Machine learning for brain age prediction: Introduction to methods and clinical applications
The rise of machine learning has unlocked new ways of analysing structural neuroimaging data, including brain age prediction. In this state-of-the-art review, we provide an introduction to the methods and potential clinical applications of brain age prediction. Studies on brain age typically involve...
Gespeichert in:
| Veröffentlicht in: | EBioMedicine Jg. 72; S. 103600 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Netherlands
Elsevier B.V
01.10.2021
Elsevier |
| Schlagworte: | |
| ISSN: | 2352-3964, 2352-3964 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The rise of machine learning has unlocked new ways of analysing structural neuroimaging data, including brain age prediction. In this state-of-the-art review, we provide an introduction to the methods and potential clinical applications of brain age prediction. Studies on brain age typically involve the creation of a regression machine learning model of age-related neuroanatomical changes in healthy people. This model is then applied to new subjects to predict their brain age. The difference between predicted brain age and chronological age in a given individual is known as ‘brain-age gap’. This value is thought to reflect neuroanatomical abnormalities and may be a marker of overall brain health. It may aid early detection of brain-based disorders and support differential diagnosis, prognosis, and treatment choices. These applications could lead to more timely and more targeted interventions in age-related disorders. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ISSN: | 2352-3964 2352-3964 |
| DOI: | 10.1016/j.ebiom.2021.103600 |