNfI9PxAITgdDzOfiwsOqUbi7WpXQWCMbiJLAXepe_yrFYwWFebGryaO9EgauCNNvmedDgOmx2ri06p2vDU-rqZMr-6duWDp8-L8NekQeVAEp7cwtaJPcMdkWuecSQ3W5RTarzl_SdxVC9fvHZAjBpilgtk7HqTsVQ1WW0MJVCJvQ3FKIKmlZpL8MdTgQaYY3h53B0OvmZ55PIVKm5-YcZuqZoXaGK3ZPyOnhwUn3i1dVZ_C04NHUC0PF4ggP8mrGxkxDe0Kr2rFRuDYVJswqPtY2tLFJWsowK7hqgYdQhrOER5Y_JetZnpnnhEYiwYofsVBKB0KDeQghuNZtw9s2GLcahC10I3UFXY4VNH5Lt4XOIzlXpwR1SlSnZA3yYflIMcftuE14FxUuEQ8jw4SbiZqVpeycfO_2ZKcNc0gIMwWIvb5J7OtwUBN6WwnZHL5Rq-qYA7QUkbZqkts1SV2kF_Ia902NO5nr-KbX7NQEwT3oOnthfrJyT6W8sr0GebVk45OYcpeZfIYyQcAhmBOiQZ7NjX75J7kfI3Rc2CCi1h2WAghaXudk6U8HXi5w48-Hd35cdJyrz_qngl7c3ohtct_HntzyIarYIevTy5l5Se7qP9O0vGySNTE4QzoSjkZAo26rSTb2D3r9AVwd7X8CesyOkPrHjn5ztN90HsXRIdB--OMvHOBuSw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELfGAMELsPFVNsCg8a1obtzUyQNCVWHatFGhtoy9GdexSwRLsqYF8U_xN3KXj3apxt72wGvuYsXxz3dn-_w7QrY8HylCAgAvjLjTgvDNQUoUJ2TMhhCf2lDpvNiE6PX8o6Pg0wr5U92FwbTKyibmhjpMNO6Rb7stgeR04GLepScOVo3C09WqhEYBi33z-xcs2bK3e-9hfJ-57s6HYXfXKasKOFpwf-p4nmKBjxdQNWMjpqFhz6p2YBTuqXghs4qPtPVsYMKmMswKrpqAbGU4C7lvObR7iVwGO97EFDLRP1yklCyxPlenqNzfzsBR-pjuyxwXAlqH1fzgsjc45Q6XUzWXzmtzN7hz83_7gbfIjTLgpp1ihqyRFROvk6t54qvO1slaadwy-rJk4H51mwwgmDbpNJnQUZTf-qEqDmmaV0Ab08RSiJpplkbfDc15LqIYHw46_YHTTQ4dl8JKgB6b4xEEAobaGe5I3iGfL6Sbd8lqnMTmPqG-CLGiSSCU0i2hAf5CCK512_C2bY2aDcIqLEhdUrNjhZAfMk8R4L4s4CMBPhLhI1mDvJ6_kha8JOcpbyHAJPJ9xJhQNFazLJOd4ZduT3basEaGMFqA2tOz1PYG_ZrSi1LJJvCNWpXXOKCnyCRW09yoaeo0OpGnpM9r0nExxmc1s1lTBPOn6-IK7rI0v5lcYL1BnszF-CamFMYmmaFOq8UhWBWiQe4Vk2z-J7kbIDWe1yCiNv3mCkjKXpfE0becnF3gwaYLbb6pJuris_45QA_O78Rjcm13-PFAHuz19jfIdRetSNOFCGqTrE4nM_OQXNE_p1E2eZTbI0q-XvT8_Qtx4L-_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELfG-BAvwMZX2QCDxreiuXFSJw8IVR0T1VA1rQP2ZlzHLhEsyZoWxL_GX8ddPrqmGnvbA6-9ixvHvzuf7fPvCNnyA6QICQG8MOKOB-Gbg5QoTsSYjSA-tZHSRbEJMRgER0fh_gr5U9-FwbTK2icWjjpKNe6Rb7ueQHI6pOWxVVrE_s7uu-zEwQpSeNJal9MoIbJnfv-C5Vv-tr8DY_3MdXffH_Y-OFWFAUcLHkwd31csDPAyqmZsxDT8iW9VJzQK91f8iFnFR9r6NjRRWxlmBVdtQLkynEU8sBzavUQuCw4oxlvqvYX0kiUG6PpElQfbOUyaAab-MseF4NZhjTlxeWZYmBqX0zaXzm6LKXH35v_8MW-RG1UgTrul5ayRFZOsk6tFQqzO18la5fRy-rJi5n51mwwhyDbZNJ3QUVzcBqIqiWhWVEYb09RSiKZpnsXfDS34L-IEfxx2D4ZOL_3suBRWCPTYHI8gQDDUznCn8g75dCHdvEtWkzQx9wkNRISVTkKhlPaEBrMQQnCtO4Z3rDdqtwircSF1RdmOlUN-yCJ1gAeyhJIEKEmEkmQt8nr-SFbylZynvIVgk8gDkiAIxmqW57J7-KU3kN0OrJ0hvBag9vQstf7woKH0olKyKbyjVtX1DugpMow1NDcamjqLT-SC9HlDOi7H-KxmNhuK4BZ1U1xDX1ZuOZenuG-RJ3MxPompholJZ6jjeRyCWCFa5F5pcPMvyd0QKfP8FhENU5wrIFl7U5LE3wrSdoEHni60-aY22tPX-ucAPTi_E4_JNTBb-bE_2Nsg1110KG0XAqtNsjqdzMxDckX_nMb55FHhmij5etHm-xcxLcga |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Receptor+binding+and+priming+of+the+spike+protein+of+SARS-CoV-2+for+membrane+fusion&rft.jtitle=Nature+%28London%29&rft.au=Benton%2C+Donald+J&rft.au=Wrobel%2C+Antoni+G&rft.au=Xu%2C+Pengqi&rft.au=Roustan%2C+Chlo%C3%AB&rft.date=2020-12-10&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=588&rft.issue=7837&rft.spage=327&rft_id=info:doi/10.1038%2Fs41586-020-2772-0&rft.externalDocID=A649545670 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |