Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite

Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF 2 nanopar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomaterials Ročník 29; číslo 32; s. 4261 - 4267
Hlavní autoři: Xu, Hockin H.K., Moreau, Jennifer L., Sun, Limin, Chow, Laurence C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier Ltd 01.11.2008
Témata:
ISSN:0142-9612, 1878-5905
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF 2 nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF 2 nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean ± sd; n = 6) was 110 ± 11 MPa for the composite containing 30% CaF 2 and 35% whiskers by mass. It matched the 108 ± 19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF 2 had a cumulative F release of 2.34 ± 0.26 mmol/L at 10 weeks. The initial F release rate was 2 μg/(h cm 2), and the sustained release rate after 10 weeks was 0.29 μg/(h cm 2). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture.
AbstractList Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF2 nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF2 nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean ± sd; n = 6) was 110 ± 11 MPa for the composite containing 30% of CaF2 and 35% whiskers by mass. It matched the 108 ± 19 MPa of a stress-bearing, non-releasing commercial composite (Tukey’s at 0.05). The composite containing 20% CaF2 had a cumulative F release of 2.34 ± 0.26 mmol/L at 10 weeks. The initial F release rate was 2 µg/(h·cm2), and the sustained release rate after 10 weeks was 0.29 µg/(h·cm2). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture.
Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF(2) nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF(2) nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean+/-sd; n=6) was 110+/-11 MPa for the composite containing 30% CaF(2) and 35% whiskers by mass. It matched the 108+/-19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF(2) had a cumulative F release of 2.34+/-0.26 mmol/L at 10 weeks. The initial F release rate was 2 microg/(hcm(2)), and the sustained release rate after 10 weeks was 0.29 microg/(hcm(2)). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture.Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF(2) nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF(2) nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean+/-sd; n=6) was 110+/-11 MPa for the composite containing 30% CaF(2) and 35% whiskers by mass. It matched the 108+/-19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF(2) had a cumulative F release of 2.34+/-0.26 mmol/L at 10 weeks. The initial F release rate was 2 microg/(hcm(2)), and the sustained release rate after 10 weeks was 0.29 microg/(hcm(2)). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture.
Abstract Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF2 nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF2 nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean ± sd; n = 6) was 110 ± 11 MPa for the composite containing 30% CaF2 and 35% whiskers by mass. It matched the 108 ± 19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF2 had a cumulative F release of 2.34 ± 0.26 mmol/L at 10 weeks. The initial F release rate was 2 μg/(h cm2 ), and the sustained release rate after 10 weeks was 0.29 μg/(h cm2 ). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture.
Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF(2) nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF(2) nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean+/-sd; n=6) was 110+/-11 MPa for the composite containing 30% CaF(2) and 35% whiskers by mass. It matched the 108+/-19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF(2) had a cumulative F release of 2.34+/-0.26 mmol/L at 10 weeks. The initial F release rate was 2 microg/(hcm(2)), and the sustained release rate after 10 weeks was 0.29 microg/(hcm(2)). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture.
Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF2 nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF2 nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean +/- sd; n = 6) was 110 +/- 11 MPa for the composite containing 30% CaF2 and 35% whiskers by mass. It matched the 108 +/- 19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF2 had a cumulative F release of 2.34 +/- 0.26 mmol/L at 10 weeks. The initial F release rate was 2 mug/(h cm2), and the sustained release rate after 10 weeks was 0.29 mug/(h cm2). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture.
Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF 2 nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF 2 nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean ± sd; n = 6) was 110 ± 11 MPa for the composite containing 30% CaF 2 and 35% whiskers by mass. It matched the 108 ± 19 MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF 2 had a cumulative F release of 2.34 ± 0.26 mmol/L at 10 weeks. The initial F release rate was 2 μg/(h cm 2), and the sustained release rate after 10 weeks was 0.29 μg/(h cm 2). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture.
Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial benefit because F could enrich neighboring enamel or dentin to combat caries. The objective of this study was to incorporate novel CaF sub(2) nanoparticles into dental resin to develop stress-bearing, F-releasing nanocomposite. CaF sub(2) nanoparticles, prepared in our laboratories for the first time, were combined with reinforcing whisker fillers in a resin. Flexural strength (mean+/-sd; n=6) was 110+/-11MPa for the composite containing 30% CaF sub(2) and 35% whiskers by mass. It matched the 108+ /-19MPa of a stress-bearing, non-releasing commercial composite (Tukey's at 0.05). The composite containing 20% CaF sub(2) had a cumulative F release of 2.34+/-0.26mmol/L at 10weeks. The initial F release rate was 2 mu g/(hcm super(2)), and the sustained release rate after 10weeks was 0.29 mu g/(hcm super(2)). These values exceeded the reported releases of traditional and resin-modified glass ionomer materials. In summary, nanocomposites were developed with relatively high strength as well as sustained release of fluoride ions, a combination not available in current materials. These strong and F-releasing composites may yield restorations that can reduce the occurrence of both secondary caries and restoration fracture.
Author Sun, Limin
Moreau, Jennifer L.
Chow, Laurence C.
Xu, Hockin H.K.
AuthorAffiliation 2 Paffenbarger Research Center, American Dental Association Foundation National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
1 Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201
AuthorAffiliation_xml – name: 2 Paffenbarger Research Center, American Dental Association Foundation National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
– name: 1 Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201
Author_xml – sequence: 1
  givenname: Hockin H.K.
  surname: Xu
  fullname: Xu, Hockin H.K.
  email: hxu@umaryland.edu
  organization: Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201, USA
– sequence: 2
  givenname: Jennifer L.
  surname: Moreau
  fullname: Moreau, Jennifer L.
  organization: Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, 650 West Baltimore Street, Baltimore, MD 21201, USA
– sequence: 3
  givenname: Limin
  surname: Sun
  fullname: Sun, Limin
  organization: Paffenbarger Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
– sequence: 4
  givenname: Laurence C.
  surname: Chow
  fullname: Chow, Laurence C.
  organization: Paffenbarger Research Center, American Dental Association Foundation, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18708252$$D View this record in MEDLINE/PubMed
BookMark eNqNksFu1DAURS1URKeFX0ARC3YzfXbiOGFRAYUCUiUWhS2WY790PCT2YDuV-vc4mlJKJdRZRVHOO77Ou0fkwHmHhLyisKJA65PNqrN-VAmDVUNcMYBmBWIFpXhCFrQRzZK3wA_IAmjFlm1N2SE5inED-R0q9owcZggaxtmC_LhMAd1VWhfKmaIfJh-swSLggCpiodcqKD2fFJPVsfB9oQqtBm2n8S_dZdQUBl1SQ-GU89qPWx9twufkaZ8z4ovb5zH5fv7x29nn5cXXT1_O3l0stWAiLRWHrkbTCcZ0Vbe6UqI3rKPIG0ReV00vtGYVo7rtS-RcCcOwEp1hCkCUujwmpzvvdupGNDpHCWqQ22BHFW6kV1b--8XZtbzy15LVwPNvyYLXt4Lgf00Ykxxt1DgMyqGfoqxbTjk09aNgyRnUFRePggzasm1KnsGX97Pfhf6zpAy83QE6-BgD9lLbpJL181XsICnIuRdyI-_3Qs69kCBk7kVWvHmguDtln-EPu2HMG7y2GGTUFp1GYwPqJI23-2lOH2j0YJ3NbfqJNxg3fgpunqEyMgnycm7vXF5oAHhZzjt6_3_Bvil-Ay6AClM
CitedBy_id crossref_primary_10_1002_sia_6998
crossref_primary_10_1016_j_compscitech_2014_07_001
crossref_primary_10_1557_s43578_020_00014_3
crossref_primary_10_1016_j_ijpharm_2020_119596
crossref_primary_10_3390_ma3031674
crossref_primary_10_1016_j_nantod_2024_102204
crossref_primary_10_1016_j_dental_2017_07_012
crossref_primary_10_1016_j_drudis_2018_08_012
crossref_primary_10_1007_s11051_014_2736_0
crossref_primary_10_1016_j_cocom_2024_e00971
crossref_primary_10_1177_0022034509351969
crossref_primary_10_1016_j_ceramint_2016_12_046
crossref_primary_10_3390_ma13214951
crossref_primary_10_1111_ijac_13596
crossref_primary_10_1111_ipd_12890
crossref_primary_10_2217_nnm_14_191
crossref_primary_10_1016_j_jfluchem_2016_11_014
crossref_primary_10_1002_bio_3617
crossref_primary_10_1007_s10854_016_4377_9
crossref_primary_10_3390_jfb11030056
crossref_primary_10_4103_drj_drj_12_24
crossref_primary_10_1016_j_tibtech_2013_05_010
crossref_primary_10_3390_nano15090651
crossref_primary_10_1016_j_dental_2021_03_020
crossref_primary_10_1016_j_jds_2021_09_005
crossref_primary_10_3390_ijms22010417
crossref_primary_10_1111_jerd_12699
crossref_primary_10_1016_j_jdent_2019_103214
crossref_primary_10_1517_13543771003720491
crossref_primary_10_3390_polym13152418
crossref_primary_10_1016_j_carbpol_2014_12_033
crossref_primary_10_1016_j_jdent_2019_103211
crossref_primary_10_1063_5_0055044
crossref_primary_10_51479_cspzl_2012_040
crossref_primary_10_3390_ijms24098295
crossref_primary_10_1016_j_dental_2011_03_016
crossref_primary_10_1016_j_jdent_2024_104844
crossref_primary_10_1016_j_dental_2022_04_007
crossref_primary_10_1016_j_jdent_2020_103306
crossref_primary_10_1038_s41368_019_0048_z
crossref_primary_10_1111_jace_12249
crossref_primary_10_1039_C4CC02626H
crossref_primary_10_1007_s10853_021_06371_6
crossref_primary_10_3390_ma11122444
crossref_primary_10_1007_s41779_018_0228_x
crossref_primary_10_1016_j_dental_2012_01_006
crossref_primary_10_1111_1348_0421_13025
crossref_primary_10_1111_jerd_12964
crossref_primary_10_1039_C6CS00746E
crossref_primary_10_1016_j_jdent_2019_07_010
crossref_primary_10_1016_j_jds_2013_08_004
crossref_primary_10_1016_j_matlet_2013_12_006
crossref_primary_10_1016_j_dental_2009_11_161
crossref_primary_10_3390_molecules26185447
crossref_primary_10_3390_nano9071049
crossref_primary_10_1016_j_commatsci_2011_06_009
crossref_primary_10_1016_j_jddst_2025_107430
crossref_primary_10_1179_1743676112Y_0000000075
crossref_primary_10_1016_j_dental_2012_02_007
crossref_primary_10_4012_dmj_2024_362
crossref_primary_10_1016_j_ceramint_2018_04_098
crossref_primary_10_1016_j_dental_2020_05_010
crossref_primary_10_1155_2016_3795976
crossref_primary_10_1177_0022034510364490
crossref_primary_10_1002_mame_200900277
crossref_primary_10_1016_j_jmbbm_2021_104691
crossref_primary_10_1021_ma802152s
crossref_primary_10_1093_rb_rbw036
crossref_primary_10_1016_j_jdent_2021_103789
crossref_primary_10_1155_2016_1048320
crossref_primary_10_3390_polym10040369
crossref_primary_10_1177_0022034512450446
crossref_primary_10_1002_pc_27023
crossref_primary_10_1016_j_ortho_2024_100871
crossref_primary_10_1007_s00253_015_7154_4
crossref_primary_10_1016_j_biomaterials_2024_123027
crossref_primary_10_1016_j_dental_2011_08_403
crossref_primary_10_1016_j_dental_2021_12_022
crossref_primary_10_1038_s41598_018_38225_8
crossref_primary_10_1016_j_jds_2023_01_027
crossref_primary_10_1021_cr300143v
crossref_primary_10_2341_11_007_L
crossref_primary_10_1007_s00784_013_1073_5
crossref_primary_10_1177_0022034510363765
Cites_doi 10.1016/S0109-5641(96)80037-6
10.1016/0109-5641(95)80041-7
10.1111/j.1151-2916.1998.tb02540.x
10.1080/000163502753509482
10.1016/S0109-5641(99)00039-1
10.14219/jada.archive.1998.0274
10.1177/00220345980770021101
10.1016/S0109-5641(00)00051-8
10.1016/S0142-9612(02)00638-5
10.1002/1097-4636(2000)53:4<381::AID-JBM12>3.0.CO;2-H
10.1016/j.dental.2007.03.003
10.1016/j.dental.2004.10.008
10.1016/S0109-5641(01)00066-5
10.1016/S0142-9612(99)00181-7
10.1590/S1678-77572006000700003
10.1177/154405910508400908
10.1016/j.dental.2004.10.001
10.1002/j.1875-595X.2001.tb00832.x
10.1016/0109-5641(89)90130-9
10.1016/j.dental.2006.01.022
10.1111/j.1875-595X.2000.tb00569.x
10.1177/00220345970760081201
10.1002/jbm.820280205
10.1177/154405910308200111
10.1016/0109-5641(94)90044-2
10.1111/j.1600-0722.1997.tb00231.x
10.6028/jres.109.041
10.1016/j.dental.2003.11.009
10.1159/000261551
10.1177/154405910308201013
10.1016/j.dental.2007.01.002
10.1177/154405910608500807
10.1016/S0142-9612(00)00261-1
10.1016/S0109-5641(02)00034-9
10.1177/154405910708600415
10.1016/S0109-5641(02)00105-7
10.1016/S0109-5641(00)00028-2
10.1177/154405910508400508
10.1177/154405910408301208
10.1016/S0109-5641(02)00042-8
ContentType Journal Article
Copyright 2008 Elsevier Ltd
Elsevier Ltd
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7X8
5PM
DOI 10.1016/j.biomaterials.2008.07.037
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Materials Research Database


Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 4267
ExternalDocumentID PMC2605014
18708252
10_1016_j_biomaterials_2008_07_037
S0142961208005334
1_s2_0_S0142961208005334
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R01 DE017974
– fundername: NIDCR NIH HHS
  grantid: R29 DE012476
– fundername: NIDCR NIH HHS
  grantid: R01 DE17974
– fundername: NIDCR NIH HHS
  grantid: R01 DE016416
– fundername: NIDCR NIH HHS
  grantid: DE16416
– fundername: NIDCR NIH HHS
  grantid: R01 DE014190
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
AAIAV
ABYKQ
AJBFU
DOVZS
9DU
AAYXX
CITATION
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7QO
7QP
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c727t-a50b6edb722c469c4a7fd2b1e58ee5648f7cc2421c9f3e55a7d2e47bd2a0073c3
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260079700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
IngestDate Tue Sep 30 16:59:20 EDT 2025
Sat Sep 27 20:22:42 EDT 2025
Sat Sep 27 21:07:53 EDT 2025
Mon Oct 06 18:05:15 EDT 2025
Mon Jul 21 05:46:37 EDT 2025
Sat Nov 29 07:23:39 EST 2025
Tue Nov 18 22:14:19 EST 2025
Fri Feb 23 02:17:06 EST 2024
Sun Feb 23 10:18:54 EST 2025
Tue Oct 14 19:35:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords Tooth caries
CaF 2 nanoparticles
Dental nanocomposite
Stress bearing
Fluoride release
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c727t-a50b6edb722c469c4a7fd2b1e58ee5648f7cc2421c9f3e55a7d2e47bd2a0073c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2605014
PMID 18708252
PQID 20939835
PQPubID 23462
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2605014
proquest_miscellaneous_69515086
proquest_miscellaneous_35206457
proquest_miscellaneous_20939835
pubmed_primary_18708252
crossref_citationtrail_10_1016_j_biomaterials_2008_07_037
crossref_primary_10_1016_j_biomaterials_2008_07_037
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2008_07_037
elsevier_clinicalkeyesjournals_1_s2_0_S0142961208005334
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2008_07_037
PublicationCentury 2000
PublicationDate 2008-11-01
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2008
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Goldberg, Burstone, Hadjinikolaou, Jancar (bib28) 1994; 28
Diaz-Arnold, Holmes, Wistrom, Swift (bib18) 1995; 11
Jokstad, Bayne, Blunck, Tyas, Wilson (bib5) 2001; 51
Dickens, Flaim, Floyd (bib49) 2004; 45
Wilson, McLean (bib19) 1988
Xu, Sun, Weir, Antonucci, Takagi, Chow, Peltz (bib42) 2006; 85
Xu, Burgess (bib26) 2003; 24
Mjör, Moorhead, Dahl (bib3) 2000; 50
Sakaguchi (bib2) 2005; 21
Benelli, Serra, Rodrigues, Cury (bib6) 1993; 27
Lu, Stansbury, Bowman (bib34) 2005; 84
Carey, Spencer, Gove, Eichmiller (bib25) 2003; 82
Glasspoole, Erickson, Davidson (bib14) 2001; 17
Souto, Donly (bib7) 1994; 7
Ellakuria, Triana, Minguez, Soler, Ibaseta, García-Godoy (bib21) 2003; 19
Xu, Weir, Sun (bib44) 2007; 23
Sun, Chow (bib45) 2008; 24
Anusavice, Zhang, Shen (bib17) 2005; 84
Chan, Titus, Chung, Dixon, Wellinghoff, Rawls (bib30) 1999; 15
Tyas, Burrow (bib9) 2002; 27
Mitra, Kedrowski (bib13) 1994; 10
Xu, Eichmiller, Smith, Schumacher, Giuseppetti, Antonucci (bib46) 2002; 13
Ten Cate (bib22) 1997; 105
Drummond, Bapna (bib32) 2003; 19
Dickens, Flaim, Takagi (bib33) 2003; 19
Weigand, Buchalla, Attin (bib11) 2007; 23
Skrtic, Antonucci, Eanes, Eichmiller, Schumacher (bib39) 2000; 53B
Asmussen, Peutzfeldt (bib15) 2002; 60
Xu, Weir, Sun, Takagi, Chow (bib43) 2007; 86
Mathis, Ferracane (bib12) 1989; 5
Hsu, Donly, Drake, Wefel (bib8) 1998; 77
Xu, Eichmiller, Antonucci, Flaim (bib24) 2000; 25
Skrtic, Antonucci, Eanes (bib38) 1996; 12
Xu, Quinn, Giuseppetti (bib48) 2004; 83
Ducheyne, Qiu (bib36) 1999; 20
Kielbassa, Schulte-Monting, García-Godoy, Meyer-Lueckel (bib10) 2003; 28
Sarrett (bib1) 2005; 21
Sidhu, Sherriff, Watson (bib20) 1997; 76
Xu, Eichmiller, Antonucci, Schumacher, Ives (bib23) 2000; 16
Lim, Ferracane, Sakaguchi, Condon (bib31) 2002; 18
Itota, Carrick, Yoshiyama, McCabe (bib16) 2004; 20
Xu HHK, Sun L, Takagi S, Chow LC. Dental releasing materials. U.S. Patent Application No. 11/138,182, filed May 26, 2005.
Tyas (bib27) 2006; 14
Hench (bib35) 1998; 81
Chow, Sun, Hockey (bib40) 2004; 109
CDC (Center for Disease Control) (bib4) December 2005
Xu (bib47) 2003; 82
Bayne, Thompson, Swift, Stamatiades, Wilkerson (bib29) 1998; 129
Pilliar, Filiaggi, Wells, Grynpas, Kandel (bib37) 2001; 22
Mitra (10.1016/j.biomaterials.2008.07.037_bib13) 1994; 10
Skrtic (10.1016/j.biomaterials.2008.07.037_bib39) 2000; 53B
Asmussen (10.1016/j.biomaterials.2008.07.037_bib15) 2002; 60
Hsu (10.1016/j.biomaterials.2008.07.037_bib8) 1998; 77
Ducheyne (10.1016/j.biomaterials.2008.07.037_bib36) 1999; 20
Chan (10.1016/j.biomaterials.2008.07.037_bib30) 1999; 15
Ellakuria (10.1016/j.biomaterials.2008.07.037_bib21) 2003; 19
Mjör (10.1016/j.biomaterials.2008.07.037_bib3) 2000; 50
Pilliar (10.1016/j.biomaterials.2008.07.037_bib37) 2001; 22
Glasspoole (10.1016/j.biomaterials.2008.07.037_bib14) 2001; 17
Ten Cate (10.1016/j.biomaterials.2008.07.037_bib22) 1997; 105
Xu (10.1016/j.biomaterials.2008.07.037_bib42) 2006; 85
Xu (10.1016/j.biomaterials.2008.07.037_bib26) 2003; 24
Sakaguchi (10.1016/j.biomaterials.2008.07.037_bib2) 2005; 21
Souto (10.1016/j.biomaterials.2008.07.037_bib7) 1994; 7
Sun (10.1016/j.biomaterials.2008.07.037_bib45) 2008; 24
Weigand (10.1016/j.biomaterials.2008.07.037_bib11) 2007; 23
Lu (10.1016/j.biomaterials.2008.07.037_bib34) 2005; 84
Benelli (10.1016/j.biomaterials.2008.07.037_bib6) 1993; 27
Drummond (10.1016/j.biomaterials.2008.07.037_bib32) 2003; 19
Xu (10.1016/j.biomaterials.2008.07.037_bib23) 2000; 16
Tyas (10.1016/j.biomaterials.2008.07.037_bib27) 2006; 14
Tyas (10.1016/j.biomaterials.2008.07.037_bib9) 2002; 27
CDC (Center for Disease Control) (10.1016/j.biomaterials.2008.07.037_bib4)
Diaz-Arnold (10.1016/j.biomaterials.2008.07.037_bib18) 1995; 11
Bayne (10.1016/j.biomaterials.2008.07.037_bib29) 1998; 129
Wilson (10.1016/j.biomaterials.2008.07.037_bib19) 1988
Xu (10.1016/j.biomaterials.2008.07.037_bib43) 2007; 86
Anusavice (10.1016/j.biomaterials.2008.07.037_bib17) 2005; 84
Itota (10.1016/j.biomaterials.2008.07.037_bib16) 2004; 20
Mathis (10.1016/j.biomaterials.2008.07.037_bib12) 1989; 5
Sarrett (10.1016/j.biomaterials.2008.07.037_bib1) 2005; 21
Goldberg (10.1016/j.biomaterials.2008.07.037_bib28) 1994; 28
Dickens (10.1016/j.biomaterials.2008.07.037_bib49) 2004; 45
Jokstad (10.1016/j.biomaterials.2008.07.037_bib5) 2001; 51
Xu (10.1016/j.biomaterials.2008.07.037_bib46) 2002; 13
Xu (10.1016/j.biomaterials.2008.07.037_bib48) 2004; 83
Hench (10.1016/j.biomaterials.2008.07.037_bib35) 1998; 81
Xu (10.1016/j.biomaterials.2008.07.037_bib44) 2007; 23
Xu (10.1016/j.biomaterials.2008.07.037_bib47) 2003; 82
Xu (10.1016/j.biomaterials.2008.07.037_bib24) 2000; 25
Skrtic (10.1016/j.biomaterials.2008.07.037_bib38) 1996; 12
Kielbassa (10.1016/j.biomaterials.2008.07.037_bib10) 2003; 28
Lim (10.1016/j.biomaterials.2008.07.037_bib31) 2002; 18
Sidhu (10.1016/j.biomaterials.2008.07.037_bib20) 1997; 76
Chow (10.1016/j.biomaterials.2008.07.037_bib40) 2004; 109
10.1016/j.biomaterials.2008.07.037_bib41
Carey (10.1016/j.biomaterials.2008.07.037_bib25) 2003; 82
Dickens (10.1016/j.biomaterials.2008.07.037_bib33) 2003; 19
References_xml – volume: 20
  start-page: 789
  year: 2004
  end-page: 795
  ident: bib16
  article-title: Fluoride release and recharge in giomer, compomer and resin composite
  publication-title: Dent Mater
– volume: 77
  start-page: 418
  year: 1998
  end-page: 425
  ident: bib8
  article-title: Effects of aged fluoride-containing restorative materials on recurrent root caries
  publication-title: J Dent Res
– volume: 82
  start-page: 48
  year: 2003
  end-page: 52
  ident: bib47
  article-title: Long-term water aging of whisker-reinforced polymer-matrix composites
  publication-title: J Dent Res
– volume: 5
  start-page: 355
  year: 1989
  end-page: 358
  ident: bib12
  article-title: Properties of a glass-ionomer/resin-composite hybrid material
  publication-title: Dent Mater
– volume: 21
  start-page: 3
  year: 2005
  end-page: 6
  ident: bib2
  article-title: Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations
  publication-title: Dent Mater
– volume: 85
  start-page: 722
  year: 2006
  end-page: 727
  ident: bib42
  article-title: Nano DCPA-whisker composites with high strength and Ca and PO
  publication-title: J Dent Res
– volume: 23
  start-page: 1482
  year: 2007
  end-page: 1491
  ident: bib44
  article-title: Dental nanocomposites with Ca-PO
  publication-title: Dent Mater
– year: 1988
  ident: bib19
  article-title: Glass-ionomer cement Chicago
– reference: Xu HHK, Sun L, Takagi S, Chow LC. Dental releasing materials. U.S. Patent Application No. 11/138,182, filed May 26, 2005.
– volume: 17
  start-page: 127
  year: 2001
  end-page: 133
  ident: bib14
  article-title: A fluoride-releasing composite for dental applications
  publication-title: Dent Mater
– volume: 84
  start-page: 822
  year: 2005
  end-page: 826
  ident: bib34
  article-title: Impact of curing protocol on conversion and shrinkage stress
  publication-title: J Dent Res
– volume: 24
  start-page: 2451
  year: 2003
  end-page: 2461
  ident: bib26
  article-title: Compressive strength, fluoride release and recharge of fluoride-releasing materials
  publication-title: Biomaterials
– volume: 105
  start-page: 461
  year: 1997
  end-page: 465
  ident: bib22
  article-title: Review on fluoride, with special emphasis on calcium fluoride mechanisms in caries prevention
  publication-title: Eur J Oral Sci
– volume: 28
  start-page: 167
  year: 1994
  end-page: 173
  ident: bib28
  article-title: Screening of matrices and fibers for reinforced thermoplastics intended for dental applications
  publication-title: J Biomed Mater Res
– volume: 15
  start-page: 219
  year: 1999
  end-page: 222
  ident: bib30
  article-title: Radiopacity of tantalum oxide nanoparticle filled resins
  publication-title: Dent Mater
– volume: 109
  start-page: 543
  year: 2004
  end-page: 551
  ident: bib40
  article-title: Properties of nanostructured hydroxyapatite prepared by a spray drying technique
  publication-title: J Res NIST
– volume: 60
  start-page: 93
  year: 2002
  end-page: 97
  ident: bib15
  article-title: Long-term fluoride release from a glass ionomer cement, a compomer, and from experimental resin composites
  publication-title: Acta Odontol Scand
– volume: 14
  start-page: 10
  year: 2006
  end-page: 13
  ident: bib27
  article-title: Clinical evaluation of glass-ionomer cement restorations
  publication-title: J Appl Oral Sci
– volume: 28
  start-page: 765
  year: 2003
  end-page: 772
  ident: bib10
  article-title: Initial in situ secondary caries formation: Effect of various fluoride-containing restorative materials
  publication-title: Oper Dent
– volume: 53B
  start-page: 381
  year: 2000
  end-page: 391
  ident: bib39
  article-title: Physiological evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates
  publication-title: J Biomed Mater Res
– volume: 27
  start-page: 280
  year: 1993
  end-page: 284
  ident: bib6
  article-title: In situ anticariogenic potential of glass ionomer cement
  publication-title: Caries Res
– volume: 45
  start-page: 329
  year: 2004
  end-page: 330
  ident: bib49
  article-title: Effect of resin composition on mechanical and physical properties of calcium phosphate filled bonding systems
  publication-title: Polymer Preprints
– volume: 13
  start-page: 875
  year: 2002
  end-page: 883
  ident: bib46
  article-title: Effect of thermal cycling on whisker-reinforced dental resin composites
  publication-title: J Mater Sci: Mater Med
– volume: 19
  start-page: 226
  year: 2003
  end-page: 231
  ident: bib32
  article-title: Static and cyclic loading of fiber-reinforced dental resin
  publication-title: Dent Mater
– volume: 7
  start-page: 122
  year: 1994
  end-page: 124
  ident: bib7
  article-title: Caries inhibition of glass ionomers
  publication-title: Am J Dent
– volume: 81
  start-page: 1705
  year: 1998
  end-page: 1728
  ident: bib35
  article-title: Bioceramics
  publication-title: J Am Ceram Soc
– volume: 84
  start-page: 440
  year: 2005
  end-page: 444
  ident: bib17
  article-title: Effect of CaF
  publication-title: J Dent Res
– volume: 83
  start-page: 930
  year: 2004
  end-page: 935
  ident: bib48
  article-title: Wear and mechanical properties of nano-silica-fused whisker composites
  publication-title: J Dent Res
– volume: 86
  start-page: 378
  year: 2007
  end-page: 383
  ident: bib43
  article-title: Effect of calcium phosphate nanoparticles on Ca-PO
  publication-title: J Dent Res
– volume: 82
  start-page: 829
  year: 2003
  end-page: 832
  ident: bib25
  article-title: Fluoride release from a resin-modified glass ionomer in a continuous-flow system: Effect of pH
  publication-title: J Dent Res
– volume: 50
  start-page: 361
  year: 2000
  end-page: 366
  ident: bib3
  article-title: Reasons for replacement of restorations in permanent teeth in general dental practice
  publication-title: International Dent J
– volume: 23
  start-page: 343
  year: 2007
  end-page: 362
  ident: bib11
  article-title: Review on fluoride-releasing restorative materials - fluoride release and uptake characteristics, antibacterial activity and influence on caries formation
  publication-title: Dent Mater
– volume: 11
  start-page: 96
  year: 1995
  end-page: 101
  ident: bib18
  article-title: Short-term fluoride release/uptake of glass ionomer restoratives
  publication-title: Dent Mater
– volume: 20
  start-page: 2287
  year: 1999
  end-page: 2303
  ident: bib36
  article-title: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function
  publication-title: Biomaterials
– volume: 16
  start-page: 356
  year: 2000
  end-page: 363
  ident: bib23
  article-title: Dental resin composites containing whiskers and precured glass ionomer particles
  publication-title: Dent Mater
– volume: 10
  start-page: 78
  year: 1994
  end-page: 82
  ident: bib13
  article-title: Long-term mechanical properties of glass ionomers
  publication-title: Dent Mater
– volume: 19
  start-page: 558
  year: 2003
  end-page: 566
  ident: bib33
  article-title: Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO
  publication-title: Dent Mater
– volume: 25
  start-page: 90
  year: 2000
  end-page: 97
  ident: bib24
  article-title: Single-crystalline ceramic whisker-reinforced carboxylic acid-resin composites with fluoride release
  publication-title: Oper Dent
– volume: 51
  start-page: 117
  year: 2001
  end-page: 158
  ident: bib5
  article-title: Quality of dental restorations. FDI Commision Projects 2-95
  publication-title: International Dent J
– volume: 19
  start-page: 286
  year: 2003
  end-page: 290
  ident: bib21
  article-title: Effect of one-year water storage on the surface microhardness of resin-modified versus conventional glass-ionomer cements
  publication-title: Dent Mater
– volume: 129
  start-page: 567
  year: 1998
  end-page: 577
  ident: bib29
  article-title: A characterization of first-generation flowable composites
  publication-title: J Am Dent Assoc
– volume: 27
  start-page: 438
  year: 2002
  end-page: 441
  ident: bib9
  article-title: Clinical evaluation of a resin-modified glass ionomer adhesive system - results at 5 years
  publication-title: Oper Dent
– volume: 21
  start-page: 9
  year: 2005
  end-page: 20
  ident: bib1
  article-title: Clinical challenges and the relevance of materials testing for posterior composite restorations
  publication-title: Dent Mater
– volume: 12
  start-page: 295
  year: 1996
  end-page: 301
  ident: bib38
  article-title: Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites
  publication-title: Dent Mater
– volume: 22
  start-page: 963
  year: 2001
  end-page: 972
  ident: bib37
  article-title: Porous calcium polyphosphate scaffolds for bone substitute applications—in vitro characterization
  publication-title: Biomaterials
– volume: 24
  start-page: 111
  year: 2008
  end-page: 116
  ident: bib45
  article-title: Preparation and properties of nano-sized calcium fluoride for dental applications
  publication-title: Dent Mater
– year: December 2005
  ident: bib4
– volume: 76
  start-page: 1495
  year: 1997
  end-page: 1501
  ident: bib20
  article-title: The effects of maturity and dehydration shrinkage on resin-modified glass ionomer restorations
  publication-title: J Dent Res
– volume: 18
  start-page: 436
  year: 2002
  end-page: 444
  ident: bib31
  article-title: Reduction of polymerization contraction stress for dental composites by two-step light-activation
  publication-title: Dent Mater
– volume: 12
  start-page: 295
  year: 1996
  ident: 10.1016/j.biomaterials.2008.07.037_bib38
  article-title: Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites
  publication-title: Dent Mater
  doi: 10.1016/S0109-5641(96)80037-6
– volume: 11
  start-page: 96
  year: 1995
  ident: 10.1016/j.biomaterials.2008.07.037_bib18
  article-title: Short-term fluoride release/uptake of glass ionomer restoratives
  publication-title: Dent Mater
  doi: 10.1016/0109-5641(95)80041-7
– volume: 27
  start-page: 438
  year: 2002
  ident: 10.1016/j.biomaterials.2008.07.037_bib9
  article-title: Clinical evaluation of a resin-modified glass ionomer adhesive system - results at 5 years
  publication-title: Oper Dent
– volume: 81
  start-page: 1705
  year: 1998
  ident: 10.1016/j.biomaterials.2008.07.037_bib35
  article-title: Bioceramics
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1998.tb02540.x
– volume: 60
  start-page: 93
  year: 2002
  ident: 10.1016/j.biomaterials.2008.07.037_bib15
  article-title: Long-term fluoride release from a glass ionomer cement, a compomer, and from experimental resin composites
  publication-title: Acta Odontol Scand
  doi: 10.1080/000163502753509482
– volume: 15
  start-page: 219
  year: 1999
  ident: 10.1016/j.biomaterials.2008.07.037_bib30
  article-title: Radiopacity of tantalum oxide nanoparticle filled resins
  publication-title: Dent Mater
  doi: 10.1016/S0109-5641(99)00039-1
– volume: 129
  start-page: 567
  year: 1998
  ident: 10.1016/j.biomaterials.2008.07.037_bib29
  article-title: A characterization of first-generation flowable composites
  publication-title: J Am Dent Assoc
  doi: 10.14219/jada.archive.1998.0274
– volume: 13
  start-page: 875
  year: 2002
  ident: 10.1016/j.biomaterials.2008.07.037_bib46
  article-title: Effect of thermal cycling on whisker-reinforced dental resin composites
  publication-title: J Mater Sci: Mater Med
– volume: 77
  start-page: 418
  year: 1998
  ident: 10.1016/j.biomaterials.2008.07.037_bib8
  article-title: Effects of aged fluoride-containing restorative materials on recurrent root caries
  publication-title: J Dent Res
  doi: 10.1177/00220345980770021101
– volume: 7
  start-page: 122
  year: 1994
  ident: 10.1016/j.biomaterials.2008.07.037_bib7
  article-title: Caries inhibition of glass ionomers
  publication-title: Am J Dent
– volume: 17
  start-page: 127
  year: 2001
  ident: 10.1016/j.biomaterials.2008.07.037_bib14
  article-title: A fluoride-releasing composite for dental applications
  publication-title: Dent Mater
  doi: 10.1016/S0109-5641(00)00051-8
– volume: 24
  start-page: 2451
  year: 2003
  ident: 10.1016/j.biomaterials.2008.07.037_bib26
  article-title: Compressive strength, fluoride release and recharge of fluoride-releasing materials
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00638-5
– volume: 53B
  start-page: 381
  year: 2000
  ident: 10.1016/j.biomaterials.2008.07.037_bib39
  article-title: Physiological evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates
  publication-title: J Biomed Mater Res
  doi: 10.1002/1097-4636(2000)53:4<381::AID-JBM12>3.0.CO;2-H
– volume: 24
  start-page: 111
  year: 2008
  ident: 10.1016/j.biomaterials.2008.07.037_bib45
  article-title: Preparation and properties of nano-sized calcium fluoride for dental applications
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2007.03.003
– volume: 21
  start-page: 3
  year: 2005
  ident: 10.1016/j.biomaterials.2008.07.037_bib2
  article-title: Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2004.10.008
– volume: 18
  start-page: 436
  year: 2002
  ident: 10.1016/j.biomaterials.2008.07.037_bib31
  article-title: Reduction of polymerization contraction stress for dental composites by two-step light-activation
  publication-title: Dent Mater
  doi: 10.1016/S0109-5641(01)00066-5
– volume: 20
  start-page: 2287
  year: 1999
  ident: 10.1016/j.biomaterials.2008.07.037_bib36
  article-title: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00181-7
– volume: 14
  start-page: 10
  year: 2006
  ident: 10.1016/j.biomaterials.2008.07.037_bib27
  article-title: Clinical evaluation of glass-ionomer cement restorations
  publication-title: J Appl Oral Sci
  doi: 10.1590/S1678-77572006000700003
– volume: 84
  start-page: 822
  year: 2005
  ident: 10.1016/j.biomaterials.2008.07.037_bib34
  article-title: Impact of curing protocol on conversion and shrinkage stress
  publication-title: J Dent Res
  doi: 10.1177/154405910508400908
– volume: 21
  start-page: 9
  year: 2005
  ident: 10.1016/j.biomaterials.2008.07.037_bib1
  article-title: Clinical challenges and the relevance of materials testing for posterior composite restorations
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2004.10.001
– volume: 45
  start-page: 329
  year: 2004
  ident: 10.1016/j.biomaterials.2008.07.037_bib49
  article-title: Effect of resin composition on mechanical and physical properties of calcium phosphate filled bonding systems
  publication-title: Polymer Preprints
– volume: 51
  start-page: 117
  year: 2001
  ident: 10.1016/j.biomaterials.2008.07.037_bib5
  article-title: Quality of dental restorations. FDI Commision Projects 2-95
  publication-title: International Dent J
  doi: 10.1002/j.1875-595X.2001.tb00832.x
– ident: 10.1016/j.biomaterials.2008.07.037_bib4
– volume: 5
  start-page: 355
  year: 1989
  ident: 10.1016/j.biomaterials.2008.07.037_bib12
  article-title: Properties of a glass-ionomer/resin-composite hybrid material
  publication-title: Dent Mater
  doi: 10.1016/0109-5641(89)90130-9
– volume: 23
  start-page: 343
  year: 2007
  ident: 10.1016/j.biomaterials.2008.07.037_bib11
  article-title: Review on fluoride-releasing restorative materials - fluoride release and uptake characteristics, antibacterial activity and influence on caries formation
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2006.01.022
– ident: 10.1016/j.biomaterials.2008.07.037_bib41
– volume: 50
  start-page: 361
  year: 2000
  ident: 10.1016/j.biomaterials.2008.07.037_bib3
  article-title: Reasons for replacement of restorations in permanent teeth in general dental practice
  publication-title: International Dent J
  doi: 10.1111/j.1875-595X.2000.tb00569.x
– volume: 76
  start-page: 1495
  year: 1997
  ident: 10.1016/j.biomaterials.2008.07.037_bib20
  article-title: The effects of maturity and dehydration shrinkage on resin-modified glass ionomer restorations
  publication-title: J Dent Res
  doi: 10.1177/00220345970760081201
– volume: 28
  start-page: 167
  year: 1994
  ident: 10.1016/j.biomaterials.2008.07.037_bib28
  article-title: Screening of matrices and fibers for reinforced thermoplastics intended for dental applications
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.820280205
– volume: 82
  start-page: 48
  year: 2003
  ident: 10.1016/j.biomaterials.2008.07.037_bib47
  article-title: Long-term water aging of whisker-reinforced polymer-matrix composites
  publication-title: J Dent Res
  doi: 10.1177/154405910308200111
– volume: 10
  start-page: 78
  year: 1994
  ident: 10.1016/j.biomaterials.2008.07.037_bib13
  article-title: Long-term mechanical properties of glass ionomers
  publication-title: Dent Mater
  doi: 10.1016/0109-5641(94)90044-2
– volume: 105
  start-page: 461
  year: 1997
  ident: 10.1016/j.biomaterials.2008.07.037_bib22
  article-title: Review on fluoride, with special emphasis on calcium fluoride mechanisms in caries prevention
  publication-title: Eur J Oral Sci
  doi: 10.1111/j.1600-0722.1997.tb00231.x
– volume: 109
  start-page: 543
  year: 2004
  ident: 10.1016/j.biomaterials.2008.07.037_bib40
  article-title: Properties of nanostructured hydroxyapatite prepared by a spray drying technique
  publication-title: J Res NIST
  doi: 10.6028/jres.109.041
– volume: 20
  start-page: 789
  year: 2004
  ident: 10.1016/j.biomaterials.2008.07.037_bib16
  article-title: Fluoride release and recharge in giomer, compomer and resin composite
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2003.11.009
– volume: 27
  start-page: 280
  year: 1993
  ident: 10.1016/j.biomaterials.2008.07.037_bib6
  article-title: In situ anticariogenic potential of glass ionomer cement
  publication-title: Caries Res
  doi: 10.1159/000261551
– volume: 82
  start-page: 829
  year: 2003
  ident: 10.1016/j.biomaterials.2008.07.037_bib25
  article-title: Fluoride release from a resin-modified glass ionomer in a continuous-flow system: Effect of pH
  publication-title: J Dent Res
  doi: 10.1177/154405910308201013
– volume: 23
  start-page: 1482
  year: 2007
  ident: 10.1016/j.biomaterials.2008.07.037_bib44
  article-title: Dental nanocomposites with Ca-PO4 release: Effects of reinforcement, dicalcium phosphate particle size and silanization
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2007.01.002
– year: 1988
  ident: 10.1016/j.biomaterials.2008.07.037_bib19
– volume: 85
  start-page: 722
  year: 2006
  ident: 10.1016/j.biomaterials.2008.07.037_bib42
  article-title: Nano DCPA-whisker composites with high strength and Ca and PO4 release
  publication-title: J Dent Res
  doi: 10.1177/154405910608500807
– volume: 22
  start-page: 963
  year: 2001
  ident: 10.1016/j.biomaterials.2008.07.037_bib37
  article-title: Porous calcium polyphosphate scaffolds for bone substitute applications—in vitro characterization
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00261-1
– volume: 19
  start-page: 226
  year: 2003
  ident: 10.1016/j.biomaterials.2008.07.037_bib32
  article-title: Static and cyclic loading of fiber-reinforced dental resin
  publication-title: Dent Mater
  doi: 10.1016/S0109-5641(02)00034-9
– volume: 86
  start-page: 378
  year: 2007
  ident: 10.1016/j.biomaterials.2008.07.037_bib43
  article-title: Effect of calcium phosphate nanoparticles on Ca-PO4 composites
  publication-title: J Dent Res
  doi: 10.1177/154405910708600415
– volume: 28
  start-page: 765
  year: 2003
  ident: 10.1016/j.biomaterials.2008.07.037_bib10
  article-title: Initial in situ secondary caries formation: Effect of various fluoride-containing restorative materials
  publication-title: Oper Dent
– volume: 19
  start-page: 558
  year: 2003
  ident: 10.1016/j.biomaterials.2008.07.037_bib33
  article-title: Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO4 cements
  publication-title: Dent Mater
  doi: 10.1016/S0109-5641(02)00105-7
– volume: 16
  start-page: 356
  year: 2000
  ident: 10.1016/j.biomaterials.2008.07.037_bib23
  article-title: Dental resin composites containing whiskers and precured glass ionomer particles
  publication-title: Dent Mater
  doi: 10.1016/S0109-5641(00)00028-2
– volume: 84
  start-page: 440
  year: 2005
  ident: 10.1016/j.biomaterials.2008.07.037_bib17
  article-title: Effect of CaF2 content on rate of fluoride release from filled resins
  publication-title: J Dent Res
  doi: 10.1177/154405910508400508
– volume: 83
  start-page: 930
  year: 2004
  ident: 10.1016/j.biomaterials.2008.07.037_bib48
  article-title: Wear and mechanical properties of nano-silica-fused whisker composites
  publication-title: J Dent Res
  doi: 10.1177/154405910408301208
– volume: 25
  start-page: 90
  year: 2000
  ident: 10.1016/j.biomaterials.2008.07.037_bib24
  article-title: Single-crystalline ceramic whisker-reinforced carboxylic acid-resin composites with fluoride release
  publication-title: Oper Dent
– volume: 19
  start-page: 286
  year: 2003
  ident: 10.1016/j.biomaterials.2008.07.037_bib21
  article-title: Effect of one-year water storage on the surface microhardness of resin-modified versus conventional glass-ionomer cements
  publication-title: Dent Mater
  doi: 10.1016/S0109-5641(02)00042-8
SSID ssj0014042
Score 2.3093066
Snippet Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a substantial...
Abstract Secondary caries and restoration fracture remain the two most common problems in restorative dentistry. Release of fluoride ions (F) could be a...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4261
SubjectTerms Advanced Basic Science
CaF 2 nanoparticles
Calcium Fluoride - chemistry
Dental Materials - chemistry
Dental nanocomposite
Dentistry
Fluoride release
Fluorides - chemistry
Materials Testing
Microscopy, Electron, Transmission
Nanocomposites - chemistry
Nanocomposites - ultrastructure
Phosphorus - chemistry
Stress bearing
Tensile Strength
Tooth caries
X-Ray Diffraction
Title Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961208005334
https://www.clinicalkey.es/playcontent/1-s2.0-S0142961208005334
https://dx.doi.org/10.1016/j.biomaterials.2008.07.037
https://www.ncbi.nlm.nih.gov/pubmed/18708252
https://www.proquest.com/docview/20939835
https://www.proquest.com/docview/35206457
https://www.proquest.com/docview/69515086
https://pubmed.ncbi.nlm.nih.gov/PMC2605014
Volume 29
WOSCitedRecordID wos000260079700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2W4TggKC8lkfJgVuVKnEejoU4lKoIkFohUaQ9ETmOU1Jtk9XupqrEn2cmdl5LFy0HLlGU2N6158vMeDwPQt4GIQ-UL4XtOYlng4SQtpBwF0mZRDxhoCMndbEJdnYWTaf862j0q4mFuZ6xoohubvj8v5IangGxMXT2H8jdDgoP4B6IDlcgO1y3IjyeMxcXJmItm1XlIk91bRSBrulrCZp1eKSYyby66lqjbEsPUh0qWYiiRM9zdO8aOA59yEvQd_WcGsJNq1qYAZfFJFqdEfW0BO206vvTHLRm52-Vjn_AAmOdu4E-dMK47Zr5HA_sE5EJ1OubLKnNQ3fAc42VQ2PLGDg1B8Ut3a2sXVsZLg-T3tyMLyw7dHTmmB5551c1fV3gR7AJpp24a50Qm1c7ZJeygEdjsnv0-WT6pT2E8p269lI7gSZnbe0euOlvYBZaM_AmVefPrcy6R25PxTl_SB6YvYl1pDH1iIxUsUfu9zJW7pG7p8YX4zH50QDNAqBZDXQsAzRrDWhWmVnCMkDrWtdAszTQrAHQnpDvH0_Ojz_ZplqHLUEHXtkicJJQpQmjVPohl75gWUoTVwWRUkHoRxmTEh0QJM88FQSCpVT5LEmpwONi6T0l46Is1HNiuWEIYka6MnMiX4acC5_T1GWRT1nmpM6E8GZhY2lS2WNFlVnc-Cxexn36mFqrLAb6TIjX9p3rhC5b9XrX0C9uQpZByMYAzq16s9t6q6VhG8vYjZc0dmpXS4pQw30cBslPyPu2p1GJtaq79S-_acAWg9zAw0BRqLLCRtzjsP3a3AK2ZpjM8i9jAJ_HchLhhDzT8O1W1HwCMPMBsNsGmNV--KbIf9bZ7dHAAsvwYuOYL8m9js-8IuPVolKvyR15vcqXi32yw6bRvvmUfwMk_BdZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strength+and+fluoride+release+characteristics+of+a+calcium+fluoride+based+dental+nanocomposite&rft.jtitle=Biomaterials&rft.au=Xu%2C+Hockin+H+K&rft.au=Moreau%2C+Jennifer+L&rft.au=Sun%2C+Limin&rft.au=Chow%2C+Laurence+C&rft.date=2008-11-01&rft.issn=0142-9612&rft.volume=29&rft.issue=32&rft.spage=4261&rft_id=info:doi/10.1016%2Fj.biomaterials.2008.07.037&rft_id=info%3Apmid%2F18708252&rft.externalDocID=18708252
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961208X00237%2Fcov150h.gif