THE MAXIMAL IDEAL IN THE SPACE OF OPERATORS ON $\boldsymbol {(\sum {\ell }_{q})_{c_{0}}}

We study the isomorphic structure of $(\sum {\ell }_{q})_{c_{0}}\ (1< q<\infty )$ and prove that these spaces are complementably homogeneous. We also show that for any operator T from $(\sum {\ell }_{q})_{c_{0}}$ into ${\ell }_{q}$ , there is a subspace X of $(\sum {\ell }_{q})_{c_{0}}$ that i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society Jg. 106; H. 2; S. 340 - 348
Hauptverfasser: CADAVID, DIEGO CALLE, ZHENG, BENTUO
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge, UK Cambridge University Press 01.10.2022
Schlagworte:
ISSN:0004-9727, 1755-1633
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the isomorphic structure of $(\sum {\ell }_{q})_{c_{0}}\ (1< q<\infty )$ and prove that these spaces are complementably homogeneous. We also show that for any operator T from $(\sum {\ell }_{q})_{c_{0}}$ into ${\ell }_{q}$ , there is a subspace X of $(\sum {\ell }_{q})_{c_{0}}$ that is isometric to $(\sum {\ell }_{q})_{c_{0}}$ and the restriction of T on X has small norm. If T is a bounded linear operator on $(\sum {\ell }_{q})_{c_{0}}$ which is $(\sum {\ell }_{q})_{c_{0}}$ -strictly singular, then for any $\epsilon>0$ , there is a subspace X of $(\sum {\ell }_{q})_{c_{0}}$ which is isometric to $(\sum {\ell }_{q})_{c_{0}}$ with $\|T|_{X}\|<\epsilon $ . As an application, we show that the set of all $(\sum {\ell }_{q})_{c_{0}}$ -strictly singular operators on $(\sum {\ell }_{q})_{c_{0}}$ forms the unique maximal ideal of $\mathcal {L}((\sum {\ell }_{q})_{c_{0}})$ .
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972722000028