RNA-directed DNA Methylation
RNA-directed DNA methylation (RdDM) is a biological process in which non-coding RNA molecules direct the addition of DNA methylation to specific DNA sequences. The RdDM pathway is unique to plants, although other mechanisms of RNA-directed chromatin modification have also been described in fungi and...
Gespeichert in:
| Veröffentlicht in: | PLoS genetics Jg. 16; H. 10; S. e1009034 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science
08.10.2020
Public Library of Science (PLoS) |
| Schlagworte: | |
| ISSN: | 1553-7404, 1553-7390, 1553-7404 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | RNA-directed DNA methylation (RdDM) is a biological process in which non-coding RNA molecules direct the addition of DNA methylation to specific DNA sequences. The RdDM pathway is unique to plants, although other mechanisms of RNA-directed chromatin modification have also been described in fungi and animals. To date, the RdDM pathway is best characterized within angiosperms (flowering plants), and particularly within the model plant Arabidopsis thaliana. However, conserved RdDM pathway components and associated small RNAs (sRNAs) have also been found in other groups of plants, such as gymnosperms and ferns. The RdDM pathway closely resembles other sRNA pathways, particularly the highly conserved RNAi pathway found in fungi, plants, and animals. Both the RdDM and RNAi pathways produce sRNAs and involve conserved Argonaute, Dicer and RNA-dependent RNA polymerase proteins. RdDM has been implicated in a number of regulatory processes in plants. The DNA methylation added by RdDM is generally associated with transcriptional repression of the genetic sequences targeted by the pathway. Since DNA methylation patterns in plants are heritable, these changes can often be stably transmitted to progeny. As a result, one prominent role of RdDM is the stable, transgenerational suppression of transposable element (TE) activity. RdDM has also been linked to pathogen defense, abiotic stress responses, and the regulation of several key developmental transitions. Although the RdDM pathway has a number of important functions, RdDM-defective mutants in Arabidopsis thaliana are viable and can reproduce, which has enabled detailed genetic studies of the pathway. However, RdDM mutants can have a range of defects in different plant species, including lethality, altered reproductive phenotypes, TE upregulation and genome instability, and increased pathogen sensitivity. Overall, RdDM is an important pathway in plants that regulates a number of processes by establishing and reinforcing specific DNA methylation patterns, which can lead to transgenerational epigenetic effects on gene expression and phenotype. |
|---|---|
| AbstractList | RNA-directed DNA methylation (RdDM) is a biological process in which non-coding RNA molecules direct the addition of DNA methylation to specific DNA sequences. The RdDM pathway is unique to plants, although other mechanisms of RNA-directed chromatin modification have also been described in fungi and animals. To date, the RdDM pathway is best characterized within angiosperms (flowering plants), and particularly within the model plant Arabidopsis thaliana. However, conserved RdDM pathway components and associated small RNAs (sRNAs) have also been found in other groups of plants, such as gymnosperms and ferns. The RdDM pathway closely resembles other sRNA pathways, particularly the highly conserved RNAi pathway found in fungi, plants, and animals. Both the RdDM and RNAi pathways produce sRNAs and involve conserved Argonaute, Dicer and RNA-dependent RNA polymerase proteins.
RdDM has been implicated in a number of regulatory processes in plants. The DNA methylation added by RdDM is generally associated with transcriptional repression of the genetic sequences targeted by the pathway. Since DNA methylation patterns in plants are heritable, these changes can often be stably transmitted to progeny. As a result, one prominent role of RdDM is the stable, transgenerational suppression of transposable element (TE) activity. RdDM has also been linked to pathogen defense, abiotic stress responses, and the regulation of several key developmental transitions. Although the RdDM pathway has a number of important functions, RdDM-defective mutants in Arabidopsis thaliana are viable and can reproduce, which has enabled detailed genetic studies of the pathway. However, RdDM mutants can have a range of defects in different plant species, including lethality, altered reproductive phenotypes, TE upregulation and genome instability, and increased pathogen sensitivity. Overall, RdDM is an important pathway in plants that regulates a number of processes by establishing and reinforcing specific DNA methylation patterns, which can lead to transgenerational epigenetic effects on gene expression and phenotype. RNA-directed DNA methylation (RdDM) is a biological process in which non-coding RNA molecules direct the addition of DNA methylation to specific DNA sequences. The RdDM pathway is unique to plants, although other mechanisms of RNA-directed chromatin modification have also been described in fungi and animals. To date, the RdDM pathway is best characterized within angiosperms (flowering plants), and particularly within the model plant Arabidopsis thaliana. However, conserved RdDM pathway components and associated small RNAs (sRNAs) have also been found in other groups of plants, such as gymnosperms and ferns. The RdDM pathway closely resembles other sRNA pathways, particularly the highly conserved RNAi pathway found in fungi, plants, and animals. Both the RdDM and RNAi pathways produce sRNAs and involve conserved Argonaute, Dicer and RNA-dependent RNA polymerase proteins. RdDM has been implicated in a number of regulatory processes in plants. The DNA methylation added by RdDM is generally associated with transcriptional repression of the genetic sequences targeted by the pathway. Since DNA methylation patterns in plants are heritable, these changes can often be stably transmitted to progeny. As a result, one prominent role of RdDM is the stable, transgenerational suppression of transposable element (TE) activity. RdDM has also been linked to pathogen defense, abiotic stress responses, and the regulation of several key developmental transitions. Although the RdDM pathway has a number of important functions, RdDM-defective mutants in Arabidopsis thaliana are viable and can reproduce, which has enabled detailed genetic studies of the pathway. However, RdDM mutants can have a range of defects in different plant species, including lethality, altered reproductive phenotypes, TE upregulation and genome instability, and increased pathogen sensitivity. Overall, RdDM is an important pathway in plants that regulates a number of processes by establishing and reinforcing specific DNA methylation patterns, which can lead to transgenerational epigenetic effects on gene expression and phenotype. RNA-directed DNA methylation (RdDM) is a biological process in which non-coding RNA molecules direct the addition of DNA methylation to specific DNA sequences. The RdDM pathway is unique to plants, although other mechanisms of RNA-directed chromatin modification have also been described in fungi and animals. To date, the RdDM pathway is best characterized within angiosperms (flowering plants), and particularly within the model plant Arabidopsis thaliana. However, conserved RdDM pathway components and associated small RNAs (sRNAs) have also been found in other groups of plants, such as gymnosperms and ferns. The RdDM pathway closely resembles other sRNA pathways, particularly the highly conserved RNAi pathway found in fungi, plants, and animals. Both the RdDM and RNAi pathways produce sRNAs and involve conserved Argonaute, Dicer and RNA-dependent RNA polymerase proteins. RNA-directed DNA methylation (RdDM) is a biological process in which non-coding RNA molecules direct the addition of DNA methylation to specific DNA sequences. The RdDM pathway is unique to plants, although other mechanisms of RNA-directed chromatin modification have also been described in fungi and animals. To date, the RdDM pathway is best characterized within angiosperms (flowering plants), and particularly within the model plant Arabidopsis thaliana. However, conserved RdDM pathway components and associated small RNAs (sRNAs) have also been found in other groups of plants, such as gymnosperms and ferns. The RdDM pathway closely resembles other sRNA pathways, particularly the highly conserved RNAi pathway found in fungi, plants, and animals. Both the RdDM and RNAi pathways produce sRNAs and involve conserved Argonaute, Dicer and RNA-dependent RNA polymerase proteins. RdDM has been implicated in a number of regulatory processes in plants. The DNA methylation added by RdDM is generally associated with transcriptional repression of the genetic sequences targeted by the pathway. Since DNA methylation patterns in plants are heritable, these changes can often be stably transmitted to progeny. As a result, one prominent role of RdDM is the stable, transgenerational suppression of transposable element (TE) activity. RdDM has also been linked to pathogen defense, abiotic stress responses, and the regulation of several key developmental transitions. Although the RdDM pathway has a number of important functions, RdDM-defective mutants in Arabidopsis thaliana are viable and can reproduce, which has enabled detailed genetic studies of the pathway. However, RdDM mutants can have a range of defects in different plant species, including lethality, altered reproductive phenotypes, TE upregulation and genome instability, and increased pathogen sensitivity. Overall, RdDM is an important pathway in plants that regulates a number of processes by establishing and reinforcing specific DNA methylation patterns, which can lead to transgenerational epigenetic effects on gene expression and phenotype.RNA-directed DNA methylation (RdDM) is a biological process in which non-coding RNA molecules direct the addition of DNA methylation to specific DNA sequences. The RdDM pathway is unique to plants, although other mechanisms of RNA-directed chromatin modification have also been described in fungi and animals. To date, the RdDM pathway is best characterized within angiosperms (flowering plants), and particularly within the model plant Arabidopsis thaliana. However, conserved RdDM pathway components and associated small RNAs (sRNAs) have also been found in other groups of plants, such as gymnosperms and ferns. The RdDM pathway closely resembles other sRNA pathways, particularly the highly conserved RNAi pathway found in fungi, plants, and animals. Both the RdDM and RNAi pathways produce sRNAs and involve conserved Argonaute, Dicer and RNA-dependent RNA polymerase proteins. RdDM has been implicated in a number of regulatory processes in plants. The DNA methylation added by RdDM is generally associated with transcriptional repression of the genetic sequences targeted by the pathway. Since DNA methylation patterns in plants are heritable, these changes can often be stably transmitted to progeny. As a result, one prominent role of RdDM is the stable, transgenerational suppression of transposable element (TE) activity. RdDM has also been linked to pathogen defense, abiotic stress responses, and the regulation of several key developmental transitions. Although the RdDM pathway has a number of important functions, RdDM-defective mutants in Arabidopsis thaliana are viable and can reproduce, which has enabled detailed genetic studies of the pathway. However, RdDM mutants can have a range of defects in different plant species, including lethality, altered reproductive phenotypes, TE upregulation and genome instability, and increased pathogen sensitivity. Overall, RdDM is an important pathway in plants that regulates a number of processes by establishing and reinforcing specific DNA methylation patterns, which can lead to transgenerational epigenetic effects on gene expression and phenotype. |
| Audience | Academic |
| Author | Picard, Colette L. Erdmann, Robert M. |
| AuthorAffiliation | 2 Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, United States of America 1 Center for Learning Innovation, University of Minnesota Rochester, Rochester, Minnesota, United States of America |
| AuthorAffiliation_xml | – name: 2 Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, United States of America – name: 1 Center for Learning Innovation, University of Minnesota Rochester, Rochester, Minnesota, United States of America |
| Author_xml | – sequence: 1 givenname: Robert M. orcidid: 0000-0002-4325-4196 surname: Erdmann fullname: Erdmann, Robert M. – sequence: 2 givenname: Colette L. orcidid: 0000-0002-2177-2216 surname: Picard fullname: Picard, Colette L. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33031395$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVk11r2zAUhsXoWNts_6BshcHYLpLpM7Z2MQjdV6BLofu4FbJ0lCg4VmbZY_33kxtnxKWMDV1ISM_7Hh3pnFN0VIUKEDojeEJYRl6vQ1tXupxsl1BNCMYSM_4AnRAh2DjjmB8drI_RaYxrjJnIZfYIHTOGGWFSnKCz68VsbH0NpgF7_m4xO_8Mzeqm1I0P1WP00OkywpN-HqFvH95_vfg0vrz6OL-YXY5NRqfN2BaFBl5wJpmxgI0tSI6tpAXm3GYgaEEkSAzM5VKA1XlBcUbNlGbYWYFzNkLPdr7bMkTVJxYV5VNMCBPpqiM03xE26LXa1n6j6xsVtFe3G6FeKl033pSgnLFC5AQXAjQX1uS51tRJR53DtDAseb3to7XFBqyBqql1OTAdnlR-pZbhp8oE54SKZPCyN6jDjxZiozY-GihLXUFou3tzKYXIcprQ53fQ-7PrqaVOCfjKhRTXdKZqNuWCseQnEzW5h0rDwsabVBzOp_2B4NVAkJgGfjVL3cao5l-u_4Nd_Dt79X3IvjhgV6DLZhVD2XblFYfg08Nf-fMd-1JNwJsdYOoQYw1OGd_clml6Bl8qglXXF_sHVl1fqL4vkpjfEe_9_yr7DZ5uDeA |
| CitedBy_id | crossref_primary_10_3390_epigenomes8010002 crossref_primary_10_1093_plcell_koad027 crossref_primary_10_1016_j_pbi_2023_102428 crossref_primary_10_1007_s12298_021_01064_5 crossref_primary_10_1186_s13059_025_03595_6 crossref_primary_10_1002_tpg2_70013 crossref_primary_10_1007_s00299_025_03515_9 crossref_primary_10_1146_annurev_arplant_070523_041445 crossref_primary_10_1016_j_virusres_2022_198844 crossref_primary_10_1093_nar_gkae573 crossref_primary_10_3390_plants10122766 crossref_primary_10_1007_s12298_024_01452_7 crossref_primary_10_1111_nph_19079 crossref_primary_10_1093_plphys_kiae113 crossref_primary_10_1111_nph_17699 crossref_primary_10_1134_S0006297924080054 crossref_primary_10_3390_jof10090648 crossref_primary_10_3390_plants12020241 crossref_primary_10_1093_jxb_erab073 crossref_primary_10_1111_eva_13382 crossref_primary_10_1371_journal_pgen_1009444 crossref_primary_10_1016_j_stress_2025_100946 crossref_primary_10_1073_pnas_2100709118 crossref_primary_10_1093_eep_dvac011 crossref_primary_10_1093_g3journal_jkae191 crossref_primary_10_3390_plants14132002 crossref_primary_10_1038_s41467_024_48940_8 crossref_primary_10_1111_jipb_13883 crossref_primary_10_1007_s00203_025_04353_9 crossref_primary_10_1093_aob_mcac125 crossref_primary_10_1002_iub_2712 crossref_primary_10_1186_s43897_024_00094_3 crossref_primary_10_1016_j_plgene_2021_100318 crossref_primary_10_1042_BST20210336 crossref_primary_10_1093_hr_uhae277 crossref_primary_10_1007_s00299_022_02911_9 crossref_primary_10_1016_j_tig_2024_02_002 crossref_primary_10_3390_epigenomes9030031 crossref_primary_10_3390_ijms26146773 crossref_primary_10_1016_j_bbrc_2022_03_135 crossref_primary_10_1093_plphys_kiac033 crossref_primary_10_1186_s13062_024_00558_y crossref_primary_10_1016_j_stress_2025_101013 crossref_primary_10_1186_s13059_025_03715_2 crossref_primary_10_3390_genes16070765 crossref_primary_10_3390_plants13040515 crossref_primary_10_3390_plants14132021 crossref_primary_10_1007_s13237_025_00584_9 crossref_primary_10_3390_microorganisms9050913 crossref_primary_10_1111_ppl_14399 crossref_primary_10_3390_ijms232113412 crossref_primary_10_1111_tpj_16164 crossref_primary_10_1016_j_cj_2025_02_007 crossref_primary_10_1186_s13059_021_02564_z crossref_primary_10_3390_ijms26178658 crossref_primary_10_3389_fpls_2021_795274 crossref_primary_10_1016_j_jtbi_2023_111701 crossref_primary_10_2217_epi_2022_0022 crossref_primary_10_3389_fpls_2021_662185 crossref_primary_10_1111_tpj_70407 crossref_primary_10_1111_tpj_15637 crossref_primary_10_1016_j_tplants_2025_02_005 crossref_primary_10_3390_agronomy14092105 crossref_primary_10_1093_icb_icaf109 crossref_primary_10_3389_fpls_2024_1427578 crossref_primary_10_1093_nar_gkae257 crossref_primary_10_1016_j_tplants_2025_08_013 crossref_primary_10_1016_j_egg_2025_100360 crossref_primary_10_3389_fcell_2022_1020958 crossref_primary_10_1007_s11816_023_00876_z crossref_primary_10_1093_jxb_erae266 crossref_primary_10_3389_fpls_2021_692328 crossref_primary_10_1134_S1062360421060047 crossref_primary_10_1111_pce_15297 crossref_primary_10_1093_plphys_kiad622 crossref_primary_10_1093_nar_gkaf478 crossref_primary_10_1111_nph_17938 crossref_primary_10_1016_j_semcdb_2024_05_001 crossref_primary_10_1038_s41586_023_05791_5 crossref_primary_10_1038_s41467_021_24553_3 crossref_primary_10_1007_s11756_022_01053_3 crossref_primary_10_1038_s41477_025_02076_9 crossref_primary_10_1098_rsob_240159 crossref_primary_10_1038_s41467_025_62887_4 crossref_primary_10_1093_hr_uhaf166 crossref_primary_10_3389_fpls_2023_1258023 crossref_primary_10_3390_ijms21218401 crossref_primary_10_3389_fpls_2022_1111623 crossref_primary_10_1016_j_bcab_2023_102792 crossref_primary_10_1186_s12915_021_01123_z crossref_primary_10_1093_jxb_eraf016 crossref_primary_10_1093_plphys_kiae135 crossref_primary_10_1016_j_plaphy_2023_108165 crossref_primary_10_3390_ijms24119150 crossref_primary_10_1002_pmic_202200104 crossref_primary_10_1186_s12870_024_04866_3 crossref_primary_10_1093_jxb_eraf131 crossref_primary_10_3389_fpls_2023_1181039 crossref_primary_10_1016_j_plantsci_2024_112114 crossref_primary_10_1016_j_celrep_2025_115345 crossref_primary_10_1038_s44319_024_00304_5 crossref_primary_10_3390_ijms26125643 crossref_primary_10_3390_plants12030437 crossref_primary_10_1007_s11105_025_01545_x crossref_primary_10_3389_fpls_2025_1608888 crossref_primary_10_3389_fpls_2022_888391 crossref_primary_10_3390_ncrna11010001 crossref_primary_10_1111_nph_19000 crossref_primary_10_3390_ijms26168010 crossref_primary_10_1080_07352689_2021_1920731 crossref_primary_10_3390_agronomy15010094 crossref_primary_10_1093_g3journal_jkae004 crossref_primary_10_1111_eva_13669 crossref_primary_10_3390_plants14182908 crossref_primary_10_1016_j_pbi_2021_102134 crossref_primary_10_1111_ppl_70216 crossref_primary_10_1038_s41477_025_02002_z crossref_primary_10_1093_plcell_koac346 crossref_primary_10_3390_ijms26104816 crossref_primary_10_1073_pnas_2115899118 crossref_primary_10_3390_plants12213667 crossref_primary_10_1093_jxb_eraf030 crossref_primary_10_1007_s12298_024_01469_y crossref_primary_10_1007_s41348_022_00574_y crossref_primary_10_1111_jipb_13368 crossref_primary_10_3390_ijms26104700 crossref_primary_10_1093_plphys_kiad668 crossref_primary_10_1111_nph_17738 crossref_primary_10_3389_fpls_2022_825477 crossref_primary_10_1007_s42994_025_00243_2 crossref_primary_10_1155_2022_1092894 crossref_primary_10_1186_s13059_022_02731_w crossref_primary_10_1101_gr_275981_121 crossref_primary_10_7759_cureus_51662 crossref_primary_10_7554_eLife_89353_3 crossref_primary_10_3390_biom13071069 crossref_primary_10_3390_ijms24043978 crossref_primary_10_1093_ve_veac068 crossref_primary_10_1146_annurev_arplant_070122_025047 crossref_primary_10_3390_agronomy15040859 crossref_primary_10_1016_j_pbi_2021_102118 crossref_primary_10_7554_eLife_72676 crossref_primary_10_1101_gr_279532_124 crossref_primary_10_1093_jxb_erae522 crossref_primary_10_3390_biology10090896 crossref_primary_10_1016_j_heliyon_2024_e40395 crossref_primary_10_1093_plphys_kiaf389 crossref_primary_10_1038_s41580_024_00769_1 crossref_primary_10_3389_fpls_2023_1123211 crossref_primary_10_3390_ijms26073225 crossref_primary_10_1002_ajb2_1645 crossref_primary_10_1093_eep_dvae009 crossref_primary_10_1042_BST20210743 crossref_primary_10_1007_s44372_025_00249_6 crossref_primary_10_1007_s00299_024_03170_6 crossref_primary_10_1038_s41580_022_00566_8 crossref_primary_10_1007_s00344_024_11337_4 crossref_primary_10_1007_s11103_022_01330_4 crossref_primary_10_1093_jeb_voaf051 crossref_primary_10_3389_fgene_2022_818727 crossref_primary_10_1111_nph_18876 crossref_primary_10_1111_tpj_70006 crossref_primary_10_1016_j_ccr_2022_214899 crossref_primary_10_1016_j_scienta_2023_112760 crossref_primary_10_1093_pcp_pcae140 crossref_primary_10_3389_fcell_2022_1026406 crossref_primary_10_3389_fpls_2021_757165 crossref_primary_10_1093_plcell_koad219 crossref_primary_10_3389_fpls_2024_1355626 crossref_primary_10_1007_s00344_024_11462_0 crossref_primary_10_1111_pbi_13592 crossref_primary_10_1016_j_bbagen_2024_130580 crossref_primary_10_1111_wre_12615 crossref_primary_10_3389_fpls_2022_961840 crossref_primary_10_1038_s41477_023_01378_0 crossref_primary_10_1007_s13237_024_00502_5 crossref_primary_10_3892_br_2022_1503 crossref_primary_10_1016_j_envint_2023_107776 crossref_primary_10_3389_fpls_2022_1089392 crossref_primary_10_3390_plants14162543 crossref_primary_10_3390_ijms252312695 crossref_primary_10_1093_hr_uhad156 crossref_primary_10_1242_dev_199589 crossref_primary_10_3390_horticulturae8070562 crossref_primary_10_3390_ijms252212030 crossref_primary_10_3390_ijms242317054 crossref_primary_10_1007_s40572_025_00488_5 crossref_primary_10_1016_j_tplants_2022_09_004 crossref_primary_10_3389_fpls_2023_1204279 crossref_primary_10_1016_j_plgene_2025_100513 crossref_primary_10_1016_j_stress_2025_100812 crossref_primary_10_1042_EBC20210100 crossref_primary_10_1016_j_jhazmat_2024_136545 crossref_primary_10_1007_s00425_023_04135_x crossref_primary_10_1111_nph_18734 crossref_primary_10_1111_ppl_13771 crossref_primary_10_3390_plants13212981 crossref_primary_10_1016_j_jplph_2021_153365 crossref_primary_10_3390_plants13141977 crossref_primary_10_1080_15592324_2024_2383515 crossref_primary_10_1016_j_ppees_2025_125889 crossref_primary_10_3390_ijms22115426 crossref_primary_10_3389_fpls_2022_728167 crossref_primary_10_1111_pbi_70243 crossref_primary_10_1016_j_bbrep_2025_102032 crossref_primary_10_1080_00288233_2023_2187425 crossref_primary_10_1146_annurev_arplant_102820_090750 crossref_primary_10_1371_journal_pgen_1011141 crossref_primary_10_1093_nar_gkac223 crossref_primary_10_7554_eLife_89353 |
| Cites_doi | 10.4161/epi.6.3.14242 10.1105/tpc.15.00920 10.1038/nature12178 10.1371/journal.pbio.0020104 10.1073/pnas.162371499 10.1073/pnas.1502279112 10.1073/pnas.1300585110 10.1007/BF00280469 10.1016/j.molcel.2019.07.008 10.1073/pnas.0507427103 10.1038/ng.365 10.1038/nrg3462 10.1016/j.cub.2003.11.052 10.3732/ajb.1500173 10.1111/j.1365-313X.2012.05092.x 10.1371/journal.pgen.1004115 10.1016/0092-8674(94)90119-8 10.1073/pnas.1809841115 10.1007/s00497-017-0304-3 10.1038/nplants.2016.163 10.1111/jipb.12423 10.1104/pp.108.117846 10.1016/j.pbi.2016.12.006 10.1186/s13059-018-1479-0 10.1093/jxb/ers076 10.1038/nsmb.2354 10.1146/annurev-arplant-043014-114633 10.1387/ijdb.120254pm 10.1016/j.pbi.2015.07.005 10.4161/psb.5.11.13548 10.1101/gad.348405 10.1105/tpc.15.00869 10.1111/j.1365-313X.2006.02936.x 10.1146/annurev.arplant.51.1.167 10.3390/ijms19072144 10.3389/fpls.2016.01201 10.3389/fpls.2018.00600 10.1016/S0092-8674(02)00807-3 10.1371/journal.pgen.1006526 10.1093/molbev/msv060 10.1016/j.celrep.2014.08.067 10.3389/fpls.2017.00082 10.1073/pnas.0701861104 10.1016/j.cell.2008.12.038 10.1126/science.aar7854 10.1038/nature08828 10.1038/s41467-019-08736-7 10.1038/srep23181 10.1016/j.tplants.2008.05.004 10.1186/s13059-018-1587-x 10.1093/mp/sst023 10.1007/s00412-004-0275-7 10.1111/tpj.13910 10.1038/nrg3683 10.1016/j.molp.2017.10.002 10.1093/genetics/163.3.1109 10.1016/j.cub.2012.07.061 10.1038/nature10501 10.1038/nrm3152 10.1016/j.molcel.2008.12.015 10.1104/pp.19.00570 10.1073/pnas.1515072113 10.1038/s41477-017-0100-y 10.1038/s41576-019-0117-3 10.1371/journal.pgen.1003948 10.15252/embj.201489499 10.1038/s41467-019-09496-0 10.1186/s13059-016-1032-y 10.1126/science.1106910 10.1093/gbe/evv171 10.1038/nrg2719 10.1101/gad.289553.116 10.1016/S1097-2765(03)00477-5 10.1101/gad.301499.117 10.1101/sqb.2013.77.014803 10.1371/journal.pgen.1005142 10.1093/jxb/erv312 10.1016/S0960-9822(01)00226-3 10.1016/j.cell.2008.09.035 10.1126/science.1079695 10.1016/j.cell.2013.02.033 10.1016/j.cell.2015.09.032 10.3389/fpls.2012.00179 10.1016/j.molcel.2012.07.027 10.1111/tpj.13753 10.1242/dev.092981 10.1371/journal.pgen.1002434 10.7554/eLife.03198 10.7554/eLife.09591 10.1016/j.cell.2005.02.007 10.1038/s41422-018-0104-9 10.1093/emboj/19.19.5194 10.1038/s41559-016-0027 10.1016/j.cell.2012.10.054 10.1038/nplants.2016.58 10.1016/j.pbi.2018.01.003 10.1111/nph.14874 10.7554/eLife.37434 10.1371/journal.pgen.1002195 10.1038/nplants.2016.49 10.1016/j.cell.2012.07.034 10.1002/j.1460-2075.1989.tb03421.x 10.1104/pp.113.216481 10.1007/s00299-017-2215-z 10.1038/nplants.2016.30 10.3389/fpls.2017.00873 10.1016/j.molcel.2014.02.019 10.1016/j.celrep.2017.11.078 10.1038/ng.2703 10.1038/35065132 10.1038/s41467-017-01049-7 10.1038/nrm4043 10.1111/tpj.12622 10.1094/MPMI-04-12-0093-CR 10.1073/pnas.1209329109 10.1016/j.cell.2019.01.029 10.1007/BF00028978 10.1105/tpc.16.00304 10.1126/science.8316832 10.1038/nrm3089 10.1038/s41588-018-0115-y 10.1038/nplants.2016.145 10.1371/journal.pgen.1007469 10.1371/journal.pone.0025730 10.1126/science.286.5441.950 10.1104/pp.111.187831 10.3389/fpls.2019.00360 10.1038/cr.2012.36 10.1111/jipb.12463 10.1038/nsmb.2735 10.1073/pnas.91.22.10502 10.1038/nature09861 10.1038/s41421-018-0056-8 10.1016/j.pbi.2012.08.007 10.1016/S0960-9822(02)00925-9 10.2307/3869076 10.1126/science.1187959 10.1038/nature08328 10.1073/pnas.1309182110 10.1016/j.molcel.2012.11.011 10.1038/ng1580 10.1128/JVI.00656-16 10.1016/S0955-0674(97)80010-5 10.1101/sqb.2010.75.037 10.1038/ng1804 10.1093/emboj/cdf464 10.1146/annurev.genet.33.1.479 10.1105/tpc.19.00047 10.1038/s41576-018-0089-8 10.1126/science.1074973 10.1038/nrg3355 10.1016/S0092-8674(00)80864-8 10.1111/j.1365-313X.2009.04003.x 10.1111/mpp.12850 10.1016/j.cell.2006.04.025 10.1007/s00239-006-0093-z 10.1371/journal.pone.0009514 10.1038/8803 10.1111/j.1365-313X.2010.04401.x 10.1016/S1097-2765(05)00090-0 10.1146/annurev-arplant-050213-035728 10.1093/jxb/err163 10.1038/nsmb.1690 10.1371/journal.pgen.1003267 10.1073/pnas.1413053112 10.1038/nrg1601 10.1126/science.1095989 10.1128/JVI.02305-13 10.1038/s41467-017-02219-3 10.1016/j.bbagrm.2016.08.004 10.1016/j.cub.2006.10.059 10.1186/s13059-017-1195-1 10.1016/j.cell.2009.04.028 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 Public Library of Science 2020 Erdmann, Picard. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Erdmann, Picard 2020 Erdmann, Picard |
| Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Erdmann, Picard. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Erdmann, Picard 2020 Erdmann, Picard |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pgen.1009034 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Science in Context ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1553-7404 |
| ExternalDocumentID | 2460113531 oai_doaj_org_article_fcd55810b5ea45dc88aa2f9f2ff02bc3 PMC7544125 A645334999 33031395 10_1371_journal_pgen_1009034 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFFHD AFKRA AFPKN AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM - AAPBV ABPTK ADACO BBAFP M~E |
| ID | FETCH-LOGICAL-c726t-dbbae4b4393cde0cdb180d92b044d7e52b19e90e3f895eda8b2072c6270fd5083 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 239 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581778600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7404 1553-7390 |
| IngestDate | Fri Nov 26 17:52:52 EST 2021 Tue Oct 14 19:09:11 EDT 2025 Tue Nov 04 01:35:44 EST 2025 Sun Nov 09 12:13:48 EST 2025 Sat Nov 29 14:54:53 EST 2025 Tue Nov 11 10:29:20 EST 2025 Tue Nov 04 17:50:29 EST 2025 Thu Nov 13 15:52:13 EST 2025 Thu Nov 13 15:52:43 EST 2025 Thu Nov 13 15:24:19 EST 2025 Thu May 22 21:20:14 EDT 2025 Thu Apr 03 06:54:19 EDT 2025 Sat Nov 29 02:34:34 EST 2025 Tue Nov 18 22:35:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c726t-dbbae4b4393cde0cdb180d92b044d7e52b19e90e3f895eda8b2072c6270fd5083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-2177-2216 0000-0002-4325-4196 |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pgen.1009034 |
| PMID | 33031395 |
| PQID | 2460113531 |
| PQPubID | 1436339 |
| ParticipantIDs | plos_journals_2460113531 doaj_primary_oai_doaj_org_article_fcd55810b5ea45dc88aa2f9f2ff02bc3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7544125 proquest_miscellaneous_2449955782 proquest_journals_2460113531 gale_infotracmisc_A645334999 gale_infotracacademiconefile_A645334999 gale_incontextgauss_ISR_A645334999 gale_incontextgauss_ISN_A645334999 gale_incontextgauss_IOV_A645334999 gale_healthsolutions_A645334999 pubmed_primary_33031395 crossref_citationtrail_10_1371_journal_pgen_1009034 crossref_primary_10_1371_journal_pgen_1009034 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-08 |
| PublicationDateYYYYMMDD | 2020-10-08 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS genetics |
| PublicationTitleAlternate | PLoS Genet |
| PublicationYear | 2020 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | SW Chan (pgen.1009034.ref006) 2004; 303 M Zhou (pgen.1009034.ref094) 2015; 27 N Durán-Figueroa (pgen.1009034.ref102) 2010; 5 X Cao (pgen.1009034.ref089) 2002; 12 G Mermigka (pgen.1009034.ref067) 2016; 58 TA Volpe (pgen.1009034.ref150) 2002; 297 L Jones (pgen.1009034.ref133) 2001; 11 A Depicker (pgen.1009034.ref156) 1997; 9 MA Matzke (pgen.1009034.ref064) 1989; 8 AM Fortes (pgen.1009034.ref042) 2017; 8 H Ito (pgen.1009034.ref044) 2016; 6 DL Yang (pgen.1009034.ref108) 2018; 4 IP Calil (pgen.1009034.ref054) 2017; 119 D Cuerda-Gil (pgen.1009034.ref079) 2016; 2 AR van der Krol (pgen.1009034.ref155) 1990; 2 D Córdoba-Cañero (pgen.1009034.ref140) 2017; 92 MC Siomi (pgen.1009034.ref029) 2011; 12 NG Bologna (pgen.1009034.ref097) 2014; 65 JA Law (pgen.1009034.ref106) 2013; 498 Y Huang (pgen.1009034.ref142) 2015; 32 A Dalakouras (pgen.1009034.ref177) 2019; 182 M Lachner (pgen.1009034.ref126) 2001; 410 CJ Harris (pgen.1009034.ref011) 2018; 362 M Zaratiegui (pgen.1009034.ref152) 2011; 479 AJ Herr (pgen.1009034.ref168) 2005; 308 AJ Bewick (pgen.1009034.ref075) 2017; 18 AT Wierzbicki (pgen.1009034.ref088) 2008; 135 L Ji (pgen.1009034.ref109) 2012; 22 Z Xie (pgen.1009034.ref165) 2004; 2 A Regalado (pgen.1009034.ref178) 2015 D Zilberman (pgen.1009034.ref166) 2003; 299 M Xie (pgen.1009034.ref118) 2012; 72 J Gallego-Bartolomé (pgen.1009034.ref090) 2019; 176 X Guo (pgen.1009034.ref041) 2017; 8 A Kumar (pgen.1009034.ref043) 1999; 33 S Rasmann (pgen.1009034.ref060) 2012; 158 TM Vu (pgen.1009034.ref032) 2013; 140 T Wicker (pgen.1009034.ref002) 2018; 19 JM Wendte (pgen.1009034.ref081) 2017; 1860 I Ingelbrecht (pgen.1009034.ref158) 1994; 91 D Pignatta (pgen.1009034.ref175) 2018; 14 Y Wang (pgen.1009034.ref057) 2019; 93 J Wang (pgen.1009034.ref139) 2017; 31 MA Matzke (pgen.1009034.ref080) 2015; 66 G Wang (pgen.1009034.ref023) 2017; 68 JS Parent (pgen.1009034.ref073) 2012; 3 M Klosinska (pgen.1009034.ref035) 2016; 2 JP Jackson (pgen.1009034.ref122) 2004; 112 MF Mette (pgen.1009034.ref163) 2000; 19 H Ito (pgen.1009034.ref017) 2011; 472 S Bai (pgen.1009034.ref071) 2011; 62 A Bartels (pgen.1009034.ref076) 2018; 19 M Lei (pgen.1009034.ref013) 2015; 112 Q Gouil (pgen.1009034.ref021) 2016; 12 Y Zhu (pgen.1009034.ref116) 2013; 49 G Martinez (pgen.1009034.ref024) 2017; 36 XJ He (pgen.1009034.ref114) 2009; 137 J Luo (pgen.1009034.ref144) 2007; 64 JW Grover (pgen.1009034.ref022) 2018; 94 S Lahmy (pgen.1009034.ref095) 2016; 30 M Zhou (pgen.1009034.ref107) 2018; 50 MJ Dubin (pgen.1009034.ref001) 2018; 42 L Diezma-Navas (pgen.1009034.ref053) 2019; 20 J Zhai (pgen.1009034.ref082) 2015; 163 AH Peters (pgen.1009034.ref121) 2003; 12 ZW Liu (pgen.1009034.ref110) 2014; 10 X Cao (pgen.1009034.ref103) 2003; 13 R Yaari (pgen.1009034.ref147) 2019; 10 A Kanazawa (pgen.1009034.ref173) 2011; 65 M Wassenegger (pgen.1009034.ref049) 1994; 76 CS Pikaard (pgen.1009034.ref113) 2012; 77 X Zhong (pgen.1009034.ref112) 2012; 19 J Gohlke (pgen.1009034.ref061) 2013; 9 T Dalmay (pgen.1009034.ref167) 2000; 101 K Panda (pgen.1009034.ref085) 2016; 17 MJ Sigman (pgen.1009034.ref003) 2016; 28 MG Lewsey (pgen.1009034.ref068) 2016; 113 Y Kinoshita (pgen.1009034.ref020) 2007; 49 NA Espinas (pgen.1009034.ref062) 2016; 7 W Zhang (pgen.1009034.ref072) 2014; 80 P Raja (pgen.1009034.ref051) 2014; 88 T Blevins (pgen.1009034.ref120) 2014; 54 Y Moran (pgen.1009034.ref148) 2017; 1 MV Greenberg (pgen.1009034.ref160) 2011; 6 MA Matzke (pgen.1009034.ref055) 2014; 15 RM Erdmann (pgen.1009034.ref028) 2017; 30 A Dalakouras (pgen.1009034.ref174) 2009; 60 J Gohlke (pgen.1009034.ref179) 2015; 102 R Gutzat (pgen.1009034.ref065) 2012; 15 SL Klemm (pgen.1009034.ref129) 2019; 20 M Mirouze (pgen.1009034.ref016) 2009; 461 Y Li (pgen.1009034.ref135) 2018; 37 M Bühler (pgen.1009034.ref151) 2006; 125 SW Chan (pgen.1009034.ref134) 2005; 6 MW Kankel (pgen.1009034.ref132) 2003; 163 JR Haag (pgen.1009034.ref093) 2011; 12 P Meyer (pgen.1009034.ref161) 2013; 57 L Ma (pgen.1009034.ref146) 2015; 7 A Zemach (pgen.1009034.ref005) 2013; 153 Y Choi (pgen.1009034.ref136) 2002; 110 RK Slotkin (pgen.1009034.ref026) 2009; 136 S Nuthikattu (pgen.1009034.ref008) 2013; 162 AJ Hamilton (pgen.1009034.ref162) 1999; 286 W Liu (pgen.1009034.ref115) 2018; 4 Z Zhang (pgen.1009034.ref086) 2016; 2 D Pontier (pgen.1009034.ref171) 2005; 19 WJ Soppe (pgen.1009034.ref019) 2000; 6 O Voinnet (pgen.1009034.ref091) 2008; 13 J Huang (pgen.1009034.ref050) 2016; 58 J Zhu (pgen.1009034.ref137) 2007; 17 T Kanno (pgen.1009034.ref170) 2005; 37 J Liu (pgen.1009034.ref045) 2015; 6 C Napoli (pgen.1009034.ref154) 1990; 2 V Olmedo-Monfil (pgen.1009034.ref025) 2010; 464 R Xu (pgen.1009034.ref048) 2015; 66 H Stroud (pgen.1009034.ref099) 2013; 152 X Fang (pgen.1009034.ref100) 2016; 28 J Pérez-Hormaeche (pgen.1009034.ref007) 2008; 147 I Ausin (pgen.1009034.ref117) 2009; 16 SE Castel (pgen.1009034.ref149) 2013; 14 JA Jeddeloh (pgen.1009034.ref131) 1999; 22 T Blevins (pgen.1009034.ref083) 2015; 4 H Zhang (pgen.1009034.ref105) 2013; 110 Ö Deniz (pgen.1009034.ref004) 2019; 20 J Cho (pgen.1009034.ref015) 2018; 9 A Boyko (pgen.1009034.ref066) 2010; 5 M Fagard (pgen.1009034.ref153) 2000; 51 MR Hatorangan (pgen.1009034.ref036) 2016; 28 W Aufsatz (pgen.1009034.ref063) 2002; 99 BP Williams (pgen.1009034.ref138) 2017; 8 SL Tucker (pgen.1009034.ref143) 2010; 75 A Marí-Ordóñez (pgen.1009034.ref009) 2013; 45 J Penterman (pgen.1009034.ref014) 2007; 104 VV Cavrak (pgen.1009034.ref018) 2014; 10 RM Erdmann (pgen.1009034.ref037) 2017; 21 Y Onodera (pgen.1009034.ref169) 2005; 120 D Pontier (pgen.1009034.ref092) 2012; 48 A López (pgen.1009034.ref059) 2011; 7 IR Henderson (pgen.1009034.ref096) 2006; 38 AT Wierzbicki (pgen.1009034.ref111) 2009; 41 PE Jullien (pgen.1009034.ref119) 2012; 22 J Du (pgen.1009034.ref123) 2015; 16 A Molnar (pgen.1009034.ref070) 2010; 328 A Vongs (pgen.1009034.ref130) 1993; 260 A Papikian (pgen.1009034.ref176) 2019; 10 PRV Satyaki (pgen.1009034.ref038) 2019; 31 X Li (pgen.1009034.ref124) 2018; 115 T Kawakatsu (pgen.1009034.ref031) 2016; 2 JS Mylne (pgen.1009034.ref127) 2006; 103 S Zhao (pgen.1009034.ref128) 2019; 29 P Meyer (pgen.1009034.ref159) 1994; 243 DM Bond (pgen.1009034.ref172) 2015; 112 TS Ream (pgen.1009034.ref141) 2009; 33 J Wang (pgen.1009034.ref098) 2019; 10 AJ Waters (pgen.1009034.ref033) 2013; 110 JN Jackel (pgen.1009034.ref052) 2016; 90 J Singh (pgen.1009034.ref084) 2019; 75 D Pignatta (pgen.1009034.ref034) 2014; 3 RH Dowen (pgen.1009034.ref058) 2012; 109 JM Wendte (pgen.1009034.ref077) 2018; 11 M Tamiru (pgen.1009034.ref069) 2018; 217 H Stroud (pgen.1009034.ref074) 2014; 21 C Eun (pgen.1009034.ref101) 2011; 6 C Ernst (pgen.1009034.ref030) 2017; 8 G Martínez (pgen.1009034.ref027) 2016; 2 PJ Tricker (pgen.1009034.ref047) 2012; 63 J Cheng (pgen.1009034.ref040) 2018; 19 MB Wang (pgen.1009034.ref056) 2012; 25 M Iwasaki (pgen.1009034.ref039) 2019; 8 G Meister (pgen.1009034.ref087) 2013; 14 OV Popova (pgen.1009034.ref046) 2013; 6 A Hamilton (pgen.1009034.ref164) 2002; 21 JR Haag (pgen.1009034.ref145) 2014; 9 J Du (pgen.1009034.ref125) 2012; 151 AD McCue (pgen.1009034.ref010) 2015; 34 FF Assaad (pgen.1009034.ref157) 1993; 22 BP Williams (pgen.1009034.ref012) 2015; 11 JA Law (pgen.1009034.ref104) 2011; 7 JA Law (pgen.1009034.ref078) 2010; 11 |
| References_xml | – volume: 6 start-page: 344 year: 2011 ident: pgen.1009034.ref160 article-title: Identification of genes required for de novo DNA methylation in Arabidopsis. publication-title: Epigenetics doi: 10.4161/epi.6.3.14242 – volume: 28 start-page: 272 year: 2016 ident: pgen.1009034.ref100 article-title: RNAi in Plants: An Argonaute-Centered View publication-title: Plant Cell doi: 10.1105/tpc.15.00920 – volume: 498 start-page: 385 year: 2013 ident: pgen.1009034.ref106 article-title: Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1 publication-title: Nature doi: 10.1038/nature12178 – volume: 2 start-page: E104 year: 2004 ident: pgen.1009034.ref165 article-title: Genetic and functional diversification of small RNA pathways in plants publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020104 – volume: 99 start-page: 16499 issue: Suppl 4 year: 2002 ident: pgen.1009034.ref063 article-title: RNA-directed DNA methylation in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.162371499 – volume: 112 start-page: 3553 year: 2015 ident: pgen.1009034.ref013 article-title: Regulatory link between DNA methylation and active demethylation in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1502279112 – volume: 110 start-page: 8290 year: 2013 ident: pgen.1009034.ref105 article-title: DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1300585110 – volume: 243 start-page: 390 year: 1994 ident: pgen.1009034.ref159 article-title: Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants publication-title: Mol. Gen. Genet doi: 10.1007/BF00280469 – volume: 75 start-page: 576 year: 2019 ident: pgen.1009034.ref084 article-title: Reaction Mechanisms of Pol IV, RDR2, and DCL3 Drive RNA Channeling in the siRNA-Directed DNA Methylation Pathway publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.07.008 – volume: 103 start-page: 5012 year: 2006 ident: pgen.1009034.ref127 article-title: LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0507427103 – volume: 41 start-page: 630 year: 2009 ident: pgen.1009034.ref111 article-title: RNA polymerase V transcription guides ARGONAUTE4 to chromatin publication-title: Nat. Genet doi: 10.1038/ng.365 – volume: 14 start-page: 447 year: 2013 ident: pgen.1009034.ref087 article-title: Argonaute proteins: functional insights and emerging roles publication-title: Nat. Rev. Genet doi: 10.1038/nrg3462 – volume: 13 start-page: 2212 year: 2003 ident: pgen.1009034.ref103 article-title: Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation publication-title: Curr. Biol doi: 10.1016/j.cub.2003.11.052 – volume: 102 start-page: 1399 year: 2015 ident: pgen.1009034.ref179 article-title: Exploiting mobile RNA silencing for crop improvement publication-title: Am. J. Bot doi: 10.3732/ajb.1500173 – volume: 6 start-page: 267 year: 2015 ident: pgen.1009034.ref045 article-title: Genetic and epigenetic control of plant heat responses publication-title: Front Plant Sci – volume: 72 start-page: 491 year: 2012 ident: pgen.1009034.ref118 article-title: The DNA- and RNA-binding protein FACTOR of DNA METHYLATION 1 requires XH domain-mediated complex formation for its function in RNA-directed DNA methylation publication-title: Plant J doi: 10.1111/j.1365-313X.2012.05092.x – volume: 10 start-page: e1004115 year: 2014 ident: pgen.1009034.ref018 article-title: How a retrotransposon exploits the plant's heat stress response for its activation. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004115 – volume: 76 start-page: 567 year: 1994 ident: pgen.1009034.ref049 article-title: RNA-directed de novo methylation of genomic sequences in plants publication-title: Cell doi: 10.1016/0092-8674(94)90119-8 – volume: 115 start-page: E8793 year: 2018 ident: pgen.1009034.ref124 article-title: Mechanistic insights into plant SUVH family H3K9 methyltransferases and their binding to context-biased non-CG DNA methylation publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1809841115 – volume: 30 start-page: 141 year: 2017 ident: pgen.1009034.ref028 article-title: Molecular movement in the Arabidopsis thaliana female gametophyte. publication-title: Plant Reprod doi: 10.1007/s00497-017-0304-3 – volume: 2 start-page: 16163 year: 2016 ident: pgen.1009034.ref079 article-title: Non-canonical RNA-directed DNA methylation publication-title: Nat Plants doi: 10.1038/nplants.2016.163 – volume: 58 start-page: 328 year: 2016 ident: pgen.1009034.ref067 article-title: RNA silencing movement in plants publication-title: J Integr Plant Biol doi: 10.1111/jipb.12423 – volume: 147 start-page: 1264 year: 2008 ident: pgen.1009034.ref007 article-title: Invasion of the Arabidopsis genome by the tobacco retrotransposon Tnt1 is controlled by reversible transcriptional gene silencing publication-title: Plant Physiol doi: 10.1104/pp.108.117846 – volume: 36 start-page: 22 year: 2017 ident: pgen.1009034.ref024 article-title: Role of small RNAs in epigenetic reprogramming during plant sexual reproduction publication-title: Curr. Opin. Plant Biol doi: 10.1016/j.pbi.2016.12.006 – volume: 19 start-page: 103 year: 2018 ident: pgen.1009034.ref002 article-title: Impact of transposable elements on genome structure and evolution in bread wheat publication-title: Genome Biol doi: 10.1186/s13059-018-1479-0 – volume: 63 start-page: 3799 year: 2012 ident: pgen.1009034.ref047 article-title: Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development publication-title: J. Exp. Bot doi: 10.1093/jxb/ers076 – volume: 19 start-page: 870 year: 2012 ident: pgen.1009034.ref112 article-title: DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons publication-title: Nat. Struct. Mol. Biol doi: 10.1038/nsmb.2354 – volume: 66 start-page: 243 year: 2015 ident: pgen.1009034.ref080 article-title: RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-043014-114633 – volume: 57 start-page: 509 year: 2013 ident: pgen.1009034.ref161 article-title: Transgenes and their contributions to epigenetic research publication-title: Int. J. Dev. Biol doi: 10.1387/ijdb.120254pm – volume: 27 start-page: 154 year: 2015 ident: pgen.1009034.ref094 article-title: RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II's rules publication-title: Curr. Opin. Plant Biol doi: 10.1016/j.pbi.2015.07.005 – volume: 5 start-page: 1476 year: 2010 ident: pgen.1009034.ref102 article-title: ARGONAUTE9-dependent silencing of transposable elements in pericentromeric regions of Arabidopsis. publication-title: Plant Signal Behav doi: 10.4161/psb.5.11.13548 – volume: 19 start-page: 2030 year: 2005 ident: pgen.1009034.ref171 article-title: Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis publication-title: Genes Dev doi: 10.1101/gad.348405 – volume: 28 start-page: 304 year: 2016 ident: pgen.1009034.ref003 article-title: The First Rule of Plant Transposable Element Silencing: Location, Location publication-title: Location. Plant Cell doi: 10.1105/tpc.15.00869 – volume: 49 start-page: 38 year: 2007 ident: pgen.1009034.ref020 article-title: Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats publication-title: Plant J doi: 10.1111/j.1365-313X.2006.02936.x – volume: 51 start-page: 167 year: 2000 ident: pgen.1009034.ref153 article-title: (TRANS)GENE SILENCING IN PLANTS: How Many Mechanisms? publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol doi: 10.1146/annurev.arplant.51.1.167 – volume: 19 start-page: 2144 year: 2018 ident: pgen.1009034.ref076 article-title: Dynamic DNA Methylation in Plant Growth and Development. publication-title: Int J Mol Sci doi: 10.3390/ijms19072144 – volume: 7 start-page: 1201 year: 2016 ident: pgen.1009034.ref062 article-title: Epigenetic Control of Defense Signaling and Priming in Plants. publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01201 – volume: 9 start-page: 600 year: 2018 ident: pgen.1009034.ref015 article-title: Transposon-Derived Non-coding RNAs and Their Function in Plants. publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00600 – volume: 110 start-page: 33 year: 2002 ident: pgen.1009034.ref136 article-title: DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis publication-title: Cell doi: 10.1016/S0092-8674(02)00807-3 – volume: 12 start-page: e1006526 year: 2016 ident: pgen.1009034.ref021 article-title: DNA Methylation Signatures of the Plant Chromomethyltransferases. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1006526 – volume: 32 start-page: 1788 year: 2015 ident: pgen.1009034.ref142 article-title: Ancient Origin and Recent Innovations of RNA Polymerase IV and V publication-title: Mol. Biol. Evol doi: 10.1093/molbev/msv060 – volume: 9 start-page: 378 year: 2014 ident: pgen.1009034.ref145 article-title: Functional diversification of maize RNA polymerase IV and V subtypes via alternative catalytic subunits publication-title: Cell Rep doi: 10.1016/j.celrep.2014.08.067 – volume: 2 start-page: 291 year: 1990 ident: pgen.1009034.ref155 article-title: Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression publication-title: Plant Cell – volume: 8 start-page: 82 year: 2017 ident: pgen.1009034.ref042 article-title: Plant Stress Responses and Phenotypic Plasticity in the Epigenomics Era: Perspectives on the Grapevine Scenario, a Model for Perennial Crop Plants publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00082 – volume: 104 start-page: 6752 year: 2007 ident: pgen.1009034.ref014 article-title: DNA demethylation in the Arabidopsis genome publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0701861104 – volume: 136 start-page: 461 year: 2009 ident: pgen.1009034.ref026 article-title: Epigenetic reprogramming and small RNA silencing of transposable elements in pollen publication-title: Cell doi: 10.1016/j.cell.2008.12.038 – volume: 362 start-page: 1182 year: 2018 ident: pgen.1009034.ref011 article-title: A DNA methylation reader complex that enhances gene transcription publication-title: Science doi: 10.1126/science.aar7854 – volume: 464 start-page: 628 year: 2010 ident: pgen.1009034.ref025 article-title: Control of female gamete formation by a small RNA pathway in Arabidopsis publication-title: Nature doi: 10.1038/nature08828 – volume: 10 start-page: 729 year: 2019 ident: pgen.1009034.ref176 article-title: Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. publication-title: Nat Commun doi: 10.1038/s41467-019-08736-7 – volume: 6 start-page: 23181 year: 2016 ident: pgen.1009034.ref044 article-title: A Stress-Activated Transposon in Arabidopsis Induces Transgenerational Abscisic Acid Insensitivity. publication-title: Sci Rep. doi: 10.1038/srep23181 – volume: 13 start-page: 317 year: 2008 ident: pgen.1009034.ref091 article-title: Use, tolerance and avoidance of amplified RNA silencing by plants publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2008.05.004 – volume: 19 start-page: 212 year: 2018 ident: pgen.1009034.ref040 article-title: Downregulation of RdDM during strawberry fruit ripening publication-title: Genome Biol doi: 10.1186/s13059-018-1587-x – volume: 6 start-page: 396 year: 2013 ident: pgen.1009034.ref046 article-title: The RdDM pathway is required for basal heat tolerance in Arabidopsis. publication-title: Mol Plant doi: 10.1093/mp/sst023 – volume: 112 start-page: 308 year: 2004 ident: pgen.1009034.ref122 article-title: Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana publication-title: Chromosoma doi: 10.1007/s00412-004-0275-7 – volume: 94 start-page: 575 year: 2018 ident: pgen.1009034.ref022 article-title: Maternal components of RNA-directed DNA methylation are required for seed development in Brassica rapa publication-title: Plant J doi: 10.1111/tpj.13910 – volume: 15 start-page: 394 year: 2014 ident: pgen.1009034.ref055 article-title: RNA-directed DNA methylation: an epigenetic pathway of increasing complexity publication-title: Nat. Rev. Genet doi: 10.1038/nrg3683 – volume: 11 start-page: 381 year: 2018 ident: pgen.1009034.ref077 article-title: Specifications of Targeting Heterochromatin Modifications in Plants. publication-title: Mol Plant. doi: 10.1016/j.molp.2017.10.002 – volume: 163 start-page: 1109 year: 2003 ident: pgen.1009034.ref132 article-title: Arabidopsis MET1 cytosine methyltransferase mutants publication-title: Genetics doi: 10.1093/genetics/163.3.1109 – volume: 22 start-page: 1825 year: 2012 ident: pgen.1009034.ref119 article-title: DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana publication-title: Curr. Biol doi: 10.1016/j.cub.2012.07.061 – volume: 479 start-page: 135 year: 2011 ident: pgen.1009034.ref152 article-title: RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II publication-title: Nature doi: 10.1038/nature10501 – volume: 12 start-page: 483 year: 2011 ident: pgen.1009034.ref093 article-title: Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm3152 – volume: 33 start-page: 192 year: 2009 ident: pgen.1009034.ref141 article-title: Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.12.015 – volume: 182 start-page: 38 year: 2019 ident: pgen.1009034.ref177 article-title: GMO-free RNAi: exogenous application of RNA molecules in plants publication-title: Plant Physiol doi: 10.1104/pp.19.00570 – volume: 113 start-page: E801 year: 2016 ident: pgen.1009034.ref068 article-title: Mobile small RNAs regulate genome-wide DNA methylation publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1515072113 – volume: 4 start-page: 181 year: 2018 ident: pgen.1009034.ref115 article-title: RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. publication-title: Nat Plants doi: 10.1038/s41477-017-0100-y – volume: 20 start-page: 417 year: 2019 ident: pgen.1009034.ref004 article-title: Regulation of transposable elements by DNA modifications publication-title: Nat. Rev. Genet doi: 10.1038/s41576-019-0117-3 – volume: 10 start-page: e1003948 year: 2014 ident: pgen.1009034.ref110 article-title: The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003948 – volume: 34 start-page: 20 year: 2015 ident: pgen.1009034.ref010 article-title: ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation publication-title: EMBO J doi: 10.15252/embj.201489499 – volume: 10 start-page: 1613 year: 2019 ident: pgen.1009034.ref147 article-title: RdDM-independent de novo and heterochromatin DNA methylation by plant CMT and DNMT3 orthologs. publication-title: Nat Commun. doi: 10.1038/s41467-019-09496-0 – volume: 17 start-page: 170 year: 2016 ident: pgen.1009034.ref085 article-title: Full-length autonomous transposable elements are preferentially targeted by expression-dependent forms of RNA-directed DNA methylation publication-title: Genome Biol doi: 10.1186/s13059-016-1032-y – volume: 308 start-page: 118 year: 2005 ident: pgen.1009034.ref168 article-title: RNA polymerase IV directs silencing of endogenous DNA publication-title: Science doi: 10.1126/science.1106910 – volume: 7 start-page: 2648 year: 2015 ident: pgen.1009034.ref146 article-title: Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway. publication-title: Genome Biol Evol doi: 10.1093/gbe/evv171 – volume: 11 start-page: 204 year: 2010 ident: pgen.1009034.ref078 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat. Rev. Genet doi: 10.1038/nrg2719 – volume: 30 start-page: 2565 year: 2016 ident: pgen.1009034.ref095 article-title: Evidence for ARGONAUTE4-DNA interactions in RNA-directed DNA methylation in plants publication-title: Genes Dev doi: 10.1101/gad.289553.116 – volume: 12 start-page: 1577 year: 2003 ident: pgen.1009034.ref121 article-title: Partitioning and plasticity of repressive histone methylation states in mammalian chromatin publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00477-5 – volume: 31 start-page: 1601 year: 2017 ident: pgen.1009034.ref139 article-title: Mutation of Arabidopsis SMC4 identifies condensin as a corepressor of pericentromeric transposons and conditionally expressed genes publication-title: Genes Dev doi: 10.1101/gad.301499.117 – volume: 77 start-page: 205 year: 2012 ident: pgen.1009034.ref113 article-title: A transcription fork model for Pol IV and Pol V-dependent RNA-directed DNA methylation publication-title: Cold Spring Harb. Symp. Quant. Biol doi: 10.1101/sqb.2013.77.014803 – volume: 11 start-page: e1005142 year: 2015 ident: pgen.1009034.ref012 article-title: Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005142 – volume: 66 start-page: 5997 year: 2015 ident: pgen.1009034.ref048 article-title: Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis publication-title: J. Exp. Bot doi: 10.1093/jxb/erv312 – volume: 11 start-page: 747 year: 2001 ident: pgen.1009034.ref133 article-title: RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance publication-title: Curr. Biol doi: 10.1016/S0960-9822(01)00226-3 – volume: 135 start-page: 635 year: 2008 ident: pgen.1009034.ref088 article-title: Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes publication-title: Cell doi: 10.1016/j.cell.2008.09.035 – volume: 299 start-page: 716 year: 2003 ident: pgen.1009034.ref166 article-title: ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation publication-title: Science doi: 10.1126/science.1079695 – volume: 153 start-page: 193 year: 2013 ident: pgen.1009034.ref005 article-title: The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin publication-title: Cell doi: 10.1016/j.cell.2013.02.033 – volume: 163 start-page: 445 year: 2015 ident: pgen.1009034.ref082 article-title: A One Precursor One siRNA Model for Pol IV-Dependent siRNA Biogenesis publication-title: Cell doi: 10.1016/j.cell.2015.09.032 – volume: 3 start-page: 179 year: 2012 ident: pgen.1009034.ref073 article-title: The origin and effect of small RNA signaling in plants publication-title: Front Plant Sci doi: 10.3389/fpls.2012.00179 – volume: 48 start-page: 121 year: 2012 ident: pgen.1009034.ref092 article-title: NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.07.027 – volume: 92 start-page: 1170 year: 2017 ident: pgen.1009034.ref140 article-title: Dual control of ROS1-mediated active DNA demethylation by DNA damage-binding protein 2 (DDB2). publication-title: Plant J doi: 10.1111/tpj.13753 – volume: 140 start-page: 2953 year: 2013 ident: pgen.1009034.ref032 article-title: RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis publication-title: Development doi: 10.1242/dev.092981 – volume: 7 start-page: e1002434 year: 2011 ident: pgen.1009034.ref059 article-title: The RNA silencing enzyme RNA polymerase v is required for plant immunity publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002434 – volume: 3 start-page: e03198 year: 2014 ident: pgen.1009034.ref034 article-title: Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting publication-title: Elife doi: 10.7554/eLife.03198 – volume: 4 start-page: e09591 year: 2015 ident: pgen.1009034.ref083 article-title: Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. publication-title: Elife doi: 10.7554/eLife.09591 – volume: 120 start-page: 613 year: 2005 ident: pgen.1009034.ref169 article-title: Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation publication-title: Cell doi: 10.1016/j.cell.2005.02.007 – volume: 29 start-page: 54 year: 2019 ident: pgen.1009034.ref128 article-title: Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation publication-title: Cell Res doi: 10.1038/s41422-018-0104-9 – volume: 19 start-page: 5194 year: 2000 ident: pgen.1009034.ref163 article-title: Transcriptional silencing and promoter methylation triggered by double-stranded RNA publication-title: EMBO J doi: 10.1093/emboj/19.19.5194 – volume: 1 start-page: 27 year: 2017 ident: pgen.1009034.ref148 article-title: The evolutionary origin of plant and animal microRNAs. publication-title: Nat Ecol Evol doi: 10.1038/s41559-016-0027 – volume: 152 start-page: 352 year: 2013 ident: pgen.1009034.ref099 article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome publication-title: Cell doi: 10.1016/j.cell.2012.10.054 – volume: 93 start-page: e01675 year: 2019 ident: pgen.1009034.ref057 article-title: Geminiviral V2 Protein Suppresses Transcriptional Gene Silencing through Interaction with AGO4 publication-title: J. Virol – volume: 2 start-page: 16058 year: 2016 ident: pgen.1009034.ref031 article-title: Unique cell-type-specific patterns of DNA methylation in the root meristem publication-title: Nat Plants doi: 10.1038/nplants.2016.58 – volume: 42 start-page: 23 year: 2018 ident: pgen.1009034.ref001 article-title: Transposons: a blessing curse publication-title: Curr. Opin. Plant Biol doi: 10.1016/j.pbi.2018.01.003 – volume: 217 start-page: 540 year: 2018 ident: pgen.1009034.ref069 article-title: Regulation of genome-wide DNA methylation by mobile small RNAs publication-title: New Phytol doi: 10.1111/nph.14874 – volume: 8 start-page: e37434 year: 2019 ident: pgen.1009034.ref039 article-title: Non-canonical RNA-directed DNA methylation participates in maternal and environmental control of seed dormancy publication-title: Elife doi: 10.7554/eLife.37434 – volume: 7 start-page: e1002195 year: 2011 ident: pgen.1009034.ref104 article-title: SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002195 – volume: 2 start-page: 16049 year: 2016 ident: pgen.1009034.ref086 article-title: Arabidopsis AGO3 predominantly recruits 24-nt small RNAs to regulate epigenetic silencing. publication-title: Nat Plants. doi: 10.1038/nplants.2016.49 – volume: 151 start-page: 167 year: 2012 ident: pgen.1009034.ref125 article-title: Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants publication-title: Cell doi: 10.1016/j.cell.2012.07.034 – volume: 8 start-page: 643 year: 1989 ident: pgen.1009034.ref064 article-title: Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants publication-title: EMBO J doi: 10.1002/j.1460-2075.1989.tb03421.x – volume: 162 start-page: 116 year: 2013 ident: pgen.1009034.ref008 article-title: The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs publication-title: Plant Physiol doi: 10.1104/pp.113.216481 – volume: 68 start-page: 797 year: 2017 ident: pgen.1009034.ref023 article-title: Epigenetic processes in flowering plant reproduction publication-title: J. Exp. Bot – volume: 37 start-page: 77 year: 2018 ident: pgen.1009034.ref135 article-title: Active DNA demethylation: mechanism and role in plant development publication-title: Plant Cell Rep doi: 10.1007/s00299-017-2215-z – volume: 2 start-page: 16030 year: 2016 ident: pgen.1009034.ref027 article-title: Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell publication-title: Nat Plants doi: 10.1038/nplants.2016.30 – volume: 8 start-page: 873 year: 2017 ident: pgen.1009034.ref041 article-title: Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple. publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00873 – volume: 54 start-page: 30 year: 2014 ident: pgen.1009034.ref120 article-title: A two-step process for epigenetic inheritance in Arabidopsis publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.02.019 – volume: 21 start-page: 3364 year: 2017 ident: pgen.1009034.ref037 article-title: A Small RNA Pathway Mediates Allelic Dosage in Endosperm. publication-title: Cell Rep doi: 10.1016/j.celrep.2017.11.078 – volume: 45 start-page: 1029 year: 2013 ident: pgen.1009034.ref009 article-title: Reconstructing de novo silencing of an active plant retrotransposon publication-title: Nat. Genet doi: 10.1038/ng.2703 – volume: 410 start-page: 116 year: 2001 ident: pgen.1009034.ref126 article-title: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins publication-title: Nature doi: 10.1038/35065132 – volume: 8 start-page: 1411 year: 2017 ident: pgen.1009034.ref030 article-title: The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity publication-title: Nat Commun doi: 10.1038/s41467-017-01049-7 – volume: 16 start-page: 519 year: 2015 ident: pgen.1009034.ref123 article-title: DNA methylation pathways and their crosstalk with histone methylation publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm4043 – volume: 80 start-page: 106 year: 2014 ident: pgen.1009034.ref072 article-title: Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers publication-title: Plant J doi: 10.1111/tpj.12622 – volume: 25 start-page: 1275 year: 2012 ident: pgen.1009034.ref056 article-title: RNA silencing and plant viral diseases publication-title: Mol. Plant Microbe Interact doi: 10.1094/MPMI-04-12-0093-CR – volume: 109 start-page: E2183 year: 2012 ident: pgen.1009034.ref058 article-title: Widespread dynamic DNA methylation in response to biotic stress publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1209329109 – volume: 176 start-page: 1068 year: 2019 ident: pgen.1009034.ref090 article-title: Co-targeting RNA Polymerases IV and V Promotes Efficient De Novo DNA Methylation in Arabidopsis publication-title: Cell doi: 10.1016/j.cell.2019.01.029 – volume: 22 start-page: 1067 year: 1993 ident: pgen.1009034.ref157 article-title: Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. publication-title: Plant Mol. Biol doi: 10.1007/BF00028978 – volume: 28 start-page: 1815 year: 2016 ident: pgen.1009034.ref036 article-title: Rapid Evolution of Genomic Imprinting in Two Species of the Brassicaceae publication-title: Plant Cell doi: 10.1105/tpc.16.00304 – volume: 260 start-page: 1926 year: 1993 ident: pgen.1009034.ref130 article-title: Arabidopsis thaliana DNA methylation mutants publication-title: Science doi: 10.1126/science.8316832 – volume: 12 start-page: 246 year: 2011 ident: pgen.1009034.ref029 article-title: PIWI-interacting small RNAs: the vanguard of genome defence publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm3089 – volume: 50 start-page: 865 year: 2018 ident: pgen.1009034.ref107 article-title: Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family publication-title: Nat. Genet doi: 10.1038/s41588-018-0115-y – volume: 2 start-page: 16145 year: 2016 ident: pgen.1009034.ref035 article-title: Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. publication-title: Nat Plants doi: 10.1038/nplants.2016.145 – volume: 14 start-page: e1007469 year: 2018 ident: pgen.1009034.ref175 article-title: A variably imprinted epiallele impacts seed development publication-title: PLoS Genet doi: 10.1371/journal.pgen.1007469 – volume: 6 start-page: e25730 year: 2011 ident: pgen.1009034.ref101 article-title: AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana publication-title: PLoS ONE doi: 10.1371/journal.pone.0025730 – volume: 286 start-page: 950 year: 1999 ident: pgen.1009034.ref162 article-title: A species of small antisense RNA in posttranscriptional gene silencing in plants publication-title: Science doi: 10.1126/science.286.5441.950 – volume: 158 start-page: 854 year: 2012 ident: pgen.1009034.ref060 article-title: Herbivory in the previous generation primes plants for enhanced insect resistance publication-title: Plant Physiol doi: 10.1104/pp.111.187831 – volume: 10 start-page: 360 year: 2019 ident: pgen.1009034.ref098 article-title: Plant microRNAs: Biogenesis, Homeostasis, and Degradation publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00360 – volume: 22 start-page: 624 year: 2012 ident: pgen.1009034.ref109 article-title: Regulation of small RNA stability: methylation and beyond publication-title: Cell Res doi: 10.1038/cr.2012.36 – volume: 58 start-page: 312 year: 2016 ident: pgen.1009034.ref050 article-title: The function of small RNAs in plant biotic stress response publication-title: J Integr Plant Biol doi: 10.1111/jipb.12463 – volume: 21 start-page: 64 year: 2014 ident: pgen.1009034.ref074 article-title: Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis publication-title: Nat. Struct. Mol. Biol doi: 10.1038/nsmb.2735 – volume: 91 start-page: 10502 year: 1994 ident: pgen.1009034.ref158 article-title: Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.91.22.10502 – volume: 472 start-page: 115 year: 2011 ident: pgen.1009034.ref017 article-title: An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress publication-title: Nature doi: 10.1038/nature09861 – volume: 4 start-page: 55 year: 2018 ident: pgen.1009034.ref108 article-title: Four putative SWI2/SNF2 chromatin remodelers have dual roles in regulating DNA methylation in Arabidopsis. publication-title: Cell Discov doi: 10.1038/s41421-018-0056-8 – volume: 15 start-page: 568 year: 2012 ident: pgen.1009034.ref065 article-title: Epigenetic responses to stress: triple defense? publication-title: Curr. Opin. Plant Biol doi: 10.1016/j.pbi.2012.08.007 – volume: 12 start-page: 1138 year: 2002 ident: pgen.1009034.ref089 article-title: Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing publication-title: Curr. Biol doi: 10.1016/S0960-9822(02)00925-9 – volume: 2 start-page: 279 year: 1990 ident: pgen.1009034.ref154 article-title: Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans publication-title: Plant Cell doi: 10.2307/3869076 – volume: 328 start-page: 872 year: 2010 ident: pgen.1009034.ref070 article-title: Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells publication-title: Science doi: 10.1126/science.1187959 – volume: 461 start-page: 427 year: 2009 ident: pgen.1009034.ref016 article-title: Selective epigenetic control of retrotransposition in Arabidopsis publication-title: Nature doi: 10.1038/nature08328 – volume: 110 start-page: 19639 year: 2013 ident: pgen.1009034.ref033 article-title: Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1309182110 – volume: 49 start-page: 298 year: 2013 ident: pgen.1009034.ref116 article-title: A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.11.011 – volume: 37 start-page: 761 year: 2005 ident: pgen.1009034.ref170 article-title: Atypical RNA polymerase subunits required for RNA-directed DNA methylation publication-title: Nat. Genet doi: 10.1038/ng1580 – volume: 90 start-page: 7529 year: 2016 ident: pgen.1009034.ref052 article-title: Arabidopsis RNA Polymerases IV and V Are Required To Establish H3K9 Methylation, but Not Cytosine Methylation, on Geminivirus Chromatin publication-title: J. Virol doi: 10.1128/JVI.00656-16 – volume: 9 start-page: 373 year: 1997 ident: pgen.1009034.ref156 article-title: Post-transcriptional gene silencing in plants publication-title: Curr. Opin. Cell Biol doi: 10.1016/S0955-0674(97)80010-5 – volume: 75 start-page: 285 year: 2010 ident: pgen.1009034.ref143 article-title: Evolutionary history of plant multisubunit RNA polymerases IV and V: subunit origins via genome-wide and segmental gene duplications, retrotransposition, and lineage-specific subfunctionalization publication-title: Cold Spring Harb. Symp. Quant. Biol doi: 10.1101/sqb.2010.75.037 – volume: 38 start-page: 721 year: 2006 ident: pgen.1009034.ref096 article-title: Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning publication-title: Nat. Genet doi: 10.1038/ng1804 – volume: 21 start-page: 4671 year: 2002 ident: pgen.1009034.ref164 article-title: Two classes of short interfering RNA in RNA silencing publication-title: EMBO J doi: 10.1093/emboj/cdf464 – volume: 33 start-page: 479 year: 1999 ident: pgen.1009034.ref043 article-title: Plant retrotransposons. publication-title: Annu. Rev. Genet doi: 10.1146/annurev.genet.33.1.479 – volume: 119 start-page: 711 year: 2017 ident: pgen.1009034.ref054 article-title: Plant immunity against viruses: antiviral immune receptors in focus publication-title: Ann. Bot – volume: 31 start-page: 1563 year: 2019 ident: pgen.1009034.ref038 article-title: Paternally Acting Canonical RNA-Directed DNA Methylation Pathway Genes Sensitize Arabidopsis Endosperm to Paternal Genome Dosage publication-title: Plant Cell doi: 10.1105/tpc.19.00047 – volume: 20 start-page: 207 year: 2019 ident: pgen.1009034.ref129 article-title: Chromatin accessibility and the regulatory epigenome publication-title: Nat. Rev. Genet doi: 10.1038/s41576-018-0089-8 – year: 2015 ident: pgen.1009034.ref178 article-title: The Next Great GMO Debate publication-title: MIT Technology Review – volume: 297 start-page: 1833 year: 2002 ident: pgen.1009034.ref150 article-title: Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi publication-title: Science doi: 10.1126/science.1074973 – volume: 14 start-page: 100 year: 2013 ident: pgen.1009034.ref149 article-title: RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond publication-title: Nat. Rev. Genet doi: 10.1038/nrg3355 – volume: 101 start-page: 543 year: 2000 ident: pgen.1009034.ref167 article-title: An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus publication-title: Cell doi: 10.1016/S0092-8674(00)80864-8 – volume: 60 start-page: 840 year: 2009 ident: pgen.1009034.ref174 article-title: A hairpin RNA construct residing in an intron efficiently triggered RNA-directed DNA methylation in tobacco publication-title: Plant J doi: 10.1111/j.1365-313X.2009.04003.x – volume: 20 start-page: 1439 year: 2019 ident: pgen.1009034.ref053 article-title: Crosstalk between epigenetic silencing and infection by tobacco rattle virus in Arabidopsis publication-title: Mol. Plant Pathol doi: 10.1111/mpp.12850 – volume: 125 start-page: 873 year: 2006 ident: pgen.1009034.ref151 article-title: Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing publication-title: Cell doi: 10.1016/j.cell.2006.04.025 – volume: 64 start-page: 101 year: 2007 ident: pgen.1009034.ref144 article-title: A multistep process gave rise to RNA polymerase IV of land plants publication-title: J. Mol. Evol doi: 10.1007/s00239-006-0093-z – volume: 5 start-page: e9514 year: 2010 ident: pgen.1009034.ref066 article-title: Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins publication-title: PLoS ONE doi: 10.1371/journal.pone.0009514 – volume: 22 start-page: 94 year: 1999 ident: pgen.1009034.ref131 article-title: Maintenance of genomic methylation requires a SWI2/SNF2-like protein publication-title: Nat. Genet doi: 10.1038/8803 – volume: 65 start-page: 156 year: 2011 ident: pgen.1009034.ref173 article-title: Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04401.x – volume: 6 start-page: 791 year: 2000 ident: pgen.1009034.ref019 article-title: The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene publication-title: Mol. Cell doi: 10.1016/S1097-2765(05)00090-0 – volume: 65 start-page: 473 year: 2014 ident: pgen.1009034.ref097 article-title: The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-050213-035728 – volume: 62 start-page: 4561 year: 2011 ident: pgen.1009034.ref071 article-title: A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner publication-title: J. Exp. Bot doi: 10.1093/jxb/err163 – volume: 16 start-page: 1325 year: 2009 ident: pgen.1009034.ref117 article-title: IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana publication-title: Nat. Struct. Mol. Biol doi: 10.1038/nsmb.1690 – volume: 9 start-page: e1003267 year: 2013 ident: pgen.1009034.ref061 article-title: DNA methylation mediated control of gene expression is critical for development of crown gall tumors publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003267 – volume: 112 start-page: 917 year: 2015 ident: pgen.1009034.ref172 article-title: Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1413053112 – volume: 6 start-page: 351 year: 2005 ident: pgen.1009034.ref134 article-title: Gardening the genome: DNA methylation in Arabidopsis thaliana publication-title: Nat. Rev. Genet doi: 10.1038/nrg1601 – volume: 303 start-page: 1336 year: 2004 ident: pgen.1009034.ref006 article-title: RNA silencing genes control de novo DNA methylation publication-title: Science doi: 10.1126/science.1095989 – volume: 88 start-page: 2611 year: 2014 ident: pgen.1009034.ref051 article-title: Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses publication-title: J. Virol doi: 10.1128/JVI.02305-13 – volume: 8 start-page: 2124 year: 2017 ident: pgen.1009034.ref138 article-title: Stable transgenerational epigenetic inheritance requires a DNA methylation-sensing circuit publication-title: Nat Commun doi: 10.1038/s41467-017-02219-3 – volume: 1860 start-page: 140 year: 2017 ident: pgen.1009034.ref081 article-title: The RNAs of RNA-directed DNA methylation publication-title: Biochim Biophys Acta Gene Regul Mech doi: 10.1016/j.bbagrm.2016.08.004 – volume: 17 start-page: 54 year: 2007 ident: pgen.1009034.ref137 article-title: The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis publication-title: Curr. Biol doi: 10.1016/j.cub.2006.10.059 – volume: 18 start-page: 65 year: 2017 ident: pgen.1009034.ref075 article-title: The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants publication-title: Genome Biol doi: 10.1186/s13059-017-1195-1 – volume: 137 start-page: 498 year: 2009 ident: pgen.1009034.ref114 article-title: An effector of RNA-directed DNA methylation in arabidopsis is an ARGONAUTE 4- and RNA-binding protein publication-title: Cell doi: 10.1016/j.cell.2009.04.028 |
| SSID | ssj0035897 |
| Score | 2.6796532 |
| Snippet | RNA-directed DNA methylation (RdDM) is a biological process in which non-coding RNA molecules direct the addition of DNA methylation to specific DNA sequences.... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1009034 |
| SubjectTerms | Abiotic stress Angiosperms Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis thaliana Argonaute Proteins - genetics Biology and life sciences Chromatin Chromatin - genetics Defective mutant Deoxyribonucleic acid DNA DNA methylation DNA Methylation - genetics DNA Transposable Elements - genetics DNA-directed RNA polymerase Epigenesis, Genetic Epigenetics Ferns Flowering Flowers & plants Fungi Gene expression Gene Expression Regulation, Plant Gene silencing Genetic aspects Genomes Genomic instability Genomic Instability - genetics Genotype & phenotype Gymnosperms Heterochromatin - genetics Lethality Magnoliopsida - genetics Methylation Non-coding RNA Nucleotide sequence Observations Pathogens Phenotypes Physiological aspects Research and Analysis Methods RNA RNA - genetics RNA modification RNA polymerase RNA, Double-Stranded - genetics RNA-Dependent RNA Polymerase - genetics RNA-directed RNA polymerase RNA-mediated interference Stress, Physiological - genetics Topic Page Transposons |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA6yKPgi3ju66iqCT7G5bjKP66Uo6Cr1Qt9CrrVQZpfOruC_N2cyO3Sk0D74OvkSmO-cJCczJ99B6CVzqRY0UhyJTjgveAFrZjXWNSNRu2BJ6NT1P6nlUh8d1V_PlfqCnLAiD1yI208-SKkpcTJaIYPX2lqW6sRSIsz5TuczRz27w1RZg7nUpayKlByrfKzvL81xRfd7G71eZwNBjkBNuBhtSp12_7BCT9anq_ai8PPfLMpz29LBbXSrjydni_Ied9C12NxFN0qFyT_30PRwucBl24ph9m65mH2O2TQlAe4--nHw_vvbD7gviIC9YvMNDs7ZKFyOIbgPkfjgqM5cMkeECCpK5mgdaxJ50rWMwWrHiGJ-zhRJAXTfH6BJs2riHpoR65NUgVpCvQjaa09ViMlTz4XLxFaI7xgxvlcLh6IVp6b7BabyqaG8oAEeTc9jhfDQa13UMi7BvwGyByxoXXcPsgeY3gPMZR5QoWdgKlMujg4z1izmAu4Z5wi4Qi86BOhdNJBQc2y3bWs-fvl5BdC35VVAhyPQqx6UVpkzb_ubDpl5ENsaIacjZJ7aftS8B963o641TOTzM1QqobnnziMvbn4-NMOgkEnXxNUWMHlkCUUMKvSwOPBAP-eg5FnLCqmRa4_sM25pTn51muSgo5hj5Uf_w6CP0U0GXzW6TMspmmzOtvEJuu5_b07as6fdRP8LQlVWgw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgCxKX8qaBBRaExMmt7dgb54S20AokCNXyUG-Rn6VSlWw3u0j8ezyJNxBUQSWu8Zcomc8ej53xNwi9YNrnnDqKHZEeB4dnsWRKYpkz4qS2ithWXf99VhTy-Dg_ihtuTUyr3PjE1lHb2sAe-R7jYekARRroq8U5hqpR8Hc1ltC4irZAqYyP0Nb-QXE03_jiVMiuvIoQKc7C8j4enkszuhe52l0EoiBXICcpH0xOrYZ_76lHi7O6uSgM_TOb8rfp6fDm_37YLbQdA9PJrOtJt9EVV91B17tSlT_uovG8mOFu_nN28qaYTT64wHGXSXcPfTk8-Pz6LY6VFbDJ2HSFrdbKcR2CkdRYR4zVVAZSmCac28wJpmnucuJSL3PhrJKakYyZKcuItyAgfx-NqrpyO2hClPEis1QRariVRhqaWecNNSnXhOkEpRuTlibKjkP1i7Oy_ZeWheVH94ElEFFGIhKE-7sWnezGP_D7wFaPBdHs9kK9PCnjGCy9sUJISrRwigtrpFSK-dwz78OLmjRBT4HrsjuB2g_9cjblcGA5hNIJet4iQDijgsycE7VumvLdx6-XAH0qLgOaD0AvI8jXwWZGxSMTwfKg2jVAjgfI4CPMoHkHuu_GdE35q9OFOzfd8uLmZ30zPBRS8ipXrwETniygGkKCHnQjoDd_moIkaC4SlA3GxoCfYUt1-q0VNwdBxhB0P_z7az1CNxhsfLTJmGM0Wi3X7jG6Zr6vTpvlk-gFfgKyTGQr priority: 102 providerName: ProQuest |
| Title | RNA-directed DNA Methylation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33031395 https://www.proquest.com/docview/2460113531 https://www.proquest.com/docview/2449955782 https://pubmed.ncbi.nlm.nih.gov/PMC7544125 https://doaj.org/article/fcd55810b5ea45dc88aa2f9f2ff02bc3 http://dx.doi.org/10.1371/journal.pgen.1009034 |
| Volume | 16 |
| WOSCitedRecordID | wos000581778600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: M7P dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: 7X7 dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: BENPR dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: PIMPY dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: FPL dateStart: 20050701 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELboFiQuvKGBJSwIiVOKH0nsHLfQFZXaEC0PLafIT6hUZVfNLhL_Hk-SDaRqRbnkkPkc2WOPPY7H3yD0miqXxcSSyGLhIj_hmUhQKSKRUWyFMhKbhl3_mOe5WCyy4s9G8cIJPuPkbafT_ZVXKJzpZ5jFO2iXsjSFEK5ZcbydeVkiMt5dj7uq5GD5aVj6-7l4tDpb1pc5mhfjJf9agGZ3_7fq99CdztWcTNuxcR_dsNUDdKtNPvnrIRrP82nUrmjWTN7n08mJ9b3WxsY9Ql9mh5_ffYi6XAmR5jRdR0YpaWPl3QumjcXaKCK8mqnCcWy4Tagimc2wZU5kiTVSKIo51Snl2BmghH-MRtWysntogqV2CTdEYqJjI7TQhBvrNNEsVpiqALGtCkvdEYlDPouzsjkd435D0TawhHaXXbsDFPWlVi2Rxj_wB9A7PRZosJsXXsFlZ1Wl0yZJBMEqsTJOjBZCSuoyR53zFdUsQC-gb8v2TmlvzOU0jeEKsneOA_SqQQAVRgWxNt_lpq7Lo49frwH6lF8HNB-A3nQgt_Q607K7BOE1DzxcA-R4gPRWrwfiPRiuW9XVJY391hqSmBBfcjuELxe_7MXwUQiyq-xyAxj_5QTyGwToSTvie_UzBiSfWRIgPrCFQf8MJdXpj4auHCgWvRv99OoaP0O3KfzGaEIrx2i0Pt_Y5-im_rk-rc9DtMMXvHmKEO0eHObFPGx-nYSN9YcQrlt4SXF0Unz7DQQMVlY |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKAoILb2hgoQGBOIU6drx2DggtlKqrbgMqBe0txK9SqUqWzS6of4rfiCcvCKqglx64xhPLmWcmmfkGoadE2jgKTRgYLGzgHJ4OBMlEIGKCjZA6w7pC15_yJBGzWfx-Df1oe2GgrLL1iZWj1oWCb-SbJHKpAwxpCF_NvwYwNQr-rrYjNGq12DUn313KVr6cbDn5PiNk--3Bm52gmSoQKE5Gy0BLmZlIukBMlTZYaRkKdyAicRRpbhiRYWxibKgVMTM6E5JgTtSIcGw1gKe7fS-gi-6xOJSQ8VmX4FEm6mEujNGA0xg3rXqUh5uNZryYO7WAyoQY06gXCquJAV1cGMyPi_K0l94_azd_C4bb1_83Nt5A15rXbn9c28lNtGbyW-hyPYjz5DYa7ifjoI7uRvtbydjfM06D6zrBO-jjuRztLhrkRW7WkY8zZRnXYYZDFWmhhAq5NlaFikYSE-kh2oowVQ2oOsz2OE6rP4XcJVf1A6Yg-LQRvIeC7q55DSryD_rXoB0dLUCCVxeKxWHaeJjUKs2YCLFkJouYVkJkGbGxJda6gyrqoQ3QrbTur-0cWzoeRdCO7RIFDz2pKAAWJIe6o8NsVZbp5N2nMxB9SM5CtN8jet4Q2cLxTGVNQ4jjPGCS9SiHPUrnAVVveR3MpWVdmf5ScndnawanLz_ulmFTKDjMTbECGrczg1kPHrpXW1zHfkoB8DRmHuI9W-zJp7-SH32poNsBbtKlFPf_fqwNdGXnYG-aTifJ7gN0lcAnnqrsdIgGy8XKPESX1LflUbl4VPkfH30-b0v9CVNXwQY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4gX7rBAYQGBeDJ1nLhxHhDq6CqqjVCVgfYW4tuYNCWlaUH7a_w6fHKDoAn2sgde6y-We_ydc-zkXBB6RoWJAk97WBNusDV4CnOacswjSjQXKiWqrK6_H8YxPzyMZhvoR5MLA2GVjU0sDbXKJbwjH9DAXh2gSYM3MHVYxGw8eb34iqGDFHxpbdppVBTZ06ff7fWteDUd271-Tulk9-DNW1x3GMAypMMVVkKkOhDWKftSaSKV8LhdHBUkCFSoGRVepCOifcMjplXKBSUhlUMaEqOgkLqd9xLaDO0hw2rX5s5uPJs3fsBnvGrtwpiPLYLUiXt-6A1qnrxcWJJAnEJE_KDjGMv-Aa2X6C1O8uKsI_CfkZy_ucbJjf9ZqDfR9fpA7o4qDbqFNnR2G12pWnSe3kH9eTzCld_Xyh3HI_edttyuIgjvoo8XsrR7qJflmd5CLkmlYaHyUuLJQHHJpRcqbaQn_UAQKhzkN9uZyLrcOnT9OEnKb4ihvXZVfzABEiQ1CRyE26cWVbmRf-B3gCktFoqFlz_ky6Oktj2JkYox7hHBdBowJTlPU2oiQ42xC5W-g7aBZ0mVeduavGQ0DCBR214hHPS0REDBkAxYcpSuiyKZvv90DtCH-DygeQf0ogaZ3MpMpnWqiJU8VCvrIPsdpLWNsjO8BarTiK5IfhHePtmoxNnDT9phmBRCETOdrwFjZ2bQBcJB9yvta8Xv-1AKNWIOCjt62dmf7kh2_KUs6g6FKO1l48Hfl7WNrloFTfan8d5DdI3Cu58yHrWPeqvlWj9Cl-W31XGxfFwbIxd9vmhV_QlCH8sn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA-directed+DNA+Methylation&rft.jtitle=PLoS+genetics&rft.au=Picard%2C+Colette+L&rft.au=Erdmann%2C+Robert+M&rft.date=2020-10-08&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=16&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pgen.1009034&rft.externalDBID=n%2Fa&rft.externalDocID=A645334999 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |