Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite
Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF 2 nanopar...
Uloženo v:
| Vydáno v: | Biomaterials Ročník 29; číslo 32; s. 4261 - 4267 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier Ltd
01.11.2008
|
| Témata: | |
| ISSN: | 0142-9612, 1878-5905 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF
2 nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF
2 nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean
±
sd;
n
=
6) was 110
±
11
MPa for the composite containing 30% CaF
2 and 35% whiskers by mass. It matched the 108
±
19
MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF
2 had a cumulative F release of 2.34
±
0.26
mmol/L at 10
weeks. The initial F release rate was 2
μg/(h
cm
2), and the sustained release rate after 10
weeks was 0.29
μg/(h
cm
2). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture. |
|---|---|
| AbstractList | Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF2 nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF2 nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean ± sd; n = 6) was 110 ± 11 MPa for the composite containing 30% of CaF2 and 35% whiskers by mass. It matched the 108 ± 19 MPa of a stress-bearing, non-releasing commercial composite (Tukey’s at 0.05). The composite containing 20% CaF2 had a cumulative F release of 2.34 ± 0.26 mmol/L at 10 weeks. The initial F release rate was 2 µg/(h·cm2), and the sustained release rate after 10 weeks was 0.29 µg/(h·cm2). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture. Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF(2) nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF(2) nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean+/-sd; n=6) was 110+/-11 MPa for the composite containing 30% CaF(2) and 35% whiskers by mass. It matched the 108+/-19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF(2) had a cumulative F release of 2.34+/-0.26 mmol/L at 10 weeks. The initial F release rate was 2 microg/(hcm(2)), and the sustained release rate after 10 weeks was 0.29 microg/(hcm(2)). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture.Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF(2) nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF(2) nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean+/-sd; n=6) was 110+/-11 MPa for the composite containing 30% CaF(2) and 35% whiskers by mass. It matched the 108+/-19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF(2) had a cumulative F release of 2.34+/-0.26 mmol/L at 10 weeks. The initial F release rate was 2 microg/(hcm(2)), and the sustained release rate after 10 weeks was 0.29 microg/(hcm(2)). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture. Abstract Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF2 nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF2 nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean ± sd; n = 6) was 110 ± 11 MPa for the composite containing 30% CaF2 and 35% whiskers by mass. It matched the 108 ± 19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF2 had a cumulative F release of 2.34 ± 0.26 mmol/L at 10 weeks. The initial F release rate was 2 μg/(h cm2 ), and the sustained release rate after 10 weeks was 0.29 μg/(h cm2 ). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture. Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF(2) nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF(2) nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean+/-sd; n=6) was 110+/-11 MPa for the composite containing 30% CaF(2) and 35% whiskers by mass. It matched the 108+/-19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF(2) had a cumulative F release of 2.34+/-0.26 mmol/L at 10 weeks. The initial F release rate was 2 microg/(hcm(2)), and the sustained release rate after 10 weeks was 0.29 microg/(hcm(2)). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture. Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF2 nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF2 nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean +/- sd; n = 6) was 110 +/- 11 MPa for the composite containing 30% CaF2 and 35% whiskers by mass. It matched the 108 +/- 19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF2 had a cumulative F release of 2.34 +/- 0.26 mmol/L at 10 weeks. The initial F release rate was 2 mug/(h cm2), and the sustained release rate after 10 weeks was 0.29 mug/(h cm2). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture. Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF 2 nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF 2 nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean ± sd; n = 6) was 110 ± 11 MPa for the composite containing 30% CaF 2 and 35% whiskers by mass. It matched the 108 ± 19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF 2 had a cumulative F release of 2.34 ± 0.26 mmol/L at 10 weeks. The initial F release rate was 2 μg/(h cm 2), and the sustained release rate after 10 weeks was 0.29 μg/(h cm 2). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture. Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF sub(2) nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF sub(2) nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean+/-sd; n=6) was 110+/-11MPa for the composite containing 30% CaF sub(2) and 35% whiskers by mass. It matched the 108+ /-19MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF sub(2) had a cumulative F release of 2.34+/-0.26mmol/L at 10weeks. The initial F release rate was 2 mu g/(hcm super(2)), and the sustained release rate after 10weeks was 0.29 mu g/(hcm super(2)). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture. |
| Author | Sun, Limin Moreau, Jennifer L. Chow, Laurence C. Xu, Hockin H.K. |
| AuthorAffiliation | 2 Paffenbarger Research Center, American Dental Association Foundation National Institute of Standards and Technology, Gaithersburg, MD 20899, USA 1 Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201 |
| AuthorAffiliation_xml | – name: 2 Paffenbarger Research Center, American Dental Association Foundation National Institute of Standards and Technology, Gaithersburg, MD 20899, USA – name: 1 Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201 |
| Author_xml | – sequence: 1 givenname: Hockin H.K. surname: Xu fullname: Xu, Hockin H.K. email: hxu@umaryland.edu organization: Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201, USA – sequence: 2 givenname: Jennifer L. surname: Moreau fullname: Moreau, Jennifer L. organization: Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201, USA – sequence: 3 givenname: Limin surname: Sun fullname: Sun, Limin organization: Paffenbarger Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA – sequence: 4 givenname: Laurence C. surname: Chow fullname: Chow, Laurence C. organization: Paffenbarger Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18708252$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNksFu1DAURS1URKeFX0ARC3YzfXbiOGFRAYUCUiUWhS2WY790PCT2YDuV-vc4mlJKJdRZRVHOO77Ou0fkwHmHhLyisKJA65PNqrN-VAmDVUNcMYBmBWIFpXhCFrQRzZK3wA_IAmjFlm1N2SE5inED-R0q9owcZggaxtmC_LhMAd1VWhfKmaIfJh-swSLggCpiodcqKD2fFJPVsfB9oQqtBm2n8S_dZdQUBl1SQ-GU89qPWx9twufkaZ8z4ovb5zH5fv7x29nn5cXXT1_O3l0stWAiLRWHrkbTCcZ0Vbe6UqI3rKPIG0ReV00vtGYVo7rtS-RcCcOwEp1hCkCUujwmpzvvdupGNDpHCWqQ22BHFW6kV1b--8XZtbzy15LVwPNvyYLXt4Lgf00Ykxxt1DgMyqGfoqxbTjk09aNgyRnUFRePggzasm1KnsGX97Pfhf6zpAy83QE6-BgD9lLbpJL181XsICnIuRdyI-_3Qs69kCBk7kVWvHmguDtln-EPu2HMG7y2GGTUFp1GYwPqJI23-2lOH2j0YJ3NbfqJNxg3fgpunqEyMgnycm7vXF5oAHhZzjt6_3_Bvil-Ay6AClM |
| CitedBy_id | crossref_primary_10_1002_sia_6998 crossref_primary_10_1016_j_compscitech_2014_07_001 crossref_primary_10_1557_s43578_020_00014_3 crossref_primary_10_1016_j_ijpharm_2020_119596 crossref_primary_10_3390_ma3031674 crossref_primary_10_1016_j_nantod_2024_102204 crossref_primary_10_1016_j_dental_2017_07_012 crossref_primary_10_1016_j_drudis_2018_08_012 crossref_primary_10_1007_s11051_014_2736_0 crossref_primary_10_1016_j_cocom_2024_e00971 crossref_primary_10_1177_0022034509351969 crossref_primary_10_1016_j_ceramint_2016_12_046 crossref_primary_10_3390_ma13214951 crossref_primary_10_1111_ijac_13596 crossref_primary_10_1111_ipd_12890 crossref_primary_10_2217_nnm_14_191 crossref_primary_10_1016_j_jfluchem_2016_11_014 crossref_primary_10_1002_bio_3617 crossref_primary_10_1007_s10854_016_4377_9 crossref_primary_10_3390_jfb11030056 crossref_primary_10_4103_drj_drj_12_24 crossref_primary_10_1016_j_tibtech_2013_05_010 crossref_primary_10_3390_nano15090651 crossref_primary_10_1016_j_dental_2021_03_020 crossref_primary_10_1016_j_jds_2021_09_005 crossref_primary_10_3390_ijms22010417 crossref_primary_10_1111_jerd_12699 crossref_primary_10_1016_j_jdent_2019_103214 crossref_primary_10_1517_13543771003720491 crossref_primary_10_3390_polym13152418 crossref_primary_10_1016_j_carbpol_2014_12_033 crossref_primary_10_1016_j_jdent_2019_103211 crossref_primary_10_1063_5_0055044 crossref_primary_10_51479_cspzl_2012_040 crossref_primary_10_3390_ijms24098295 crossref_primary_10_1016_j_dental_2011_03_016 crossref_primary_10_1016_j_jdent_2024_104844 crossref_primary_10_1016_j_dental_2022_04_007 crossref_primary_10_1016_j_jdent_2020_103306 crossref_primary_10_1038_s41368_019_0048_z crossref_primary_10_1111_jace_12249 crossref_primary_10_1039_C4CC02626H crossref_primary_10_1007_s10853_021_06371_6 crossref_primary_10_3390_ma11122444 crossref_primary_10_1007_s41779_018_0228_x crossref_primary_10_1016_j_dental_2012_01_006 crossref_primary_10_1111_1348_0421_13025 crossref_primary_10_1111_jerd_12964 crossref_primary_10_1039_C6CS00746E crossref_primary_10_1016_j_jdent_2019_07_010 crossref_primary_10_1016_j_jds_2013_08_004 crossref_primary_10_1016_j_matlet_2013_12_006 crossref_primary_10_1016_j_dental_2009_11_161 crossref_primary_10_3390_molecules26185447 crossref_primary_10_3390_nano9071049 crossref_primary_10_1016_j_commatsci_2011_06_009 crossref_primary_10_1016_j_jddst_2025_107430 crossref_primary_10_1179_1743676112Y_0000000075 crossref_primary_10_1016_j_dental_2012_02_007 crossref_primary_10_4012_dmj_2024_362 crossref_primary_10_1016_j_ceramint_2018_04_098 crossref_primary_10_1016_j_dental_2020_05_010 crossref_primary_10_1155_2016_3795976 crossref_primary_10_1177_0022034510364490 crossref_primary_10_1002_mame_200900277 crossref_primary_10_1016_j_jmbbm_2021_104691 crossref_primary_10_1021_ma802152s crossref_primary_10_1093_rb_rbw036 crossref_primary_10_1016_j_jdent_2021_103789 crossref_primary_10_1155_2016_1048320 crossref_primary_10_3390_polym10040369 crossref_primary_10_1177_0022034512450446 crossref_primary_10_1002_pc_27023 crossref_primary_10_1016_j_ortho_2024_100871 crossref_primary_10_1007_s00253_015_7154_4 crossref_primary_10_1016_j_biomaterials_2024_123027 crossref_primary_10_1016_j_dental_2011_08_403 crossref_primary_10_1016_j_dental_2021_12_022 crossref_primary_10_1038_s41598_018_38225_8 crossref_primary_10_1016_j_jds_2023_01_027 crossref_primary_10_1021_cr300143v crossref_primary_10_2341_11_007_L crossref_primary_10_1007_s00784_013_1073_5 crossref_primary_10_1177_0022034510363765 |
| Cites_doi | 10.1016/S0109-5641(96)80037-6 10.1016/0109-5641(95)80041-7 10.1111/j.1151-2916.1998.tb02540.x 10.1080/000163502753509482 10.1016/S0109-5641(99)00039-1 10.14219/jada.archive.1998.0274 10.1177/00220345980770021101 10.1016/S0109-5641(00)00051-8 10.1016/S0142-9612(02)00638-5 10.1002/1097-4636(2000)53:4<381::AID-JBM12>3.0.CO;2-H 10.1016/j.dental.2007.03.003 10.1016/j.dental.2004.10.008 10.1016/S0109-5641(01)00066-5 10.1016/S0142-9612(99)00181-7 10.1590/S1678-77572006000700003 10.1177/154405910508400908 10.1016/j.dental.2004.10.001 10.1002/j.1875-595X.2001.tb00832.x 10.1016/0109-5641(89)90130-9 10.1016/j.dental.2006.01.022 10.1111/j.1875-595X.2000.tb00569.x 10.1177/00220345970760081201 10.1002/jbm.820280205 10.1177/154405910308200111 10.1016/0109-5641(94)90044-2 10.1111/j.1600-0722.1997.tb00231.x 10.6028/jres.109.041 10.1016/j.dental.2003.11.009 10.1159/000261551 10.1177/154405910308201013 10.1016/j.dental.2007.01.002 10.1177/154405910608500807 10.1016/S0142-9612(00)00261-1 10.1016/S0109-5641(02)00034-9 10.1177/154405910708600415 10.1016/S0109-5641(02)00105-7 10.1016/S0109-5641(00)00028-2 10.1177/154405910508400508 10.1177/154405910408301208 10.1016/S0109-5641(02)00042-8 |
| ContentType | Journal Article |
| Copyright | 2008 Elsevier Ltd Elsevier Ltd |
| Copyright_xml | – notice: 2008 Elsevier Ltd – notice: Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7X8 5PM |
| DOI | 10.1016/j.biomaterials.2008.07.037 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database Engineering Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Dentistry |
| EISSN | 1878-5905 |
| EndPage | 4267 |
| ExternalDocumentID | PMC2605014 18708252 10_1016_j_biomaterials_2008_07_037 S0142961208005334 1_s2_0_S0142961208005334 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: R01 DE017974 – fundername: NIDCR NIH HHS grantid: R29 DE012476 – fundername: NIDCR NIH HHS grantid: R01 DE17974 – fundername: NIDCR NIH HHS grantid: R01 DE016416 – fundername: NIDCR NIH HHS grantid: DE16416 – fundername: NIDCR NIH HHS grantid: R01 DE014190 |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAYOK AFCTW AFKWA AJOXV AMFUW PKN RIG AAIAV ABYKQ AJBFU DOVZS 9DU AAYXX CITATION AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7QO 7QP 8FD FR3 P64 7SR 7TB 7U5 8BQ F28 JG9 L7M 7X8 5PM |
| ID | FETCH-LOGICAL-c727t-a50b6edb722c469c4a7fd2b1e58ee5648f7cc2421c9f3e55a7d2e47bd2a0073c3 |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260079700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 |
| IngestDate | Tue Sep 30 16:59:20 EDT 2025 Sat Sep 27 20:22:42 EDT 2025 Sat Sep 27 21:07:53 EDT 2025 Mon Oct 06 18:05:15 EDT 2025 Mon Jul 21 05:46:37 EDT 2025 Sat Nov 29 07:23:39 EST 2025 Tue Nov 18 22:14:19 EST 2025 Fri Feb 23 02:17:06 EST 2024 Sun Feb 23 10:18:54 EST 2025 Tue Oct 14 19:35:36 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 32 |
| Keywords | Tooth caries CaF 2 nanoparticles Dental nanocomposite Stress bearing Fluoride release |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c727t-a50b6edb722c469c4a7fd2b1e58ee5648f7cc2421c9f3e55a7d2e47bd2a0073c3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2605014 |
| PMID | 18708252 |
| PQID | 20939835 |
| PQPubID | 23462 |
| PageCount | 7 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2605014 proquest_miscellaneous_69515086 proquest_miscellaneous_35206457 proquest_miscellaneous_20939835 pubmed_primary_18708252 crossref_citationtrail_10_1016_j_biomaterials_2008_07_037 crossref_primary_10_1016_j_biomaterials_2008_07_037 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2008_07_037 elsevier_clinicalkeyesjournals_1_s2_0_S0142961208005334 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2008_07_037 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-11-01 |
| PublicationDateYYYYMMDD | 2008-11-01 |
| PublicationDate_xml | – month: 11 year: 2008 text: 2008-11-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2008 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Goldberg, Burstone, Hadjinikolaou, Jancar (bib28) 1994; 28 Diaz-Arnold, Holmes, Wistrom, Swift (bib18) 1995; 11 Jokstad, Bayne, Blunck, Tyas, Wilson (bib5) 2001; 51 Dickens, Flaim, Floyd (bib49) 2004; 45 Wilson, McLean (bib19) 1988 Xu, Sun, Weir, Antonucci, Takagi, Chow, Peltz (bib42) 2006; 85 Xu, Burgess (bib26) 2003; 24 Mjör, Moorhead, Dahl (bib3) 2000; 50 Sakaguchi (bib2) 2005; 21 Benelli, Serra, Rodrigues, Cury (bib6) 1993; 27 Lu, Stansbury, Bowman (bib34) 2005; 84 Carey, Spencer, Gove, Eichmiller (bib25) 2003; 82 Glasspoole, Erickson, Davidson (bib14) 2001; 17 Souto, Donly (bib7) 1994; 7 Ellakuria, Triana, Minguez, Soler, Ibaseta, García-Godoy (bib21) 2003; 19 Xu, Weir, Sun (bib44) 2007; 23 Sun, Chow (bib45) 2008; 24 Anusavice, Zhang, Shen (bib17) 2005; 84 Chan, Titus, Chung, Dixon, Wellinghoff, Rawls (bib30) 1999; 15 Tyas, Burrow (bib9) 2002; 27 Mitra, Kedrowski (bib13) 1994; 10 Xu, Eichmiller, Smith, Schumacher, Giuseppetti, Antonucci (bib46) 2002; 13 Ten Cate (bib22) 1997; 105 Drummond, Bapna (bib32) 2003; 19 Dickens, Flaim, Takagi (bib33) 2003; 19 Weigand, Buchalla, Attin (bib11) 2007; 23 Skrtic, Antonucci, Eanes, Eichmiller, Schumacher (bib39) 2000; 53B Asmussen, Peutzfeldt (bib15) 2002; 60 Xu, Weir, Sun, Takagi, Chow (bib43) 2007; 86 Mathis, Ferracane (bib12) 1989; 5 Hsu, Donly, Drake, Wefel (bib8) 1998; 77 Xu, Eichmiller, Antonucci, Flaim (bib24) 2000; 25 Skrtic, Antonucci, Eanes (bib38) 1996; 12 Xu, Quinn, Giuseppetti (bib48) 2004; 83 Ducheyne, Qiu (bib36) 1999; 20 Kielbassa, Schulte-Monting, García-Godoy, Meyer-Lueckel (bib10) 2003; 28 Sarrett (bib1) 2005; 21 Sidhu, Sherriff, Watson (bib20) 1997; 76 Xu, Eichmiller, Antonucci, Schumacher, Ives (bib23) 2000; 16 Lim, Ferracane, Sakaguchi, Condon (bib31) 2002; 18 Itota, Carrick, Yoshiyama, McCabe (bib16) 2004; 20 Xu HHK, Sun L, Takagi S, Chow LC. Dental releasing materials. U.S. Patent Application No. 11/138,182, filed May 26, 2005. Tyas (bib27) 2006; 14 Hench (bib35) 1998; 81 Chow, Sun, Hockey (bib40) 2004; 109 CDC (Center for Disease Control) (bib4) December 2005 Xu (bib47) 2003; 82 Bayne, Thompson, Swift, Stamatiades, Wilkerson (bib29) 1998; 129 Pilliar, Filiaggi, Wells, Grynpas, Kandel (bib37) 2001; 22 Mitra (10.1016/j.biomaterials.2008.07.037_bib13) 1994; 10 Skrtic (10.1016/j.biomaterials.2008.07.037_bib39) 2000; 53B Asmussen (10.1016/j.biomaterials.2008.07.037_bib15) 2002; 60 Hsu (10.1016/j.biomaterials.2008.07.037_bib8) 1998; 77 Ducheyne (10.1016/j.biomaterials.2008.07.037_bib36) 1999; 20 Chan (10.1016/j.biomaterials.2008.07.037_bib30) 1999; 15 Ellakuria (10.1016/j.biomaterials.2008.07.037_bib21) 2003; 19 Mjör (10.1016/j.biomaterials.2008.07.037_bib3) 2000; 50 Pilliar (10.1016/j.biomaterials.2008.07.037_bib37) 2001; 22 Glasspoole (10.1016/j.biomaterials.2008.07.037_bib14) 2001; 17 Ten Cate (10.1016/j.biomaterials.2008.07.037_bib22) 1997; 105 Xu (10.1016/j.biomaterials.2008.07.037_bib42) 2006; 85 Xu (10.1016/j.biomaterials.2008.07.037_bib26) 2003; 24 Sakaguchi (10.1016/j.biomaterials.2008.07.037_bib2) 2005; 21 Souto (10.1016/j.biomaterials.2008.07.037_bib7) 1994; 7 Sun (10.1016/j.biomaterials.2008.07.037_bib45) 2008; 24 Weigand (10.1016/j.biomaterials.2008.07.037_bib11) 2007; 23 Lu (10.1016/j.biomaterials.2008.07.037_bib34) 2005; 84 Benelli (10.1016/j.biomaterials.2008.07.037_bib6) 1993; 27 Drummond (10.1016/j.biomaterials.2008.07.037_bib32) 2003; 19 Xu (10.1016/j.biomaterials.2008.07.037_bib23) 2000; 16 Tyas (10.1016/j.biomaterials.2008.07.037_bib27) 2006; 14 Tyas (10.1016/j.biomaterials.2008.07.037_bib9) 2002; 27 CDC (Center for Disease Control) (10.1016/j.biomaterials.2008.07.037_bib4) Diaz-Arnold (10.1016/j.biomaterials.2008.07.037_bib18) 1995; 11 Bayne (10.1016/j.biomaterials.2008.07.037_bib29) 1998; 129 Wilson (10.1016/j.biomaterials.2008.07.037_bib19) 1988 Xu (10.1016/j.biomaterials.2008.07.037_bib43) 2007; 86 Anusavice (10.1016/j.biomaterials.2008.07.037_bib17) 2005; 84 Itota (10.1016/j.biomaterials.2008.07.037_bib16) 2004; 20 Mathis (10.1016/j.biomaterials.2008.07.037_bib12) 1989; 5 Sarrett (10.1016/j.biomaterials.2008.07.037_bib1) 2005; 21 Goldberg (10.1016/j.biomaterials.2008.07.037_bib28) 1994; 28 Dickens (10.1016/j.biomaterials.2008.07.037_bib49) 2004; 45 Jokstad (10.1016/j.biomaterials.2008.07.037_bib5) 2001; 51 Xu (10.1016/j.biomaterials.2008.07.037_bib46) 2002; 13 Xu (10.1016/j.biomaterials.2008.07.037_bib48) 2004; 83 Hench (10.1016/j.biomaterials.2008.07.037_bib35) 1998; 81 Xu (10.1016/j.biomaterials.2008.07.037_bib44) 2007; 23 Xu (10.1016/j.biomaterials.2008.07.037_bib47) 2003; 82 Xu (10.1016/j.biomaterials.2008.07.037_bib24) 2000; 25 Skrtic (10.1016/j.biomaterials.2008.07.037_bib38) 1996; 12 Kielbassa (10.1016/j.biomaterials.2008.07.037_bib10) 2003; 28 Lim (10.1016/j.biomaterials.2008.07.037_bib31) 2002; 18 Sidhu (10.1016/j.biomaterials.2008.07.037_bib20) 1997; 76 Chow (10.1016/j.biomaterials.2008.07.037_bib40) 2004; 109 10.1016/j.biomaterials.2008.07.037_bib41 Carey (10.1016/j.biomaterials.2008.07.037_bib25) 2003; 82 Dickens (10.1016/j.biomaterials.2008.07.037_bib33) 2003; 19 |
| References_xml | – volume: 20 start-page: 789 year: 2004 end-page: 795 ident: bib16 article-title: Fluoride release and recharge in giomer, compomer and resin composite publication-title: Dent Mater – volume: 77 start-page: 418 year: 1998 end-page: 425 ident: bib8 article-title: Effects of aged fluoride-containing restorative materials on recurrent root caries publication-title: J Dent Res – volume: 82 start-page: 48 year: 2003 end-page: 52 ident: bib47 article-title: Long-term water aging of whisker-reinforced polymer-matrix composites publication-title: J Dent Res – volume: 5 start-page: 355 year: 1989 end-page: 358 ident: bib12 article-title: Properties of a glass-ionomer/resin-composite hybrid material publication-title: Dent Mater – volume: 21 start-page: 3 year: 2005 end-page: 6 ident: bib2 article-title: Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations publication-title: Dent Mater – volume: 85 start-page: 722 year: 2006 end-page: 727 ident: bib42 article-title: Nano DCPA-whisker composites with high strength and Ca and PO publication-title: J Dent Res – volume: 23 start-page: 1482 year: 2007 end-page: 1491 ident: bib44 article-title: Dental nanocomposites with Ca-PO publication-title: Dent Mater – year: 1988 ident: bib19 article-title: Glass-ionomer cement Chicago – reference: Xu HHK, Sun L, Takagi S, Chow LC. Dental releasing materials. U.S. Patent Application No. 11/138,182, filed May 26, 2005. – volume: 17 start-page: 127 year: 2001 end-page: 133 ident: bib14 article-title: A fluoride-releasing composite for dental applications publication-title: Dent Mater – volume: 84 start-page: 822 year: 2005 end-page: 826 ident: bib34 article-title: Impact of curing protocol on conversion and shrinkage stress publication-title: J Dent Res – volume: 24 start-page: 2451 year: 2003 end-page: 2461 ident: bib26 article-title: Compressive strength, fluoride release and recharge of fluoride-releasing materials publication-title: Biomaterials – volume: 105 start-page: 461 year: 1997 end-page: 465 ident: bib22 article-title: Review on fluoride, with special emphasis on calcium fluoride mechanisms in caries prevention publication-title: Eur J Oral Sci – volume: 28 start-page: 167 year: 1994 end-page: 173 ident: bib28 article-title: Screening of matrices and fibers for reinforced thermoplastics intended for dental applications publication-title: J Biomed Mater Res – volume: 15 start-page: 219 year: 1999 end-page: 222 ident: bib30 article-title: Radiopacity of tantalum oxide nanoparticle filled resins publication-title: Dent Mater – volume: 109 start-page: 543 year: 2004 end-page: 551 ident: bib40 article-title: Properties of nanostructured hydroxyapatite prepared by a spray drying technique publication-title: J Res NIST – volume: 60 start-page: 93 year: 2002 end-page: 97 ident: bib15 article-title: Long-term fluoride release from a glass ionomer cement, a compomer, and from experimental resin composites publication-title: Acta Odontol Scand – volume: 14 start-page: 10 year: 2006 end-page: 13 ident: bib27 article-title: Clinical evaluation of glass-ionomer cement restorations publication-title: J Appl Oral Sci – volume: 28 start-page: 765 year: 2003 end-page: 772 ident: bib10 article-title: Initial in situ secondary caries formation: Effect of various fluoride-containing restorative materials publication-title: Oper Dent – volume: 53B start-page: 381 year: 2000 end-page: 391 ident: bib39 article-title: Physiological evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates publication-title: J Biomed Mater Res – volume: 27 start-page: 280 year: 1993 end-page: 284 ident: bib6 article-title: In situ anticariogenic potential of glass ionomer cement publication-title: Caries Res – volume: 45 start-page: 329 year: 2004 end-page: 330 ident: bib49 article-title: Effect of resin composition on mechanical and physical properties of calcium phosphate filled bonding systems publication-title: Polymer Preprints – volume: 13 start-page: 875 year: 2002 end-page: 883 ident: bib46 article-title: Effect of thermal cycling on whisker-reinforced dental resin composites publication-title: J Mater Sci: Mater Med – volume: 19 start-page: 226 year: 2003 end-page: 231 ident: bib32 article-title: Static and cyclic loading of fiber-reinforced dental resin publication-title: Dent Mater – volume: 7 start-page: 122 year: 1994 end-page: 124 ident: bib7 article-title: Caries inhibition of glass ionomers publication-title: Am J Dent – volume: 81 start-page: 1705 year: 1998 end-page: 1728 ident: bib35 article-title: Bioceramics publication-title: J Am Ceram Soc – volume: 84 start-page: 440 year: 2005 end-page: 444 ident: bib17 article-title: Effect of CaF publication-title: J Dent Res – volume: 83 start-page: 930 year: 2004 end-page: 935 ident: bib48 article-title: Wear and mechanical properties of nano-silica-fused whisker composites publication-title: J Dent Res – volume: 86 start-page: 378 year: 2007 end-page: 383 ident: bib43 article-title: Effect of calcium phosphate nanoparticles on Ca-PO publication-title: J Dent Res – volume: 82 start-page: 829 year: 2003 end-page: 832 ident: bib25 article-title: Fluoride release from a resin-modified glass ionomer in a continuous-flow system: Effect of pH publication-title: J Dent Res – volume: 50 start-page: 361 year: 2000 end-page: 366 ident: bib3 article-title: Reasons for replacement of restorations in permanent teeth in general dental practice publication-title: International Dent J – volume: 23 start-page: 343 year: 2007 end-page: 362 ident: bib11 article-title: Review on fluoride-releasing restorative materials - fluoride release and uptake characteristics, antibacterial activity and influence on caries formation publication-title: Dent Mater – volume: 11 start-page: 96 year: 1995 end-page: 101 ident: bib18 article-title: Short-term fluoride release/uptake of glass ionomer restoratives publication-title: Dent Mater – volume: 20 start-page: 2287 year: 1999 end-page: 2303 ident: bib36 article-title: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function publication-title: Biomaterials – volume: 16 start-page: 356 year: 2000 end-page: 363 ident: bib23 article-title: Dental resin composites containing whiskers and precured glass ionomer particles publication-title: Dent Mater – volume: 10 start-page: 78 year: 1994 end-page: 82 ident: bib13 article-title: Long-term mechanical properties of glass ionomers publication-title: Dent Mater – volume: 19 start-page: 558 year: 2003 end-page: 566 ident: bib33 article-title: Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO publication-title: Dent Mater – volume: 25 start-page: 90 year: 2000 end-page: 97 ident: bib24 article-title: Single-crystalline ceramic whisker-reinforced carboxylic acid-resin composites with fluoride release publication-title: Oper Dent – volume: 51 start-page: 117 year: 2001 end-page: 158 ident: bib5 article-title: Quality of dental restorations. FDI Commision Projects 2-95 publication-title: International Dent J – volume: 19 start-page: 286 year: 2003 end-page: 290 ident: bib21 article-title: Effect of one-year water storage on the surface microhardness of resin-modified versus conventional glass-ionomer cements publication-title: Dent Mater – volume: 129 start-page: 567 year: 1998 end-page: 577 ident: bib29 article-title: A characterization of first-generation flowable composites publication-title: J Am Dent Assoc – volume: 27 start-page: 438 year: 2002 end-page: 441 ident: bib9 article-title: Clinical evaluation of a resin-modified glass ionomer adhesive system - results at 5 years publication-title: Oper Dent – volume: 21 start-page: 9 year: 2005 end-page: 20 ident: bib1 article-title: Clinical challenges and the relevance of materials testing for posterior composite restorations publication-title: Dent Mater – volume: 12 start-page: 295 year: 1996 end-page: 301 ident: bib38 article-title: Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites publication-title: Dent Mater – volume: 22 start-page: 963 year: 2001 end-page: 972 ident: bib37 article-title: Porous calcium polyphosphate scaffolds for bone substitute applications—in vitro characterization publication-title: Biomaterials – volume: 24 start-page: 111 year: 2008 end-page: 116 ident: bib45 article-title: Preparation and properties of nano-sized calcium fluoride for dental applications publication-title: Dent Mater – year: December 2005 ident: bib4 – volume: 76 start-page: 1495 year: 1997 end-page: 1501 ident: bib20 article-title: The effects of maturity and dehydration shrinkage on resin-modified glass ionomer restorations publication-title: J Dent Res – volume: 18 start-page: 436 year: 2002 end-page: 444 ident: bib31 article-title: Reduction of polymerization contraction stress for dental composites by two-step light-activation publication-title: Dent Mater – volume: 12 start-page: 295 year: 1996 ident: 10.1016/j.biomaterials.2008.07.037_bib38 article-title: Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites publication-title: Dent Mater doi: 10.1016/S0109-5641(96)80037-6 – volume: 11 start-page: 96 year: 1995 ident: 10.1016/j.biomaterials.2008.07.037_bib18 article-title: Short-term fluoride release/uptake of glass ionomer restoratives publication-title: Dent Mater doi: 10.1016/0109-5641(95)80041-7 – volume: 27 start-page: 438 year: 2002 ident: 10.1016/j.biomaterials.2008.07.037_bib9 article-title: Clinical evaluation of a resin-modified glass ionomer adhesive system - results at 5 years publication-title: Oper Dent – volume: 81 start-page: 1705 year: 1998 ident: 10.1016/j.biomaterials.2008.07.037_bib35 article-title: Bioceramics publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1998.tb02540.x – volume: 60 start-page: 93 year: 2002 ident: 10.1016/j.biomaterials.2008.07.037_bib15 article-title: Long-term fluoride release from a glass ionomer cement, a compomer, and from experimental resin composites publication-title: Acta Odontol Scand doi: 10.1080/000163502753509482 – volume: 15 start-page: 219 year: 1999 ident: 10.1016/j.biomaterials.2008.07.037_bib30 article-title: Radiopacity of tantalum oxide nanoparticle filled resins publication-title: Dent Mater doi: 10.1016/S0109-5641(99)00039-1 – volume: 129 start-page: 567 year: 1998 ident: 10.1016/j.biomaterials.2008.07.037_bib29 article-title: A characterization of first-generation flowable composites publication-title: J Am Dent Assoc doi: 10.14219/jada.archive.1998.0274 – volume: 13 start-page: 875 year: 2002 ident: 10.1016/j.biomaterials.2008.07.037_bib46 article-title: Effect of thermal cycling on whisker-reinforced dental resin composites publication-title: J Mater Sci: Mater Med – volume: 77 start-page: 418 year: 1998 ident: 10.1016/j.biomaterials.2008.07.037_bib8 article-title: Effects of aged fluoride-containing restorative materials on recurrent root caries publication-title: J Dent Res doi: 10.1177/00220345980770021101 – volume: 7 start-page: 122 year: 1994 ident: 10.1016/j.biomaterials.2008.07.037_bib7 article-title: Caries inhibition of glass ionomers publication-title: Am J Dent – volume: 17 start-page: 127 year: 2001 ident: 10.1016/j.biomaterials.2008.07.037_bib14 article-title: A fluoride-releasing composite for dental applications publication-title: Dent Mater doi: 10.1016/S0109-5641(00)00051-8 – volume: 24 start-page: 2451 year: 2003 ident: 10.1016/j.biomaterials.2008.07.037_bib26 article-title: Compressive strength, fluoride release and recharge of fluoride-releasing materials publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00638-5 – volume: 53B start-page: 381 year: 2000 ident: 10.1016/j.biomaterials.2008.07.037_bib39 article-title: Physiological evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates publication-title: J Biomed Mater Res doi: 10.1002/1097-4636(2000)53:4<381::AID-JBM12>3.0.CO;2-H – volume: 24 start-page: 111 year: 2008 ident: 10.1016/j.biomaterials.2008.07.037_bib45 article-title: Preparation and properties of nano-sized calcium fluoride for dental applications publication-title: Dent Mater doi: 10.1016/j.dental.2007.03.003 – volume: 21 start-page: 3 year: 2005 ident: 10.1016/j.biomaterials.2008.07.037_bib2 article-title: Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations publication-title: Dent Mater doi: 10.1016/j.dental.2004.10.008 – volume: 18 start-page: 436 year: 2002 ident: 10.1016/j.biomaterials.2008.07.037_bib31 article-title: Reduction of polymerization contraction stress for dental composites by two-step light-activation publication-title: Dent Mater doi: 10.1016/S0109-5641(01)00066-5 – volume: 20 start-page: 2287 year: 1999 ident: 10.1016/j.biomaterials.2008.07.037_bib36 article-title: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00181-7 – volume: 14 start-page: 10 year: 2006 ident: 10.1016/j.biomaterials.2008.07.037_bib27 article-title: Clinical evaluation of glass-ionomer cement restorations publication-title: J Appl Oral Sci doi: 10.1590/S1678-77572006000700003 – volume: 84 start-page: 822 year: 2005 ident: 10.1016/j.biomaterials.2008.07.037_bib34 article-title: Impact of curing protocol on conversion and shrinkage stress publication-title: J Dent Res doi: 10.1177/154405910508400908 – volume: 21 start-page: 9 year: 2005 ident: 10.1016/j.biomaterials.2008.07.037_bib1 article-title: Clinical challenges and the relevance of materials testing for posterior composite restorations publication-title: Dent Mater doi: 10.1016/j.dental.2004.10.001 – volume: 45 start-page: 329 year: 2004 ident: 10.1016/j.biomaterials.2008.07.037_bib49 article-title: Effect of resin composition on mechanical and physical properties of calcium phosphate filled bonding systems publication-title: Polymer Preprints – volume: 51 start-page: 117 year: 2001 ident: 10.1016/j.biomaterials.2008.07.037_bib5 article-title: Quality of dental restorations. FDI Commision Projects 2-95 publication-title: International Dent J doi: 10.1002/j.1875-595X.2001.tb00832.x – ident: 10.1016/j.biomaterials.2008.07.037_bib4 – volume: 5 start-page: 355 year: 1989 ident: 10.1016/j.biomaterials.2008.07.037_bib12 article-title: Properties of a glass-ionomer/resin-composite hybrid material publication-title: Dent Mater doi: 10.1016/0109-5641(89)90130-9 – volume: 23 start-page: 343 year: 2007 ident: 10.1016/j.biomaterials.2008.07.037_bib11 article-title: Review on fluoride-releasing restorative materials - fluoride release and uptake characteristics, antibacterial activity and influence on caries formation publication-title: Dent Mater doi: 10.1016/j.dental.2006.01.022 – ident: 10.1016/j.biomaterials.2008.07.037_bib41 – volume: 50 start-page: 361 year: 2000 ident: 10.1016/j.biomaterials.2008.07.037_bib3 article-title: Reasons for replacement of restorations in permanent teeth in general dental practice publication-title: International Dent J doi: 10.1111/j.1875-595X.2000.tb00569.x – volume: 76 start-page: 1495 year: 1997 ident: 10.1016/j.biomaterials.2008.07.037_bib20 article-title: The effects of maturity and dehydration shrinkage on resin-modified glass ionomer restorations publication-title: J Dent Res doi: 10.1177/00220345970760081201 – volume: 28 start-page: 167 year: 1994 ident: 10.1016/j.biomaterials.2008.07.037_bib28 article-title: Screening of matrices and fibers for reinforced thermoplastics intended for dental applications publication-title: J Biomed Mater Res doi: 10.1002/jbm.820280205 – volume: 82 start-page: 48 year: 2003 ident: 10.1016/j.biomaterials.2008.07.037_bib47 article-title: Long-term water aging of whisker-reinforced polymer-matrix composites publication-title: J Dent Res doi: 10.1177/154405910308200111 – volume: 10 start-page: 78 year: 1994 ident: 10.1016/j.biomaterials.2008.07.037_bib13 article-title: Long-term mechanical properties of glass ionomers publication-title: Dent Mater doi: 10.1016/0109-5641(94)90044-2 – volume: 105 start-page: 461 year: 1997 ident: 10.1016/j.biomaterials.2008.07.037_bib22 article-title: Review on fluoride, with special emphasis on calcium fluoride mechanisms in caries prevention publication-title: Eur J Oral Sci doi: 10.1111/j.1600-0722.1997.tb00231.x – volume: 109 start-page: 543 year: 2004 ident: 10.1016/j.biomaterials.2008.07.037_bib40 article-title: Properties of nanostructured hydroxyapatite prepared by a spray drying technique publication-title: J Res NIST doi: 10.6028/jres.109.041 – volume: 20 start-page: 789 year: 2004 ident: 10.1016/j.biomaterials.2008.07.037_bib16 article-title: Fluoride release and recharge in giomer, compomer and resin composite publication-title: Dent Mater doi: 10.1016/j.dental.2003.11.009 – volume: 27 start-page: 280 year: 1993 ident: 10.1016/j.biomaterials.2008.07.037_bib6 article-title: In situ anticariogenic potential of glass ionomer cement publication-title: Caries Res doi: 10.1159/000261551 – volume: 82 start-page: 829 year: 2003 ident: 10.1016/j.biomaterials.2008.07.037_bib25 article-title: Fluoride release from a resin-modified glass ionomer in a continuous-flow system: Effect of pH publication-title: J Dent Res doi: 10.1177/154405910308201013 – volume: 23 start-page: 1482 year: 2007 ident: 10.1016/j.biomaterials.2008.07.037_bib44 article-title: Dental nanocomposites with Ca-PO4 release: Effects of reinforcement, dicalcium phosphate particle size and silanization publication-title: Dent Mater doi: 10.1016/j.dental.2007.01.002 – year: 1988 ident: 10.1016/j.biomaterials.2008.07.037_bib19 – volume: 85 start-page: 722 year: 2006 ident: 10.1016/j.biomaterials.2008.07.037_bib42 article-title: Nano DCPA-whisker composites with high strength and Ca and PO4 release publication-title: J Dent Res doi: 10.1177/154405910608500807 – volume: 22 start-page: 963 year: 2001 ident: 10.1016/j.biomaterials.2008.07.037_bib37 article-title: Porous calcium polyphosphate scaffolds for bone substitute applications—in vitro characterization publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00261-1 – volume: 19 start-page: 226 year: 2003 ident: 10.1016/j.biomaterials.2008.07.037_bib32 article-title: Static and cyclic loading of fiber-reinforced dental resin publication-title: Dent Mater doi: 10.1016/S0109-5641(02)00034-9 – volume: 86 start-page: 378 year: 2007 ident: 10.1016/j.biomaterials.2008.07.037_bib43 article-title: Effect of calcium phosphate nanoparticles on Ca-PO4 composites publication-title: J Dent Res doi: 10.1177/154405910708600415 – volume: 28 start-page: 765 year: 2003 ident: 10.1016/j.biomaterials.2008.07.037_bib10 article-title: Initial in situ secondary caries formation: Effect of various fluoride-containing restorative materials publication-title: Oper Dent – volume: 19 start-page: 558 year: 2003 ident: 10.1016/j.biomaterials.2008.07.037_bib33 article-title: Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO4 cements publication-title: Dent Mater doi: 10.1016/S0109-5641(02)00105-7 – volume: 16 start-page: 356 year: 2000 ident: 10.1016/j.biomaterials.2008.07.037_bib23 article-title: Dental resin composites containing whiskers and precured glass ionomer particles publication-title: Dent Mater doi: 10.1016/S0109-5641(00)00028-2 – volume: 84 start-page: 440 year: 2005 ident: 10.1016/j.biomaterials.2008.07.037_bib17 article-title: Effect of CaF2 content on rate of fluoride release from filled resins publication-title: J Dent Res doi: 10.1177/154405910508400508 – volume: 83 start-page: 930 year: 2004 ident: 10.1016/j.biomaterials.2008.07.037_bib48 article-title: Wear and mechanical properties of nano-silica-fused whisker composites publication-title: J Dent Res doi: 10.1177/154405910408301208 – volume: 25 start-page: 90 year: 2000 ident: 10.1016/j.biomaterials.2008.07.037_bib24 article-title: Single-crystalline ceramic whisker-reinforced carboxylic acid-resin composites with fluoride release publication-title: Oper Dent – volume: 19 start-page: 286 year: 2003 ident: 10.1016/j.biomaterials.2008.07.037_bib21 article-title: Effect of one-year water storage on the surface microhardness of resin-modified versus conventional glass-ionomer cements publication-title: Dent Mater doi: 10.1016/S0109-5641(02)00042-8 |
| SSID | ssj0014042 |
| Score | 2.3093066 |
| Snippet | Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial... Abstract Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4261 |
| SubjectTerms | Advanced Basic Science CaF 2 nanoparticles Calcium Fluoride - chemistry Dental Materials - chemistry Dental nanocomposite Dentistry Fluoride release Fluorides - chemistry Materials Testing Microscopy, Electron, Transmission Nanocomposites - chemistry Nanocomposites - ultrastructure Phosphorus - chemistry Stress bearing Tensile Strength Tooth caries X-Ray Diffraction |
| Title | Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961208005334 https://www.clinicalkey.es/playcontent/1-s2.0-S0142961208005334 https://dx.doi.org/10.1016/j.biomaterials.2008.07.037 https://www.ncbi.nlm.nih.gov/pubmed/18708252 https://www.proquest.com/docview/20939835 https://www.proquest.com/docview/35206457 https://www.proquest.com/docview/69515086 https://pubmed.ncbi.nlm.nih.gov/PMC2605014 |
| Volume | 29 |
| WOSCitedRecordID | wos000260079700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2W4TggKC8lkfJgVuVKnEejoU4lKoIkFohUaQ9ETmOU1Jtk9XupqrEn2cmdl5LFy0HLlGU2N6158vMeDwPQt4GIQ-UL4XtOYlng4SQtpBwF0mZRDxhoCMndbEJdnYWTaf862j0q4mFuZ6xoohubvj8v5IangGxMXT2H8jdDgoP4B6IDlcgO1y3IjyeMxcXJmItm1XlIk91bRSBrulrCZp1eKSYyby66lqjbEsPUh0qWYiiRM9zdO8aOA59yEvQd_WcGsJNq1qYAZfFJFqdEfW0BO206vvTHLRm52-Vjn_AAmOdu4E-dMK47Zr5HA_sE5EJ1OubLKnNQ3fAc42VQ2PLGDg1B8Ut3a2sXVsZLg-T3tyMLyw7dHTmmB5551c1fV3gR7AJpp24a50Qm1c7ZJeygEdjsnv0-WT6pT2E8p269lI7gSZnbe0euOlvYBZaM_AmVefPrcy6R25PxTl_SB6YvYl1pDH1iIxUsUfu9zJW7pG7p8YX4zH50QDNAqBZDXQsAzRrDWhWmVnCMkDrWtdAszTQrAHQnpDvH0_Ojz_ZplqHLUEHXtkicJJQpQmjVPohl75gWUoTVwWRUkHoRxmTEh0QJM88FQSCpVT5LEmpwONi6T0l46Is1HNiuWEIYka6MnMiX4acC5_T1GWRT1nmpM6E8GZhY2lS2WNFlVnc-Cxexn36mFqrLAb6TIjX9p3rhC5b9XrX0C9uQpZByMYAzq16s9t6q6VhG8vYjZc0dmpXS4pQw30cBslPyPu2p1GJtaq79S-_acAWg9zAw0BRqLLCRtzjsP3a3AK2ZpjM8i9jAJ_HchLhhDzT8O1W1HwCMPMBsNsGmNV--KbIf9bZ7dHAAsvwYuOYL8m9js-8IuPVolKvyR15vcqXi32yw6bRvvmUfwMk_BdZ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strength+and+fluoride+release+characteristics+of+a+calcium+fluoride+based+dental+nanocomposite&rft.jtitle=Biomaterials&rft.au=Xu%2C+Hockin+H+K&rft.au=Moreau%2C+Jennifer+L&rft.au=Sun%2C+Limin&rft.au=Chow%2C+Laurence+C&rft.date=2008-11-01&rft.issn=0142-9612&rft.volume=29&rft.issue=32&rft.spage=4261&rft_id=info:doi/10.1016%2Fj.biomaterials.2008.07.037&rft_id=info%3Apmid%2F18708252&rft.externalDocID=18708252 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961208X00237%2Fcov150h.gif |