Shed GP of Ebola Virus Triggers Immune Activation and Increased Vascular Permeability

During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the bl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens Jg. 10; H. 11; S. e1004509
Hauptverfasser: Escudero-Pérez, Beatriz, Volchkova, Valentina A., Dolnik, Olga, Lawrence, Philip, Volchkov, Viktor E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 01.11.2014
Public Library of Science (PLoS)
Schlagworte:
ISSN:1553-7374, 1553-7366, 1553-7374
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity.
AbstractList During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity. Ebola virus, a member of the Filoviridae family, causes lethal hemorrhagic fever in man and primates, displaying up to 90% mortality rates. Viral infection is typified by an excessive systemic inflammatory response resembling septic shock. It also damages endothelial cells and creates difficulty in coagulation, ultimately leading to haemorrhaging, organ failure and death. A unique feature of EBOV is that following infection high amounts of truncated surface GP, named shed GP, are released from infected cells and are detected in the blood of patients and experimentally infected animals. However the role of shed GP in virus replication and pathogenicity is not yet clearly defined. Here we show that shed GP released from virus-infected cells binds and activates non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and also affects vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity.
  During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity.
During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity.
During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity.During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular metalloprotease TACE. Shed GP and non-structural secreted glycoprotein sGP, both expressed from the same GP gene, have been detected in the blood of human patients and experimentally infected animals. In this study we demonstrate that shed GP could play a particular role during EBOV infection. In effect it binds and activates non-infected dendritic cells and macrophages inducing the secretion of pro- and anti-inflammatory cytokines (TNFα, IL1β, IL6, IL8, IL12p40, and IL1-RA, IL10). Activation of these cells by shed GP correlates with the increase in surface expression of co-stimulatory molecules CD40, CD80, CD83 and CD86. Contrary to shed GP, secreted sGP activates neither DC nor macrophages while it could bind DCs. In this study, we show that shed GP activity is likely mediated through cellular toll-like receptor 4 (TLR4) and is dependent on GP glycosylation. Treatment of cells with anti-TLR4 antibody completely abolishes shed GP-induced activation of cells. We also demonstrate that shed GP activity is negated upon addition of mannose-binding sera lectin MBL, a molecule known to interact with sugar arrays present on the surface of different microorganisms. Furthermore, we highlight the ability of shed GP to affect endothelial cell function both directly and indirectly, demonstrating the interplay between shed GP, systemic cytokine release and increased vascular permeability. In conclusion, shed GP released from virus-infected cells could activate non-infected DCs and macrophages causing the massive release of pro- and anti-inflammatory cytokines and effect vascular permeability. These activities could be at the heart of the excessive and dysregulated inflammatory host reactions to infection and thus contribute to high virus pathogenicity.
Audience Academic
Author Volchkova, Valentina A.
Dolnik, Olga
Escudero-Pérez, Beatriz
Volchkov, Viktor E.
Lawrence, Philip
AuthorAffiliation Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111- CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
Division of Clinical Research, United States of America
AuthorAffiliation_xml – name: Division of Clinical Research, United States of America
– name: Molecular Basis of Viral Pathogenicity, CIRI, INSERM U1111- CNRS UMR5308, Université de Lyon, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
Author_xml – sequence: 1
  givenname: Beatriz
  surname: Escudero-Pérez
  fullname: Escudero-Pérez, Beatriz
– sequence: 2
  givenname: Valentina A.
  surname: Volchkova
  fullname: Volchkova, Valentina A.
– sequence: 3
  givenname: Olga
  surname: Dolnik
  fullname: Dolnik, Olga
– sequence: 4
  givenname: Philip
  surname: Lawrence
  fullname: Lawrence, Philip
– sequence: 5
  givenname: Viktor E.
  surname: Volchkov
  fullname: Volchkov, Viktor E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25412102$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01911315$$DView record in HAL
BookMark eNqVkl1r2zAUhs3oWNts_2Bsht2sF8n0Gdu9GITStYGwlfXjVhzLkqNgS5lkh_XfT6nT0pQxGLqwOH7e93CO3uPkwDqrkuQ9RhNMM_xl5XpvoZms19BNMEKMo-JVcoQ5p-OMZuzg2f0wOQ5hFRlM8fRNckg4wwQjcpTcXi9VlV5cpU6n56VrIL0zvg_pjTd1rXxI523bW5XOZGc20BlnU7BVOrfSKwhRegdB9g349Er5VkFpGtPdv01ea2iCerf7jpLbb-c3Z5fjxY-L-dlsMZYZpd2YgGaSZEA04hVCZZERqitS5UUpc1rmHGvKKCmxjoTWOaFAKqDTTGuUcVzSUfJx8F03LojdRoLA05yTAnFWRGI-EJWDlVh704K_Fw6MeCg4XwvwnZGNElorolDJGNbAuJyWkjONmC6YzBgpq-j1ddetL1tVSWU7D82e6f4fa5aidhvBCC1QwaLByWCwfCG7nC3EtoZwgeMT8Q2O7OddM-9-9Sp0ojVBqqYBq1y_nZFkKKMkrmyUfBrQGuIYxmoXu8stLma0oBznqOCRmvyFiqdSrZExW9rE-p7gZE8QmU797mroQxDz65__wX7fZz88X-PTIh5DGQE2ANK7ELzSTwhGYpv9x5cW2-yLXfaj7PSFTJruIbJxUNP8W_wHyzwJwg
CitedBy_id crossref_primary_10_1128_JVI_02368_20
crossref_primary_10_3390_ijms23115966
crossref_primary_10_1016_j_tim_2020_06_005
crossref_primary_10_1146_annurev_genom_083115_022446
crossref_primary_10_3390_v12010008
crossref_primary_10_3389_fimmu_2019_02414
crossref_primary_10_1074_jbc_RA118_005375
crossref_primary_10_3389_fimmu_2017_01372
crossref_primary_10_3390_pathogens11121400
crossref_primary_10_3390_v14010142
crossref_primary_10_15252_emmm_202114150
crossref_primary_10_1016_j_antiviral_2016_09_001
crossref_primary_10_3389_fimmu_2023_1156758
crossref_primary_10_1038_srep40791
crossref_primary_10_3389_fcvm_2021_619690
crossref_primary_10_3390_v7122969
crossref_primary_10_1016_j_antiviral_2021_105226
crossref_primary_10_3390_v11100889
crossref_primary_10_1007_s00109_023_02309_4
crossref_primary_10_1111_joim_12386
crossref_primary_10_1016_j_antiviral_2016_10_004
crossref_primary_10_1128_JVI_00179_17
crossref_primary_10_1038_s41598_017_09963_y
crossref_primary_10_1038_srep41537
crossref_primary_10_1093_infdis_jiv565
crossref_primary_10_1073_pnas_1702204114
crossref_primary_10_1128_JVI_01308_17
crossref_primary_10_1128_jvi_01300_25
crossref_primary_10_1146_annurev_virology_101416_041848
crossref_primary_10_1038_nrmicro3412
crossref_primary_10_1038_cdd_2015_67
crossref_primary_10_1007_s12250_016_3850_1
crossref_primary_10_1073_pnas_2110846119
crossref_primary_10_3390_pathogens10091201
crossref_primary_10_1093_infdis_jiv189
crossref_primary_10_1146_annurev_virology_092818_015708
crossref_primary_10_3390_pathogens10101330
crossref_primary_10_1038_s41598_018_30590_8
crossref_primary_10_1186_2049_9957_3_43
crossref_primary_10_1038_srep41029
crossref_primary_10_1159_000375257
crossref_primary_10_1093_infdis_jiv216
crossref_primary_10_1371_journal_pntd_0006349
crossref_primary_10_1371_journal_ppat_1007390
crossref_primary_10_1089_vim_2017_0122
crossref_primary_10_1128_JVI_00438_17
crossref_primary_10_3390_v15010052
crossref_primary_10_3390_ijms24054627
crossref_primary_10_1128_mSphere_00401_17
crossref_primary_10_1016_j_vaccine_2017_01_068
crossref_primary_10_1016_j_cellimm_2017_11_009
crossref_primary_10_1371_journal_ppat_1005487
crossref_primary_10_1371_journal_ppat_1005088
crossref_primary_10_3390_molecules25215017
crossref_primary_10_1016_j_ijid_2015_05_016
crossref_primary_10_1016_j_bios_2022_113971
crossref_primary_10_1177_03009858231171906
crossref_primary_10_2217_fvl_2017_0030
crossref_primary_10_1016_j_ijbiomac_2021_08_054
crossref_primary_10_1159_000487224
crossref_primary_10_1016_j_coviro_2018_01_010
crossref_primary_10_1172_JCI132438
crossref_primary_10_1093_infdis_jiv237
crossref_primary_10_1099_jgv_0_001024
crossref_primary_10_1016_j_isci_2021_102266
crossref_primary_10_1080_14728222_2017_1299128
crossref_primary_10_3390_v11110999
crossref_primary_10_1128_JVI_01995_20
crossref_primary_10_3390_microorganisms8101473
crossref_primary_10_1126_scitranslmed_adq5928
crossref_primary_10_1016_j_coi_2025_102648
crossref_primary_10_3390_v7102892
crossref_primary_10_1038_s41541_021_00280_0
crossref_primary_10_1128_jvi_00753_22
crossref_primary_10_3390_v13050824
crossref_primary_10_1038_s41426_018_0031_3
crossref_primary_10_3390_v11050410
crossref_primary_10_1016_j_tim_2024_07_001
crossref_primary_10_1371_journal_ppat_1006037
crossref_primary_10_1016_j_mam_2022_101113
crossref_primary_10_1371_journal_ppat_1005221
crossref_primary_10_1371_journal_ppat_1006397
crossref_primary_10_1016_j_coviro_2021_10_007
crossref_primary_10_1038_s42003_019_0647_4
crossref_primary_10_3390_v7102867
crossref_primary_10_3389_fmicb_2017_01571
crossref_primary_10_1126_scitranslmed_aaj1701
crossref_primary_10_3390_v7010285
crossref_primary_10_1002_JLB_4RI0518_183R
crossref_primary_10_1371_journal_pntd_0013230
crossref_primary_10_3389_fcimb_2023_1275277
crossref_primary_10_1186_s12967_016_1084_5
crossref_primary_10_1093_infdis_jiy406
crossref_primary_10_3390_jcm10061216
crossref_primary_10_1016_j_ymthe_2022_10_011
crossref_primary_10_1016_j_coviro_2016_11_013
crossref_primary_10_1099_jgv_0_001401
crossref_primary_10_1038_ncomms8688
crossref_primary_10_1016_j_virol_2022_05_007
crossref_primary_10_1159_000375229
crossref_primary_10_1159_000543608
crossref_primary_10_3389_fmicb_2022_1007081
crossref_primary_10_1093_infdis_jiv268
crossref_primary_10_1093_infdis_jiv309
crossref_primary_10_1080_17460913_2025_2501924
crossref_primary_10_3390_pathogens9100850
crossref_primary_10_1038_srep45552
Cites_doi 10.1093/infdis/jir295
10.1086/520607
10.1006/viro.2000.0572
10.4049/jimmunol.170.6.2797
10.1128/JVI.78.2.576-584.2004
10.1073/pnas.95.10.5762
10.1016/S0140-6736(10)60667-8
10.1186/gb-2007-8-8-r174
10.1111/j.1365-2249.2012.04584.x
10.3389/fmicb.2012.00034
10.1016/0168-1702(93)90063-S
10.1128/JVI.75.22.10730-10737.2001
10.1128/JVI.03316-12
10.1128/JVI.75.22.11025-11033.2001
10.1093/infdis/jir338
10.1038/nature07082
10.1371/journal.ppat.1002847
10.1128/JVI.76.24.12463-12472.2002
10.1016/S0165-2478(01)00327-3
10.1016/j.virol.2011.01.003
10.1128/JVI.02695-12
10.1006/viro.1999.0034
10.1007/978-3-7091-9300-6_8
10.1128/JCM.13.4.791-793.1981
10.1128/JVI.01462-09
10.1016/j.molimm.2010.09.008
10.1097/00062752-200201000-00002
10.1006/viro.1998.9389
10.1046/j.1365-3148.2002.00408.x
10.4049/jimmunol.164.11.5998
10.1002/jlb.67.4.450
10.1016/j.coi.2005.11.014
10.1128/JVI.00784-09
10.1046/j.1365-2249.2002.01800.x
10.1093/infdis/jiq025
10.1016/j.bbagen.2009.10.006
10.1099/0022-1317-81-9-2155
10.1128/JVI.01604-08
10.1046/j.1365-2567.2000.00093.x
10.1006/viro.1995.0052
10.1371/journal.pntd.0001359
10.1038/sj.gene.6364283
10.1016/j.biocel.2005.02.018
10.1016/S0002-9440(10)63592-4
10.1074/jbc.M110.106260
10.1073/pnas.1008509107
10.1099/vir.0.81199-0
10.1128/JVI.79.4.2413-2419.2005
10.1038/nrmicro3267
10.1016/S1473-3099(04)01103-X
10.1128/JVI.00659-11
10.1099/vir.0.81361-0
10.1038/cmi.2011.1
10.1086/374746
10.2217/fvl.11.79
10.1053/j.spid.2005.05.001
10.1042/BJ20090549
10.1006/viro.1994.1147
10.1038/sj.emboj.7600219
10.1371/journal.pone.0060838
10.5483/BMBRep.2013.46.7.055
10.4049/jimmunol.179.9.6107
10.1128/JVI.79.16.10442-10450.2005
10.4049/jimmunol.168.2.554
10.1126/science.1057269
10.1073/pnas.93.8.3602
10.1016/S1081-1206(10)62586-0
10.1016/j.chom.2010.07.007
10.1006/viro.2001.0836
10.2174/156652409787581628
10.1002/cbic.200600223
10.1179/096805100101532414
10.1086/420830
10.1038/78645
10.1160/TH05-03-0153
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
Distributed under a Creative Commons Attribution 4.0 International License
2014 Escudero-Pérez et al 2014 Escudero-Pérez et al
2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Escudero-Pérez B, Volchkova VA, Dolnik O, Lawrence P, Volchkov VE (2014) Shed GP of Ebola Virus Triggers Immune Activation and Increased Vascular Permeability. PLoS Pathog 10(11): e1004509. doi:10.1371/journal.ppat.1004509
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2014 Escudero-Pérez et al 2014 Escudero-Pérez et al
– notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Escudero-Pérez B, Volchkova VA, Dolnik O, Lawrence P, Volchkov VE (2014) Shed GP of Ebola Virus Triggers Immune Activation and Increased Vascular Permeability. PLoS Pathog 10(11): e1004509. doi:10.1371/journal.ppat.1004509
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
1XC
5PM
DOA
DOI 10.1371/journal.ppat.1004509
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList




MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Shed GP of Ebola Virus: Immune Activation and Vascular Permeability
EISSN 1553-7374
ExternalDocumentID 1685290549
oai_doaj_org_article_ffe2e0b441fa45c6bc54f04f94c742bd
PMC4239094
oai:HAL:hal-01911315v1
A393518095
25412102
10_1371_journal_ppat_1004509
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
~8M
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PV9
RIG
RZL
WOQ
7X8
PUEGO
1XC
BAIFH
BBTPI
5PM
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c733t-2af4c27a2f05d00b9723fd2d89bc83b851f3432b1f2f0ff823a2da367ff0751b3
IEDL.DBID DOA
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345515800032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7374
1553-7366
IngestDate Fri Nov 26 17:14:16 EST 2021
Mon Nov 10 04:25:47 EST 2025
Tue Nov 04 02:00:00 EST 2025
Sat Nov 29 15:01:06 EST 2025
Fri Sep 05 10:42:44 EDT 2025
Tue Nov 11 10:18:35 EST 2025
Tue Nov 04 17:52:05 EST 2025
Thu Nov 13 15:01:09 EST 2025
Thu Nov 13 15:38:50 EST 2025
Mon Jul 21 05:49:42 EDT 2025
Sat Nov 29 03:58:04 EST 2025
Tue Nov 18 20:45:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Human Umbilical Vein Endothelial Cells
Ebolavirus
Antigens
CD
Hemorrhagic Fever
Dendritic Cells
Guinea Pigs
Toll-Like Receptor 4
Cytokines
Humans
Viral Proteins
Macrophages
Animals
Membrane Glycoproteins
Ebola
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c733t-2af4c27a2f05d00b9723fd2d89bc83b851f3432b1f2f0ff823a2da367ff0751b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC4239094
Conceived and designed the experiments: BEP VAV OD VEV. Performed the experiments: BEP VAV OD PL. Analyzed the data: BEP VAV VEV PL. Contributed reagents/materials/analysis tools: BEP VAV PL VEV. Wrote the paper: BEP PL VEV.
The authors have declared that no competing interests exist.
ORCID 0000-0002-7637-045X
0000-0003-3655-0525
0000-0001-7896-8706
OpenAccessLink https://doaj.org/article/ffe2e0b441fa45c6bc54f04f94c742bd
PMID 25412102
PQID 1627073272
PQPubID 23479
ParticipantIDs plos_journals_1685290549
doaj_primary_oai_doaj_org_article_ffe2e0b441fa45c6bc54f04f94c742bd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4239094
hal_primary_oai_HAL_hal_01911315v1
proquest_miscellaneous_1627073272
gale_infotracmisc_A393518095
gale_infotracacademiconefile_A393518095
gale_incontextgauss_ISR_A393518095
gale_incontextgauss_ISN_A393518095
pubmed_primary_25412102
crossref_primary_10_1371_journal_ppat_1004509
crossref_citationtrail_10_1371_journal_ppat_1004509
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References EI Ryabchikova (ref66) 1999; 235
P Garred (ref51) 2006; 7
JB Moe (ref80) 1981; 13
D Burzyn (ref77) 2004; 78
CI Caescu (ref34) 2009; 424
C Cilloniz (ref72) 2011; 85
B Beutler (ref64) 2002; 9
S Mahanty (ref5) 2004; 4
VA Volchkova (ref14) 1999; 265
D Dube (ref48) 2010; 107
N Wauquier (ref71) 2010
A Okumura (ref52) 2010; 84
T Shimizu (ref56) 2009; 1790
N Alazard-Dany (ref17) 2006; 87
ZY Yang (ref35) 2000; 6
NM Lubaki (ref30) 2013; 87
A Sanchez (ref11) 1996; 93
SA Jeffers (ref16) 2002; 76
O Dolnik (ref21) 2004; 23
YJ Ma (ref58) 2013; 46
H Feldmann (ref7) 1994; 199
H Feldmann (ref24) 2011; 377
G Tal (ref75) 2004; 189
A Sanchez (ref9) 1993; 29
LE Hensley (ref63) 2002; 80
A Groseth (ref73) 2012; 8
VE Volchkov (ref12) 1998; 95
X Ji (ref46) 2005; 86
TW Geisbert (ref68) 2003; 163
S Baize (ref1) 2014
M Brudner (ref43) 2013; 8
A Fuchs (ref45) 2010; 8
M Mohamadzadeh (ref4) 2009; 9
O Martinez (ref27) 2013; 87
RA Ezekowitz (ref38) 2003; 187
V Wahl-Jensen (ref32) 2005; 79
IC Michelow (ref47) 2011; 203
ref8
VE Volchkov (ref81) 2001; 291
KH Rubins (ref33) 2007; 8
A Du Toit (ref2) 2014; 12
M Bray (ref26) 2005; 37
SY Chan (ref36) 2000; 81
HD Brightbill (ref61) 2000; 101
D Falzarano (ref13) 2006; 7
LM Ganley-Leal (ref53) 2010; 48
VE Volchkov (ref22) 1995; 214
SR Zaki (ref23) 1999; 235
JE Lee (ref18) 2008; 454
A Takada (ref25) 2012; 3
VA Volchkova (ref10) 1998; 250
V Wahl-Jensen (ref31) 2011; 5
M Wang (ref57) 2011; 8
LM Haynes (ref76) 2001; 75
VE Volchkov (ref15) 1999; 235
B Daubeuf (ref79) 2007; 179
BL Ligon (ref3) 2005; 16
K Takahashi (ref41) 2006; 18
LE Hensley (ref69) 2005; 94
M Mehedi (ref6) 2011; 6
KA Zarember (ref55) 2002; 168
U Stroher (ref65) 2001; 75
XH Xie (ref74) 2008; 31
M Muzio (ref54) 2000; 164
S Thiel (ref39) 2012; 169
VM Wahl-Jensen (ref67) 2005; 79
O Martinez (ref19) 2011; 204
A Fuchs (ref44) 2011; 412
G Zhang (ref60) 2000; 6
O Reynard (ref20) 2009; 83
S Baize (ref62) 2002; 128
JA Royall (ref70) 1989; 257
M Mateo (ref82) 2011; 204
A Marzi (ref49) 2007; 196
DC Kilpatrick (ref40) 2002; 12
D Babovic-Vuksanovic (ref50) 1999; 82
M Muzio (ref59) 2000; 67
A Bukreyev (ref78) 2008; 82
S Mahanty (ref29) 2003; 170
VE Volchkov (ref37) 2000; 277
IC Michelow (ref42) 2010; 285
M Gupta (ref28) 2001; 284
23616668 - J Virol. 2013 Jul;87(13):7471-85
11239157 - Science. 2001 Mar 9;291(5510):1965-9
10820283 - J Immunol. 2000 Jun 1;164(11):5998-6004
16099912 - J Gen Virol. 2005 Sep;86(Pt 9):2535-42
12438572 - J Virol. 2002 Dec;76(24):12463-72
10071515 - Ann Allergy Asthma Immunol. 1999 Feb;82(2):134-8, 141; quiz 142-3
10950971 - J Gen Virol. 2000 Sep;81(Pt 9):2155-9
18615077 - Nature. 2008 Jul 10;454(7201):177-82
21734050 - J Virol. 2011 Sep;85(17):9060-8
10932225 - Nat Med. 2000 Aug;6(8):886-9
21269656 - Virology. 2011 Mar 30;412(1):101-9
22028943 - PLoS Negl Trop Dis. 2011 Oct;5(10):e1359
12626527 - J Immunol. 2003 Mar 15;170(6):2797-801
19840833 - Biochim Biophys Acta. 2009 Dec;1790(12):1705-10
9792851 - Virology. 1998 Oct 25;250(2):408-14
11803049 - Immunol Lett. 2002 Mar 1;80(3):169-79
12792848 - J Infect Dis. 2003 Jun 15;187 Suppl 2:S335-9
15288821 - Lancet Infect Dis. 2004 Aug;4(8):487-98
11982604 - Clin Exp Immunol. 2002 Apr;128(1):163-8
20957152 - PLoS Negl Trop Dis. 2010;4(10). pii: e837. doi: 10.1371/journal.pntd.0000837
11352664 - Virology. 2001 May 25;284(1):20-5
9893381 - Curr Top Microbiol Immunol. 1999;235:97-116
15681442 - J Virol. 2005 Feb;79(4):2413-9
16044395 - Semin Pediatr Infect Dis. 2005 Jul;16(3):219-24
21288816 - J Infect Dis. 2011 Jan 15;203(2):175-9
17940955 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S237-46
8122375 - Virology. 1994 Mar;199(2):469-73
22670777 - Clin Exp Immunol. 2012 Jul;169(1):38-48
11602714 - J Virol. 2001 Nov;75(22):10730-7
23573288 - PLoS One. 2013;8(4):e60838
16113813 - Thromb Haemost. 2005 Aug;94(2):254-61
20817853 - Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16637-42
18842713 - J Virol. 2008 Dec;82(24):12191-204
11753071 - Curr Opin Hematol. 2002 Jan;9(1):2-10
22046196 - Future Virol. 2011 Sep;6(9):1091-1106
21084112 - Lancet. 2011 Mar 5;377(9768):849-62
19715556 - Biochem J. 2009 Nov 15;424(1):79-88
22876185 - PLoS Pathog. 2012;8(8):e1002847
23884105 - BMB Rep. 2013 Jul;46(7):376-81
20709295 - Cell Host Microbe. 2010 Aug 19;8(2):186-95
20956019 - Mol Immunol. 2010 Nov-Dec;48(1-3):82-8
15103332 - EMBO J. 2004 May 19;23(10):2175-84
16051836 - J Virol. 2005 Aug;79(16):10442-50
11012747 - Immunology. 2000 Sep;101(1):1-10
19275625 - Curr Mol Med. 2009 Mar;9(2):174-85
10603327 - Virology. 1999 Dec 5;265(1):164-71
11521070 - J Endotoxin Res. 2000;6(6):453-7
11062045 - Virology. 2000 Nov 10;277(1):147-55
17725815 - Genome Biol. 2007;8(8):R174
22363323 - Front Microbiol. 2012 Feb 06;3:34
10770275 - J Leukoc Biol. 2000 Apr;67(4):450-6
21987737 - J Infect Dis. 2011 Nov;204 Suppl 3:S1011-20
9576958 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5762-7
7014628 - J Clin Microbiol. 1981 Apr;13(4):791-3
11777946 - J Immunol. 2002 Jan 15;168(2):554-61
15896665 - Int J Biochem Cell Biol. 2005 Aug;37(8):1560-6
8219816 - Arch Virol Suppl. 1993;7:81-100
9893377 - Curr Top Microbiol Immunol. 1999;235:35-47
8553543 - Virology. 1995 Dec 20;214(2):421-30
16368230 - Curr Opin Immunol. 2006 Feb;18(1):16-23
17947685 - J Immunol. 2007 Nov 1;179(9):6107-14
2610269 - Am J Physiol. 1989 Dec;257(6 Pt 1):L399-410
8622982 - Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3602-7
15143473 - J Infect Dis. 2004 Jun 1;189(11):2057-63
16603527 - J Gen Virol. 2006 May;87(Pt 5):1247-57
20516066 - J Biol Chem. 2010 Aug 6;285(32):24729-39
8237108 - Virus Res. 1993 Sep;29(3):215-40
18785522 - Zhonghua Jie He He Hu Xi Za Zhi. 2008 Mar;31(3):213-7
14694089 - J Virol. 2004 Jan;78(2):576-84
9893383 - Curr Top Microbiol Immunol. 1999;235:145-73
16977667 - Chembiochem. 2006 Oct;7(10):1605-11
14633609 - Am J Pathol. 2003 Dec;163(6):2371-82
21987758 - J Infect Dis. 2011 Nov;204 Suppl 3:S825-32
19587051 - J Virol. 2009 Sep;83(18):9596-601
21383675 - Cell Mol Immunol. 2011 May;8(3):265-75
11602743 - J Virol. 2001 Nov;75(22):11025-33
24738640 - N Engl J Med. 2014 Oct 9;371(15):1418-25
16395391 - Genes Immun. 2006 Mar;7(2):85-94
12473150 - Transfus Med. 2002 Dec;12(6):335-52
23345511 - J Virol. 2013 Apr;87(7):3801-14
19846529 - J Virol. 2010 Jan;84(1):27-33
References_xml – volume: 204
  start-page: S825
  year: 2011
  ident: ref19
  article-title: Impact of Ebola mucin-like domain on antiglycoprotein antibody responses induced by Ebola virus-like particles
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jir295
– volume: 196
  start-page: S237
  year: 2007
  ident: ref49
  article-title: Analysis of the interaction of Ebola virus glycoprotein with DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) and its homologue DC-SIGNR
  publication-title: J Infect Dis
  doi: 10.1086/520607
– volume: 277
  start-page: 147
  year: 2000
  ident: ref37
  article-title: Molecular characterization of guinea pig-adapted variants of Ebola virus
  publication-title: Virology
  doi: 10.1006/viro.2000.0572
– volume: 170
  start-page: 2797
  year: 2003
  ident: ref29
  article-title: Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses
  publication-title: J Immunol
  doi: 10.4049/jimmunol.170.6.2797
– volume: 78
  start-page: 576
  year: 2004
  ident: ref77
  article-title: Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus
  publication-title: J Virol
  doi: 10.1128/JVI.78.2.576-584.2004
– volume: 95
  start-page: 5762
  year: 1998
  ident: ref12
  article-title: Processing of the Ebola virus glycoprotein by the proprotein convertase furin
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.10.5762
– volume: 377
  start-page: 849
  year: 2011
  ident: ref24
  article-title: Ebola haemorrhagic fever
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60667-8
– volume: 8
  start-page: R174
  year: 2007
  ident: ref33
  article-title: The temporal program of peripheral blood gene expression in the response of nonhuman primates to Ebola hemorrhagic fever
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-8-r174
– volume: 169
  start-page: 38
  year: 2012
  ident: ref39
  article-title: Mannan-binding lectin (MBL)-associated serine protease-1 (MASP-1), a serine protease associated with humoral pattern-recognition molecules: normal and acute-phase levels in serum and stoichiometry of lectin pathway components
  publication-title: Clin Exp Immunol
  doi: 10.1111/j.1365-2249.2012.04584.x
– volume: 3
  start-page: 34
  year: 2012
  ident: ref25
  article-title: Filovirus tropism: cellular molecules for viral entry
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2012.00034
– volume: 235
  start-page: 145
  year: 1999
  ident: ref66
  article-title: Animal pathology of filoviral infections
  publication-title: Curr Top Microbiol Immunol
– volume: 29
  start-page: 215
  year: 1993
  ident: ref9
  article-title: Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus
  publication-title: Virus Res
  doi: 10.1016/0168-1702(93)90063-S
– volume: 235
  start-page: 97
  year: 1999
  ident: ref23
  article-title: Pathologic features of filovirus infections in humans
  publication-title: Curr Top Microbiol Immunol
– volume: 75
  start-page: 10730
  year: 2001
  ident: ref76
  article-title: Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus
  publication-title: J Virol
  doi: 10.1128/JVI.75.22.10730-10737.2001
– volume: 87
  start-page: 7471
  year: 2013
  ident: ref30
  article-title: The lack of maturation of Ebola virus-infected dendritic cells results from the cooperative effect of at least two viral domains
  publication-title: J Virol
  doi: 10.1128/JVI.03316-12
– volume: 75
  start-page: 11025
  year: 2001
  ident: ref65
  article-title: Infection and activation of monocytes by Marburg and Ebola viruses
  publication-title: J Virol
  doi: 10.1128/JVI.75.22.11025-11033.2001
– volume: 204
  start-page: S1011
  year: 2011
  ident: ref82
  article-title: VP24 is a molecular determinant of Ebola virus virulence in guinea pigs
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jir338
– volume: 454
  start-page: 177
  year: 2008
  ident: ref18
  article-title: Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor
  publication-title: Nature
  doi: 10.1038/nature07082
– volume: 8
  start-page: e1002847
  year: 2012
  ident: ref73
  article-title: The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002847
– volume: 76
  start-page: 12463
  year: 2002
  ident: ref16
  article-title: Covalent modifications of the ebola virus glycoprotein
  publication-title: J Virol
  doi: 10.1128/JVI.76.24.12463-12472.2002
– volume: 80
  start-page: 169
  year: 2002
  ident: ref63
  article-title: Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily
  publication-title: Immunol Lett
  doi: 10.1016/S0165-2478(01)00327-3
– volume: 412
  start-page: 101
  year: 2011
  ident: ref44
  article-title: The lectin pathway of complement activation contributes to protection from West Nile virus infection
  publication-title: Virology
  doi: 10.1016/j.virol.2011.01.003
– volume: 87
  start-page: 3801
  year: 2013
  ident: ref27
  article-title: Ebola virus exploits a monocyte differentiation program to promote its entry
  publication-title: J Virol
  doi: 10.1128/JVI.02695-12
– volume: 265
  start-page: 164
  year: 1999
  ident: ref14
  article-title: Delta-peptide is the carboxy-terminal cleavage fragment of the nonstructural small glycoprotein sGP of Ebola virus
  publication-title: Virology
  doi: 10.1006/viro.1999.0034
– ident: ref8
  doi: 10.1007/978-3-7091-9300-6_8
– volume: 13
  start-page: 791
  year: 1981
  ident: ref80
  article-title: Plaque assay for Ebola virus
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.13.4.791-793.1981
– volume: 31
  start-page: 213
  year: 2008
  ident: ref74
  article-title: [Toll-like receptor 4 expression and function of respiratory syncytial virus-infected airway epithelial cells]
  publication-title: Zhonghua Jie He He Hu Xi Za Zhi
– volume: 84
  start-page: 27
  year: 2010
  ident: ref52
  article-title: Interaction between Ebola virus glycoprotein and host toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1
  publication-title: J Virol
  doi: 10.1128/JVI.01462-09
– volume: 48
  start-page: 82
  year: 2010
  ident: ref53
  article-title: Differential regulation of TLR4 expression in human B cells and monocytes
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2010.09.008
– volume: 9
  start-page: 2
  year: 2002
  ident: ref64
  article-title: Toll-like receptors: how they work and what they do
  publication-title: Curr Opin Hematol
  doi: 10.1097/00062752-200201000-00002
– volume: 250
  start-page: 408
  year: 1998
  ident: ref10
  article-title: The nonstructural small glycoprotein sGP of Ebola virus is secreted as an antiparallel-orientated homodimer
  publication-title: Virology
  doi: 10.1006/viro.1998.9389
– volume: 12
  start-page: 335
  year: 2002
  ident: ref40
  article-title: Mannan-binding lectin and its role in innate immunity
  publication-title: Transfus Med
  doi: 10.1046/j.1365-3148.2002.00408.x
– volume: 164
  start-page: 5998
  year: 2000
  ident: ref54
  article-title: Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.164.11.5998
– volume: 67
  start-page: 450
  year: 2000
  ident: ref59
  article-title: Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes
  publication-title: J Leukoc Biol
  doi: 10.1002/jlb.67.4.450
– volume: 18
  start-page: 16
  year: 2006
  ident: ref41
  article-title: The mannose-binding lectin: a prototypic pattern recognition molecule
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2005.11.014
– volume: 83
  start-page: 9596
  year: 2009
  ident: ref20
  article-title: Ebolavirus glycoprotein GP masks both its own epitopes and the presence of cellular surface proteins
  publication-title: J Virol
  doi: 10.1128/JVI.00784-09
– volume: 128
  start-page: 163
  year: 2002
  ident: ref62
  article-title: Inflammatory responses in Ebola virus-infected patients
  publication-title: Clin Exp Immunol
  doi: 10.1046/j.1365-2249.2002.01800.x
– volume: 203
  start-page: 175
  year: 2011
  ident: ref47
  article-title: High-dose mannose-binding lectin therapy for Ebola virus infection
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiq025
– volume: 1790
  start-page: 1705
  year: 2009
  ident: ref56
  article-title: Mannose binding lectin and lung collectins interact with Toll-like receptor 4 and MD-2 by different mechanisms
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagen.2009.10.006
– volume: 81
  start-page: 2155
  year: 2000
  ident: ref36
  article-title: Differential induction of cellular detachment by envelope glycoproteins of Marburg and Ebola (Zaire) viruses
  publication-title: J Gen Virol
  doi: 10.1099/0022-1317-81-9-2155
– volume: 82
  start-page: 12191
  year: 2008
  ident: ref78
  article-title: The secreted form of respiratory syncytial virus G glycoprotein helps the virus evade antibody-mediated restriction of replication by acting as an antigen decoy and through effects on Fc receptor-bearing leukocytes
  publication-title: J Virol
  doi: 10.1128/JVI.01604-08
– volume: 101
  start-page: 1
  year: 2000
  ident: ref61
  article-title: Toll-like receptors: molecular mechanisms of the mammalian immune response
  publication-title: Immunology
  doi: 10.1046/j.1365-2567.2000.00093.x
– volume: 214
  start-page: 421
  year: 1995
  ident: ref22
  article-title: GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases
  publication-title: Virology
  doi: 10.1006/viro.1995.0052
– volume: 5
  start-page: e1359
  year: 2011
  ident: ref31
  article-title: Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0001359
– volume: 7
  start-page: 85
  year: 2006
  ident: ref51
  article-title: Mannose-binding lectin and its genetic variants
  publication-title: Genes Immun
  doi: 10.1038/sj.gene.6364283
– volume: 37
  start-page: 1560
  year: 2005
  ident: ref26
  article-title: Ebola virus: the role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2005.02.018
– year: 2010
  ident: ref71
  article-title: Human fatal zaire ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis
  publication-title: PLoS Negl Trop Dis 4
– volume: 163
  start-page: 2371
  year: 2003
  ident: ref68
  article-title: Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)63592-4
– volume: 285
  start-page: 24729
  year: 2010
  ident: ref42
  article-title: A novel L-ficolin/mannose-binding lectin chimeric molecule with enhanced activity against Ebola virus
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.106260
– volume: 107
  start-page: 16637
  year: 2010
  ident: ref48
  article-title: Cell adhesion-dependent membrane trafficking of a binding partner for the ebolavirus glycoprotein is a determinant of viral entry
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1008509107
– volume: 86
  start-page: 2535
  year: 2005
  ident: ref46
  article-title: Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.81199-0
– volume: 79
  start-page: 2413
  year: 2005
  ident: ref32
  article-title: Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages
  publication-title: J Virol
  doi: 10.1128/JVI.79.4.2413-2419.2005
– volume: 12
  start-page: 312
  year: 2014
  ident: ref2
  article-title: Ebola virus in West Africa
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3267
– volume: 4
  start-page: 487
  year: 2004
  ident: ref5
  article-title: Pathogenesis of filoviral haemorrhagic fevers
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(04)01103-X
– volume: 85
  start-page: 9060
  year: 2011
  ident: ref72
  article-title: Functional genomics reveals the induction of inflammatory response and metalloproteinase gene expression during lethal Ebola virus infection
  publication-title: J Virol
  doi: 10.1128/JVI.00659-11
– volume: 87
  start-page: 1247
  year: 2006
  ident: ref17
  article-title: Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.81361-0
– volume: 8
  start-page: 265
  year: 2011
  ident: ref57
  article-title: Mannan-binding lectin directly interacts with Toll-like receptor 4 and suppresses lipopolysaccharide-induced inflammatory cytokine secretion from THP-1 cells
  publication-title: Cell Mol Immunol
  doi: 10.1038/cmi.2011.1
– volume: 187
  start-page: S335
  year: 2003
  ident: ref38
  article-title: Role of the mannose-binding lectin in innate immunity
  publication-title: J Infect Dis
  doi: 10.1086/374746
– year: 2014
  ident: ref1
  article-title: Emergence of Zaire Ebola Virus Disease in Guinea - Preliminary Report
  publication-title: N Engl J Med
– volume: 6
  start-page: 1091
  year: 2011
  ident: ref6
  article-title: Clinical aspects of Marburg hemorrhagic fever
  publication-title: Future Virol
  doi: 10.2217/fvl.11.79
– volume: 16
  start-page: 219
  year: 2005
  ident: ref3
  article-title: Outbreak of Marburg hemorrhagic fever in Angola: a review of the history of the disease and its biological aspects
  publication-title: Semin Pediatr Infect Dis
  doi: 10.1053/j.spid.2005.05.001
– volume: 424
  start-page: 79
  year: 2009
  ident: ref34
  article-title: Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10
  publication-title: Biochem J
  doi: 10.1042/BJ20090549
– volume: 199
  start-page: 469
  year: 1994
  ident: ref7
  article-title: Characterization of filoviruses based on differences in structure and antigenicity of the virion glycoprotein
  publication-title: Virology
  doi: 10.1006/viro.1994.1147
– volume: 23
  start-page: 2175
  year: 2004
  ident: ref21
  article-title: Ectodomain shedding of the glycoprotein GP of Ebola virus
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600219
– volume: 8
  start-page: e60838
  year: 2013
  ident: ref43
  article-title: Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060838
– volume: 46
  start-page: 376
  year: 2013
  ident: ref58
  article-title: Mouse mannose-binding lectin-A and ficolin-A inhibit lipopolysaccharide-mediated pro-inflammatory responses on mast cells
  publication-title: BMB Rep
  doi: 10.5483/BMBRep.2013.46.7.055
– volume: 179
  start-page: 6107
  year: 2007
  ident: ref79
  article-title: TLR4/MD-2 monoclonal antibody therapy affords protection in experimental models of septic shock
  publication-title: J Immunol
  doi: 10.4049/jimmunol.179.9.6107
– volume: 79
  start-page: 10442
  year: 2005
  ident: ref67
  article-title: Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function
  publication-title: J Virol
  doi: 10.1128/JVI.79.16.10442-10450.2005
– volume: 235
  start-page: 35
  year: 1999
  ident: ref15
  article-title: Processing of the Ebola virus glycoprotein
  publication-title: Curr Top Microbiol Immunol
– volume: 168
  start-page: 554
  year: 2002
  ident: ref55
  article-title: Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines
  publication-title: J Immunol
  doi: 10.4049/jimmunol.168.2.554
– volume: 291
  start-page: 1965
  year: 2001
  ident: ref81
  article-title: Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity
  publication-title: Science
  doi: 10.1126/science.1057269
– volume: 93
  start-page: 3602
  year: 1996
  ident: ref11
  article-title: The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.8.3602
– volume: 82
  start-page: 134
  year: 1999
  ident: ref50
  article-title: Mannose-binding lectin (MBL) deficiency. Variant alleles in a midwestern population of the United States
  publication-title: Ann Allergy Asthma Immunol
  doi: 10.1016/S1081-1206(10)62586-0
– volume: 8
  start-page: 186
  year: 2010
  ident: ref45
  article-title: Direct complement restriction of flavivirus infection requires glycan recognition by mannose-binding lectin
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.07.007
– volume: 284
  start-page: 20
  year: 2001
  ident: ref28
  article-title: Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro
  publication-title: Virology
  doi: 10.1006/viro.2001.0836
– volume: 257
  start-page: L399
  year: 1989
  ident: ref70
  article-title: Tumor necrosis factor and interleukin 1 alpha increase vascular endothelial permeability
  publication-title: Am J Physiol
– volume: 9
  start-page: 174
  year: 2009
  ident: ref4
  article-title: Potential factors induced by filoviruses that lead to immune supression
  publication-title: Curr Mol Med
  doi: 10.2174/156652409787581628
– volume: 7
  start-page: 1605
  year: 2006
  ident: ref13
  article-title: Structure-function analysis of the soluble glycoprotein, sGP, of Ebola virus
  publication-title: Chembiochem
  doi: 10.1002/cbic.200600223
– volume: 6
  start-page: 453
  year: 2000
  ident: ref60
  article-title: Molecular mechanisms of NF-kappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors
  publication-title: J Endotoxin Res
  doi: 10.1179/096805100101532414
– volume: 189
  start-page: 2057
  year: 2004
  ident: ref75
  article-title: Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease
  publication-title: J Infect Dis
  doi: 10.1086/420830
– volume: 6
  start-page: 886
  year: 2000
  ident: ref35
  article-title: Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury
  publication-title: Nat Med
  doi: 10.1038/78645
– volume: 94
  start-page: 254
  year: 2005
  ident: ref69
  article-title: The contribution of the endothelium to the development of coagulation disorders that characterize Ebola hemorrhagic fever in primates
  publication-title: Thromb Haemost
  doi: 10.1160/TH05-03-0153
– reference: 16113813 - Thromb Haemost. 2005 Aug;94(2):254-61
– reference: 8622982 - Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3602-7
– reference: 12792848 - J Infect Dis. 2003 Jun 15;187 Suppl 2:S335-9
– reference: 18842713 - J Virol. 2008 Dec;82(24):12191-204
– reference: 11753071 - Curr Opin Hematol. 2002 Jan;9(1):2-10
– reference: 12438572 - J Virol. 2002 Dec;76(24):12463-72
– reference: 15143473 - J Infect Dis. 2004 Jun 1;189(11):2057-63
– reference: 7014628 - J Clin Microbiol. 1981 Apr;13(4):791-3
– reference: 16395391 - Genes Immun. 2006 Mar;7(2):85-94
– reference: 21734050 - J Virol. 2011 Sep;85(17):9060-8
– reference: 10932225 - Nat Med. 2000 Aug;6(8):886-9
– reference: 11239157 - Science. 2001 Mar 9;291(5510):1965-9
– reference: 21084112 - Lancet. 2011 Mar 5;377(9768):849-62
– reference: 15681442 - J Virol. 2005 Feb;79(4):2413-9
– reference: 19587051 - J Virol. 2009 Sep;83(18):9596-601
– reference: 19715556 - Biochem J. 2009 Nov 15;424(1):79-88
– reference: 10950971 - J Gen Virol. 2000 Sep;81(Pt 9):2155-9
– reference: 18785522 - Zhonghua Jie He He Hu Xi Za Zhi. 2008 Mar;31(3):213-7
– reference: 21987737 - J Infect Dis. 2011 Nov;204 Suppl 3:S1011-20
– reference: 10770275 - J Leukoc Biol. 2000 Apr;67(4):450-6
– reference: 10071515 - Ann Allergy Asthma Immunol. 1999 Feb;82(2):134-8, 141; quiz 142-3
– reference: 11982604 - Clin Exp Immunol. 2002 Apr;128(1):163-8
– reference: 16977667 - Chembiochem. 2006 Oct;7(10):1605-11
– reference: 16044395 - Semin Pediatr Infect Dis. 2005 Jul;16(3):219-24
– reference: 22028943 - PLoS Negl Trop Dis. 2011 Oct;5(10):e1359
– reference: 9576958 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5762-7
– reference: 17940955 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S237-46
– reference: 11062045 - Virology. 2000 Nov 10;277(1):147-55
– reference: 15103332 - EMBO J. 2004 May 19;23(10):2175-84
– reference: 24738640 - N Engl J Med. 2014 Oct 9;371(15):1418-25
– reference: 20817853 - Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16637-42
– reference: 23616668 - J Virol. 2013 Jul;87(13):7471-85
– reference: 9893377 - Curr Top Microbiol Immunol. 1999;235:35-47
– reference: 23884105 - BMB Rep. 2013 Jul;46(7):376-81
– reference: 14694089 - J Virol. 2004 Jan;78(2):576-84
– reference: 15896665 - Int J Biochem Cell Biol. 2005 Aug;37(8):1560-6
– reference: 16603527 - J Gen Virol. 2006 May;87(Pt 5):1247-57
– reference: 11602714 - J Virol. 2001 Nov;75(22):10730-7
– reference: 17947685 - J Immunol. 2007 Nov 1;179(9):6107-14
– reference: 10603327 - Virology. 1999 Dec 5;265(1):164-71
– reference: 11012747 - Immunology. 2000 Sep;101(1):1-10
– reference: 11352664 - Virology. 2001 May 25;284(1):20-5
– reference: 21987758 - J Infect Dis. 2011 Nov;204 Suppl 3:S825-32
– reference: 8122375 - Virology. 1994 Mar;199(2):469-73
– reference: 11521070 - J Endotoxin Res. 2000;6(6):453-7
– reference: 16051836 - J Virol. 2005 Aug;79(16):10442-50
– reference: 16099912 - J Gen Virol. 2005 Sep;86(Pt 9):2535-42
– reference: 16368230 - Curr Opin Immunol. 2006 Feb;18(1):16-23
– reference: 8219816 - Arch Virol Suppl. 1993;7:81-100
– reference: 9792851 - Virology. 1998 Oct 25;250(2):408-14
– reference: 22046196 - Future Virol. 2011 Sep;6(9):1091-1106
– reference: 22670777 - Clin Exp Immunol. 2012 Jul;169(1):38-48
– reference: 20957152 - PLoS Negl Trop Dis. 2010;4(10). pii: e837. doi: 10.1371/journal.pntd.0000837
– reference: 18615077 - Nature. 2008 Jul 10;454(7201):177-82
– reference: 20516066 - J Biol Chem. 2010 Aug 6;285(32):24729-39
– reference: 22876185 - PLoS Pathog. 2012;8(8):e1002847
– reference: 12626527 - J Immunol. 2003 Mar 15;170(6):2797-801
– reference: 23345511 - J Virol. 2013 Apr;87(7):3801-14
– reference: 21288816 - J Infect Dis. 2011 Jan 15;203(2):175-9
– reference: 17725815 - Genome Biol. 2007;8(8):R174
– reference: 22363323 - Front Microbiol. 2012 Feb 06;3:34
– reference: 20709295 - Cell Host Microbe. 2010 Aug 19;8(2):186-95
– reference: 21269656 - Virology. 2011 Mar 30;412(1):101-9
– reference: 19275625 - Curr Mol Med. 2009 Mar;9(2):174-85
– reference: 14633609 - Am J Pathol. 2003 Dec;163(6):2371-82
– reference: 21383675 - Cell Mol Immunol. 2011 May;8(3):265-75
– reference: 20956019 - Mol Immunol. 2010 Nov-Dec;48(1-3):82-8
– reference: 12473150 - Transfus Med. 2002 Dec;12(6):335-52
– reference: 23573288 - PLoS One. 2013;8(4):e60838
– reference: 8553543 - Virology. 1995 Dec 20;214(2):421-30
– reference: 19846529 - J Virol. 2010 Jan;84(1):27-33
– reference: 15288821 - Lancet Infect Dis. 2004 Aug;4(8):487-98
– reference: 10820283 - J Immunol. 2000 Jun 1;164(11):5998-6004
– reference: 9893381 - Curr Top Microbiol Immunol. 1999;235:97-116
– reference: 19840833 - Biochim Biophys Acta. 2009 Dec;1790(12):1705-10
– reference: 11777946 - J Immunol. 2002 Jan 15;168(2):554-61
– reference: 9893383 - Curr Top Microbiol Immunol. 1999;235:145-73
– reference: 11602743 - J Virol. 2001 Nov;75(22):11025-33
– reference: 11803049 - Immunol Lett. 2002 Mar 1;80(3):169-79
– reference: 8237108 - Virus Res. 1993 Sep;29(3):215-40
– reference: 2610269 - Am J Physiol. 1989 Dec;257(6 Pt 1):L399-410
SSID ssj0041316
Score 2.506866
Snippet During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular...
  During Ebola virus (EBOV) infection a significant amount of surface glycoprotein GP is shed from infected cells in a soluble form due to cleavage by cellular...
SourceID plos
doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1004509
SubjectTerms Animals
Antigens, CD - immunology
Bacteriology
Biology and Life Sciences
Cytokines
Cytokines - immunology
Dendritic Cells - immunology
Dendritic Cells - pathology
Dendritic Cells - virology
Ebola virus
Ebolavirus - immunology
Experiments
Flow cytometry
Guinea Pigs
Health aspects
Hemorrhagic Fever, Ebola - immunology
Host-virus relationships
Human Umbilical Vein Endothelial Cells - immunology
Human Umbilical Vein Endothelial Cells - pathology
Human Umbilical Vein Endothelial Cells - virology
Humans
Immune response
Immune system
Immunological research
Immunology
Infections
Life Sciences
Lymphocytes
Macrophages - immunology
Macrophages - pathology
Macrophages - virology
Medicine and Health Sciences
Membrane Glycoproteins - immunology
Microbiology and Parasitology
Mortality
Permeability
Statistical analysis
Toll-Like Receptor 4 - immunology
Viral infections
Viral Proteins - immunology
Virology
Virus research
SummonAdditionalLinks – databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELeggMQL37DAQAYh8RRIbMdOHgta2aSpqtiH9mbZjr1WmtKqaSftv-cuScsyUSFe03MT350vv1PufkfIZ2WsC96VYAHDY6Gcj4vM5nGWyCADYN4gQjNsQo3H-cVFMfmTKN75gs9V-q3T6dfFwiDdM0AQ7Nd7wLiUWMI1mhxvIi_E41R27XG7VvZePw1L_zYW359iKeRgcTWv_wY371ZN3noNjZ7-7waekScd4KTD1kOek3u-ekEetSMob16Ss5OpL-nPCZ0HemAhz6Xns-W6pqeQtV8CNKRH2EDi6dBt5qBRU5UUwgpWs8PS866UlU4gxvuW9fvmFTkbHZz-OIy7UQuxU5yvYmaCcEwZFpKsTBKLs8hCycq8sC7nFmBZwA5UmwaQCCFn3LDScKlCAMyRWv6aDKp55fcIVZlRIZWBS0SDpbVSCVGkZSaVgvTFR4RvLKBdx0OO4zCudPNxTUE-0mpGo8J0p7CIxNtVi5aH4x_y39G4W1lk0W4ugGV0dyh1CJ75xAIiDEZkTlqXiZCIUAinBLNlRD6ha2jkyaiwEOfSrOtaH52M9RBbmpH7LNsp9Ksn9KUTCnPYrDNd8wOoDPm3epL7PUk47a5_tylu9da2DofHGq8BWE_hBGTXaUT20Is3iql1KvOMFWAP0MvHjWdr_Gsssav8fI0yTEG8Z4pF5E3r6dvbsEw0RHMRUb0z0HuO_i_VbNqQlSPBZFKIt7sf6R15DChUtA2e-2SwWq79e_LQXa9m9fJDc8J_A9evT1s
  priority: 102
  providerName: Public Library of Science
Title Shed GP of Ebola Virus Triggers Immune Activation and Increased Vascular Permeability
URI https://www.ncbi.nlm.nih.gov/pubmed/25412102
https://www.proquest.com/docview/1627073272
https://hal.science/hal-01911315
https://pubmed.ncbi.nlm.nih.gov/PMC4239094
https://doaj.org/article/ffe2e0b441fa45c6bc54f04f94c742bd
http://dx.doi.org/10.1371/journal.ppat.1004509
Volume 10
WOSCitedRecordID wos000345515800032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: M7P
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: 7X7
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: BENPR
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: PIMPY
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access (WRLC)
  customDbUrl:
  eissn: 1553-7374
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0041316
  issn: 1553-7374
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZrtsFeyn623rqgjcGevNqybNmP6UjWQhdMu0L2JCRZagLFCXES6H_fO9sJ8djoy178YJ_j6O58-i65-46QL0Jp46wpwAIq8rkw1s9infpxkLjEAeZ13NXDJsR4nE4mWb436gtrwhp64EZxp85ZZgMNu7ZTPDaJNjF3AXcZN5DV6QKjL6CebTLVxGCIzPXQUxyK44soSdqmuUiEp62Nvi0WCumjAdJgMeLeplRz9-8i9MEUCyR7i7t59TcQ-mct5d7mNHpJDltUSQfNal6RJ7Z8TZ43cybv35Cb66kt6I-czh0dakhm6Wa2XFd0Ban5LeA_OsMuEUuxyaH5iZaqsqCzEiFlBbdu61XpAgK5bai979-Sm9Hw1_dzv52n4BsRRSufKccNE4q5IC6CQOPAMVewIs20SSMN2Mthm6kOHUg4l7JIsUJFiXAOgEWoo3ekV85Le0yoiJVwYeKiBCFfoXUiOM_CIk6EgBzFeiTaKlSalmwcZ17cyfofNAFJR6MZiWaQrRk84u_uWjRkG4_In6GtdrJIlV2fAAeSrQPJxxzII5_R0hLJMEqstrlV66qSF9djOcC-ZSQ4i_8pdNUR-toKuTks1qi2wwFUhiRbHcmTjiS80qb7tCkudW9Z54NLiecAkYfg3PEm9MgxOuVWMZUMkzRmGdgD9PJp66gSPxrr6Eo7X6MMExDUmWAeOWocd_cYFvOaTc4jouPSne_RvVLOpjUjObJIBhl__z_s8YG8AFDKm37PE9JbLdf2I3lmNqtZteyTAzER9THtk6dnw3F-1a9ffTiO8ss-1u7mcCW_-Jn_fgC2SF3w
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELaggOCFn4MFBhiExFNG4jhx8ljQSitKVbFu2ptlO_FaaUqrpp20_567xKkWRMULb1V6Tuw7-_xZvvuOkE9CaWMLk4MFVORzYQo_i3Xqx0FiEwuY13JbF5sQk0l6cZFNHaUQ5sI4DcIZ8WpZ1Tf5-GNZFl-cJpuL0-MwEmErfLxaKWSCBnSCqXz3RBamGN01mI5bpwyuOkxc5ty-lp2dqSbw37npu3OMkuxhV_6GRP8MqLy1Qw2e_MexPSWPHUyl_abFM3KnKJ-TB03hypsX5Ox0XuT0-5QuLT3RcDqm54v1tqIzOOtfAqCkI0w7KWjftNXTqCpzCs4IY-Ch6bkLgKVT2BmKhiv85oCcDU5m34a-K9DgGxFFG58pyw0TitkgzoNAYwUzm7M8zbRJIw1gzmLeqg4tSFibskixXEWJsBaQSqijl6RXwvgPCRWxEjZMbJQghsy1TgTnWZjHiRBw6Ck8ErXGkcaxl2MRjStZX8kJOMU0mpGoMOkU5hF_12rVsHf8Q_4r2n0ni9zb9QMwlnRGktYWrAg04EireGwSbWJuA24zbgRnOvfIR5w1Etk1SgzfuVTbqpKj04nsYyI0MqbFe4V-dYQ-OyG7hMEa5VImQGXI2tWRPOpIgo8w3a_Ncai3hjXsjyU-A4gfwuKIr0OPHOJ8bBVTyTBJY5aBPUAvH9pJL_HVGJhXFsstyjABuwQTzCOvmkWw-wyLeU1P5xHRWR6dfnT_KRfzmuIcaSmDjL_e36X35OFw9nMsx6PJjzfkEeBY3qSIHpHeZr0t3pL75nqzqNbvakfwG2MiaEk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe28iFe-IYFBhiE4Clb4jhx8lhgZRVVVbEP7QVZtmO3laa0atpJ---5y0e1ICaeeKvSs2Pf2ee7-O53hHwUShtnTQ4SUJHPhbF-FuvUj4PEJQ5sXsddVWxCjMfpxUU22SG_2lyYhoPgI14uyuomH38sCnvYcPIQ8Yrq29ODMBJh2-JguVQIBw0mSpB9qhCH8MvYGhOQdskdkYUp-maDyahV1KC-w6TJpruto85pVYH6b1X37gwjJ3s4vL9Zp38GWd44tQaP_vN8H5OHjTlL-3UvT8iOLZ6Se3WBy-tn5OxkZnP6fUIXjh5p8KLp-Xy1Kenpaj6dguFJh5ieYmnftFXWqCpyCkoLY-Wh6XkTKEsncILYGlP8-jk5Gxydfj32m0IOvhFRtPaZctwwoZgL4jwINFY6cznL00ybNNJg9DnMb9WhAwrnUhYplqsoEc6BRRPq6AXpFcCTPUJFrIQLExclaGvmWieC8yzM40QIcI6sR6JWYNI0KOdYbONSVld3ArydmjMS-Scb_nnE37Za1igf_6D_gmthS4sY3dUDEKBsBCeds8wGGuxNp3hsEm1i7gLuMm4EZzr3yAdcSRJROAoM85mqTVnK4clY9jFhGpHV4luJfnaIPjdEbgGTNapJrQCW4erpUO53KEGXmO7bZjjVG9M67o8kPgNXIIQNE1-FHtnDNdoyppRhksYsA3kAX963G0Fi1xjAV9jFBmmYgNOECeaRl_XG2L6GxbyCsfOI6GyZzji6_xTzWQWFjvCVQcZf3T6kd-T-5NtAjobjH6_JAzB3eZ1Juk9669XGviF3zdV6Xq7eVrrhNwLdd34
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shed+GP+of+Ebola+virus+triggers+immune+activation+and+increased+vascular+permeability&rft.jtitle=PLoS+pathogens&rft.au=Escudero-Perez%2C+Beatriz&rft.au=Volchkova%2C+Valentina+A&rft.au=Dolnik%2C+Olga&rft.au=Lawrence%2C+Philip&rft.date=2014-11-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.volume=10&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.ppat.1004509&rft.externalDBID=ISN&rft.externalDocID=A393518095
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon