PCNA Ubiquitination Is Important, But Not Essential for Translesion DNA Synthesis in Mammalian Cells

Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables re...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics Vol. 7; no. 9; p. e1002262
Main Authors: Hendel, Ayal, Krijger, Peter H. L., Diamant, Noam, Goren, Zohar, Langerak, Petra, Kim, Jungmin, Reißner, Thomas, Lee, Kyoo-young, Geacintov, Nicholas E., Carell, Thomas, Myung, Kyungjae, Tateishi, Satoshi, D'Andrea, Alan, Jacobs, Heinz, Livneh, Zvi
Format: Journal Article
Language:English
Published: United States Public Library of Science 01.09.2011
Public Library of Science (PLoS)
Subjects:
ISSN:1553-7404, 1553-7390, 1553-7404
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.
AbstractList Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single- stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in [Pcna.sup.K164R/K164R] cells, which are resistant to PCNA ubiquitination, compared to [Pcna.sup.+/+] cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH,or Rev1 in [Pcna.sup.K164R/K164R] mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.
  Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in PcnaK164R/K164R cells, which are resistant to PCNA ubiquitination, compared to Pcna+/+ cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in PcnaK164R/K164R mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.
Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.
Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.
Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in PcnaK164R/K164R cells, which are resistant to PCNA ubiquitination, compared to Pcna+/+ cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in PcnaK164R/K164R mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity. DNA damage can block replication and lead to mutations, genomic instability, and cancer. In cases when the removal of DNA damage and restoration of the original sequence prior to replication is impossible, cells utilize DNA damage tolerance mechanisms, which help replication to bypass the lesions. A major universal tolerance mechanism is translesion DNA synthesis (TLS), in which specialized low-fidelity DNA polymerases elongate the DNA across the lesion. This is a double-edged sword because the price of completing replication is an increased risk of point mutations opposite the lesion. Thus, TLS regulation is critical for preventing an escalation in mutation rates. A key element in TLS regulation is the attachment of a small protein called ubiquitin to the PCNA protein, a sliding DNA clamp that tethers the DNA polymerases to DNA, which functions to recruit the TLS DNA polymerase to the damaged site in DNA. While in yeast this modification of PCNA is crucial for TLS, there is a debate about its importance in mammals. Here we show that in mammalian cells the modification of PCNA by ubiquitin is important, but there exist secondary yet significant TLS mechanisms that operate in its absence and have an altered mutational outcome.
Audience Academic
Author Diamant, Noam
Geacintov, Nicholas E.
Tateishi, Satoshi
Krijger, Peter H. L.
Goren, Zohar
Langerak, Petra
Carell, Thomas
Myung, Kyungjae
Kim, Jungmin
D'Andrea, Alan
Jacobs, Heinz
Reißner, Thomas
Lee, Kyoo-young
Hendel, Ayal
Livneh, Zvi
AuthorAffiliation 4 Department of Chemistry and Biochemistry, Ludwig Maximilians-University Munich, Munich, Germany
5 Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
6 Chemistry Department, New York University, New York, United States of America
1 Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
University of Washington, United States of America
7 Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
2 Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
3 Department of Radiation Oncology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
AuthorAffiliation_xml – name: 4 Department of Chemistry and Biochemistry, Ludwig Maximilians-University Munich, Munich, Germany
– name: 7 Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
– name: 2 Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
– name: 1 Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
– name: 3 Department of Radiation Oncology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
– name: University of Washington, United States of America
– name: 5 Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
– name: 6 Chemistry Department, New York University, New York, United States of America
Author_xml – sequence: 1
  givenname: Ayal
  surname: Hendel
  fullname: Hendel, Ayal
– sequence: 2
  givenname: Peter H. L.
  surname: Krijger
  fullname: Krijger, Peter H. L.
– sequence: 3
  givenname: Noam
  surname: Diamant
  fullname: Diamant, Noam
– sequence: 4
  givenname: Zohar
  surname: Goren
  fullname: Goren, Zohar
– sequence: 5
  givenname: Petra
  surname: Langerak
  fullname: Langerak, Petra
– sequence: 6
  givenname: Jungmin
  surname: Kim
  fullname: Kim, Jungmin
– sequence: 7
  givenname: Thomas
  surname: Reißner
  fullname: Reißner, Thomas
– sequence: 8
  givenname: Kyoo-young
  surname: Lee
  fullname: Lee, Kyoo-young
– sequence: 9
  givenname: Nicholas E.
  surname: Geacintov
  fullname: Geacintov, Nicholas E.
– sequence: 10
  givenname: Thomas
  surname: Carell
  fullname: Carell, Thomas
– sequence: 11
  givenname: Kyungjae
  surname: Myung
  fullname: Myung, Kyungjae
– sequence: 12
  givenname: Satoshi
  surname: Tateishi
  fullname: Tateishi, Satoshi
– sequence: 13
  givenname: Alan
  surname: D'Andrea
  fullname: D'Andrea, Alan
– sequence: 14
  givenname: Heinz
  surname: Jacobs
  fullname: Jacobs, Heinz
– sequence: 15
  givenname: Zvi
  surname: Livneh
  fullname: Livneh, Zvi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21931560$$D View this record in MEDLINE/PubMed
BookMark eNqVk11v0zAYhSM0xD7gHyCIhARCosUfiZNwgVTKgEqjQ2zj1nrtOK0rx-5iB7F_j7O2aEUIgXLhxHnOiXN03uPkwDqrkuQxRmNMC_x65frOghmvF8qOMUKEMHIvOcJ5TkdFhrKDO_eHybH3K4RoXlbFg-SQ4IrinKGjpP4ynU_SK6Gvex20haCdTWc-nbVr1wWw4VX6rg_p3IX01HtlgwaTNq5LLzuw3ig_8O-jxcWNDcv46FNt08_QtmA02HSqjPEPk_sNGK8ebdeT5OrD6eX00-js_ONsOjkbSVYVYQSsJqoCVdeVQJgSKmvFGopogQQozEpWU1mWWBCoBc0YEWVeIFlgIYtGkIKeJE83vmvjPN8G5DmmmOY4y3AWidmGqB2s-LrTLXQ33IHmtxuuW3DogpZGcVGXosjykuQUskYxkAiEyBCpZCPrEqLX2-3XetGqWsZwOjB7pvtvrF7yhfvOKWZVTlg0eLE16Nx1r3zgrfYyBgZWud7zCqGiYITmkXy2IRcQT6Zt46KhHGg-IaxikUTDz43_QMWrVq2WsT2Njvt7gpd7gsgE9SMsoPeezy6-_gc7_3f2_Ns--_wOu1RgwtI70w9F9Pvgk7tx_8p51-UIvNkAsnPed6rhUofbQscYtOEY8WFwdr3gw-Dw7eBEcfabeOf_V9lPlkUb8w
CitedBy_id crossref_primary_10_1074_jbc_M112_394841
crossref_primary_10_1002_em_21741
crossref_primary_10_1016_j_dnarep_2015_01_001
crossref_primary_10_3390_genes8020064
crossref_primary_10_1016_j_jid_2018_05_015
crossref_primary_10_1016_j_dnarep_2015_11_011
crossref_primary_10_1016_j_mrfmmm_2015_08_002
crossref_primary_10_3390_genes11121450
crossref_primary_10_1007_s00018_015_2060_6
crossref_primary_10_3390_genes8010024
crossref_primary_10_1038_ncomms12105
crossref_primary_10_1038_s41388_019_0724_7
crossref_primary_10_1016_j_cbi_2025_111551
crossref_primary_10_3123_jemsge_34_70
crossref_primary_10_1186_1471_2199_14_9
crossref_primary_10_1038_s41388_024_03192_0
crossref_primary_10_1016_j_tcb_2021_05_009
crossref_primary_10_1038_ncomms13326
crossref_primary_10_1007_s00412_013_0410_4
crossref_primary_10_1007_s00294_020_01113_8
crossref_primary_10_3390_genes8010019
crossref_primary_10_1002_ange_201701144
crossref_primary_10_1016_j_cell_2018_10_055
crossref_primary_10_3390_genes11020225
crossref_primary_10_3390_ijms19102909
crossref_primary_10_1093_nar_gkt1040
crossref_primary_10_1093_nar_gkx539
crossref_primary_10_1002_bies_201600129
crossref_primary_10_3390_ijms22136957
crossref_primary_10_1016_j_dnarep_2017_04_003
crossref_primary_10_3389_fgene_2016_00105
crossref_primary_10_1093_nar_gkw280
crossref_primary_10_1016_j_mrfmmm_2012_11_002
crossref_primary_10_1002_ejoc_201500144
crossref_primary_10_1073_pnas_1706508114
crossref_primary_10_1016_j_jbc_2023_104656
crossref_primary_10_1093_pnasnexus_pgae242
crossref_primary_10_4161_cc_21694
crossref_primary_10_1038_ncomms6744
crossref_primary_10_7554_eLife_19788
crossref_primary_10_1016_j_yexcr_2014_07_009
crossref_primary_10_3390_genes15101271
crossref_primary_10_1101_gad_195248_112
crossref_primary_10_1371_journal_pone_0052472
crossref_primary_10_1002_em_22359
crossref_primary_10_3390_cancers12102848
crossref_primary_10_1038_nrm3562
crossref_primary_10_1093_nar_gkt793
crossref_primary_10_1038_nrm3289
crossref_primary_10_1093_nar_gku1301
crossref_primary_10_3390_genes14020391
crossref_primary_10_1038_ncomms6437
crossref_primary_10_1093_nar_gkz531
crossref_primary_10_1074_jbc_M112_380998
crossref_primary_10_1093_nar_gkad1054
crossref_primary_10_3390_genes10010010
crossref_primary_10_1002_anie_201701144
crossref_primary_10_1093_nar_gkae1254
crossref_primary_10_1371_journal_pgen_1007119
crossref_primary_10_1073_pnas_1523653113
crossref_primary_10_1016_j_molcel_2018_10_045
crossref_primary_10_1038_s41467_024_47219_2
crossref_primary_10_1080_10409238_2019_1687420
crossref_primary_10_1073_pnas_1204105109
crossref_primary_10_1016_j_dnarep_2016_12_008
crossref_primary_10_1002_bies_201300002
crossref_primary_10_3389_fgene_2016_00087
crossref_primary_10_1186_s13059_024_03451_z
crossref_primary_10_1016_j_gene_2019_144282
crossref_primary_10_1016_j_molcel_2012_10_012
crossref_primary_10_1016_j_dnarep_2021_103163
crossref_primary_10_1002_2211_5463_13099
crossref_primary_10_1242_jcs_094748
crossref_primary_10_3390_biom15010150
crossref_primary_10_1016_j_ab_2013_05_010
crossref_primary_10_1016_j_molcel_2016_12_020
crossref_primary_10_1093_nar_gkt016
crossref_primary_10_1093_nar_gkv712
crossref_primary_10_1038_s41594_020_0418_4
crossref_primary_10_1073_pnas_1701978114
crossref_primary_10_1016_j_bmc_2013_01_022
crossref_primary_10_1016_j_dnarep_2016_05_007
crossref_primary_10_1371_journal_pone_0118775
crossref_primary_10_1016_j_dnarep_2017_05_006
crossref_primary_10_3390_ijms21197264
crossref_primary_10_1016_j_jbc_2022_101861
crossref_primary_10_1002_jcp_30155
crossref_primary_10_1016_j_mrgentox_2018_02_004
crossref_primary_10_1371_journal_pone_0093908
crossref_primary_10_1016_j_dnarep_2015_04_027
crossref_primary_10_1016_j_dnarep_2020_102947
crossref_primary_10_1002_em_21736
crossref_primary_10_1080_10409238_2020_1841089
crossref_primary_10_1016_j_ijbiomac_2024_133187
crossref_primary_10_1093_nar_gkt542
crossref_primary_10_1093_nar_gkae918
crossref_primary_10_3389_fgene_2016_00133
crossref_primary_10_1016_j_dnarep_2012_03_007
crossref_primary_10_3123_jemsge_34_63
crossref_primary_10_1371_journal_pone_0036004
Cites_doi 10.1016/S1876-1623(08)78004-0
10.1073/pnas.0704219104
10.1073/pnas.0802727105
10.1038/35023030
10.1128/MCB.01196-07
10.1016/j.molcel.2011.02.026
10.1074/jbc.M409155200
10.1038/nrm1781
10.1128/MCB.26.9.3527-3540.2006
10.1016/j.dnarep.2008.06.008
10.1126/science.1120615
10.1038/sj.emboj.7600383
10.1074/jbc.M709835200
10.1016/j.dnarep.2006.07.002
10.1007/978-1-4419-6676-6_15
10.1038/sj.onc.1209315
10.1073/pnas.0809844105
10.1128/MCB.00071-09
10.1038/21447
10.1016/j.cell.2007.05.003
10.1371/journal.pbio.0040366
10.1038/emboj.2008.281
10.1016/j.molcel.2006.03.022
10.1073/pnas.0812744106
10.1128/MCB.24.10.4267-4274.2004
10.4161/cc.9.4.10727
10.1038/cr.2007.117
10.1021/bi702329h
10.1093/nar/gkq403
10.1093/nar/gkn651
10.1126/science.285.5425.263
10.1038/nature00991
10.4161/cc.8.5.7707
10.1016/j.devcel.2009.01.001
10.1042/BST0351334
10.1016/j.molcel.2009.12.018
10.1146/annurev.biochem.74.082803.133250
10.4161/cc.5.17.3193
10.1080/10409230902849180
10.1084/jem.20070902
10.1128/MCB.23.2.474-481.2003
10.1038/nature01965
10.1073/pnas.1005492107
10.1016/j.molcel.2008.03.024
10.1016/j.molcel.2009.12.039
10.1016/S1097-2765(04)00259-X
10.1038/ncb1378
10.1073/pnas.0812548106
ContentType Journal Article
Copyright COPYRIGHT 2011 Public Library of Science
2011
2011 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Hendel A, Krijger PHL, Diamant N, Goren Z, Langerak P, et al. (2011) PCNA Ubiquitination Is Important, But Not Essential for Translesion DNA Synthesis in Mammalian Cells. PLoS Genet 7(9): e1002262. doi:10.1371/journal.pgen.1002262
Copyright_xml – notice: COPYRIGHT 2011 Public Library of Science
– notice: 2011
– notice: 2011 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Hendel A, Krijger PHL, Diamant N, Goren Z, Langerak P, et al. (2011) PCNA Ubiquitination Is Important, But Not Essential for Translesion DNA Synthesis in Mammalian Cells. PLoS Genet 7(9): e1002262. doi:10.1371/journal.pgen.1002262
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1002262
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate PCNA-Ub–Dependent and –Independent TLS in Mammals
EISSN 1553-7404
ExternalDocumentID 1313514414
oai_doaj_org_article_bd8b7458253a4fe6ac0abb4029cfcd8a
PMC3169526
A269690004
21931560
10_1371_journal_pgen_1002262
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA099194
– fundername: NCI NIH HHS
  grantid: CA099194
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFFHD
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PV9
QF4
RIG
RZL
WOQ
7X8
PUEGO
5PM
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c697t-a6d2e9aedd9b01323cde6f30370bae1686d3c881b2adb3462b8570c71bc7fb273
IEDL.DBID FPL
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295419100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:28 EDT 2023
Tue Oct 14 18:55:53 EDT 2025
Tue Nov 04 01:50:57 EST 2025
Wed Oct 01 12:43:44 EDT 2025
Tue Nov 11 10:22:32 EST 2025
Tue Nov 04 17:17:54 EST 2025
Thu Nov 13 15:05:13 EST 2025
Thu Nov 13 15:22:05 EST 2025
Thu Nov 13 14:17:52 EST 2025
Thu May 22 21:16:51 EDT 2025
Thu Apr 03 07:09:30 EDT 2025
Sat Nov 29 01:38:09 EST 2025
Tue Nov 18 21:45:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c697t-a6d2e9aedd9b01323cde6f30370bae1686d3c881b2adb3462b8570c71bc7fb273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: AH PHLK ND ZG. Performed the experiments: AH PHLK ND ZG. Analyzed the data: AH PHLK ND ZG HJ ZL. Contributed reagents/materials/analysis tools: PL JK TR KL NEG TC KM ST AD HJ. Wrote the paper: ZL AH.
These authors also contributed equally to this work.
OpenAccessLink http://dx.doi.org/10.1371/journal.pgen.1002262
PMID 21931560
PQID 900776235
PQPubID 23479
ParticipantIDs plos_journals_1313514414
doaj_primary_oai_doaj_org_article_bd8b7458253a4fe6ac0abb4029cfcd8a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3169526
proquest_miscellaneous_900776235
gale_infotracmisc_A269690004
gale_infotracacademiconefile_A269690004
gale_incontextgauss_ISR_A269690004
gale_incontextgauss_ISN_A269690004
gale_incontextgauss_IOV_A269690004
gale_healthsolutions_A269690004
pubmed_primary_21931560
crossref_citationtrail_10_1371_journal_pgen_1002262
crossref_primary_10_1371_journal_pgen_1002262
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2011
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P Langerak (ref29) 2007; 204
S Brown (ref21) 2009; 8
S Shachar (ref6) 2009; 28
N Acharya (ref24) 2008; 105
S Avkin (ref34) 2004; 279
V Schmutz (ref47) 2010; 38
N Acharya (ref27) 2010; 107
G Soria (ref16) 2006; 25
DJ Richard (ref32) 2009; 44
PH Krijger (ref38) 2011
S Prakash (ref1) 2005; 74
K Terai (ref41); 37
A Niimi (ref49) 2008; 105
RE Johnson (ref9) 1999; 285
GN Gan (ref8) 2008; 18
H Arakawa (ref28) 2006; 4
RE Johnson (ref5) 2000; 406
M Bienko (ref22) 2005; 310
J Tomida (ref43) 2008; 283
D Szüts (ref20) 2008; 36
EC Friedberg (ref4) 2005; 6
K Watanabe (ref14) 2004; 23
L Haracska (ref48) 2004; 24
O Ziv (ref36) 2009; 106
C Hoege (ref11) 2002; 419
S Jentsch (ref17) 2010; 54
JG Jansen (ref31) 2009; 29
N Nikolaishvili-Feinberg (ref46) 2008; 47
CE Edmunds (ref19) 2008; 30
N Acharya (ref25) 2007; 27
TT Huang (ref39) 2006; 8
X Bi (ref45) 2006; 26
S Sabbioneda (ref26) 2009; 106
Z Livneh (ref7) 2010; 9
C Masutani (ref10) 1999; 399
P Stelter (ref12) 2003; 425
JR Lin (ref44) 2011; 42
Z Livneh (ref2) 2006; 5
N Diamant (ref33) 2011
A Hendel (ref35) 2008; 7
GL Moldovan (ref42) 2007; 129
S Avkin (ref15) 2006; 22
M Bienko (ref23) 2010; 37
JM Kim (ref40) 2009; 16
H Ohmori (ref50) 2009; 78
W Yang (ref3) 2007; 104
S Tateishi (ref37) 2003; 23
AR Lehmann (ref30) 2006; 5
HD Ulrich (ref18) 2007; 35
PL Kannouche (ref13) 2004; 14
16407842 - Oncogene. 2006 May 11;25(20):2829-38
17956345 - Biochem Soc Trans. 2007 Nov;35(Pt 5):1334-7
16357261 - Science. 2005 Dec 16;310(5755):1821-4
19153606 - EMBO J. 2009 Feb 18;28(4):383-93
10385124 - Nature. 1999 Jun 17;399(6737):700-4
12509447 - Mol Cell Biol. 2003 Jan;23(2):474-81
18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46
20139724 - Cell Cycle. 2010 Feb 15;9(4):729-35
19217432 - Dev Cell. 2009 Feb;16(2):314-20
21396873 - Mol Cell. 2011 Apr 22;42(2):237-49
20529881 - Nucleic Acids Res. 2010 Oct;38(19):6456-65
15359278 - EMBO J. 2004 Oct 1;23(19):3886-96
21222283 - Subcell Biochem. 2010;54:184-94
18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30
16611994 - Mol Cell Biol. 2006 May;26(9):3527-40
15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305
16678112 - Mol Cell. 2006 May 5;22(3):407-13
17512402 - Cell. 2007 May 18;129(4):665-79
18321066 - Biochemistry. 2008 Apr 1;47(13):4141-50
20129063 - Mol Cell. 2010 Jan 15;37(1):143-9
15952890 - Annu Rev Biochem. 2005;74:317-53
18157155 - Cell Res. 2008 Jan;18(1):174-83
16341080 - Nat Rev Mol Cell Biol. 2005 Dec;6(12):943-53
15121847 - Mol Cell Biol. 2004 May;24(10):4267-74
16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8
19240217 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):E20; author reply E21
20663485 - Adv Protein Chem Struct Biol. 2009;78:99-146
17898175 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15591-8
20498091 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10401-5
19001268 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17724-9
18953031 - Nucleic Acids Res. 2008 Dec;36(21):6767-80
17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98
16531995 - Nat Cell Biol. 2006 Apr;8(4):339-47
18245774 - J Biol Chem. 2008 Apr 4;283(14):9071-9
19221475 - Cell Cycle. 2009 Mar 1;8(5):689-92
21908406 - Nucleic Acids Res. 2012 Jan;40(1):170-80
10984059 - Nature. 2000 Aug 31;406(6799):1015-9
17105346 - PLoS Biol. 2006 Nov;4(11):e366
17709386 - Mol Cell Biol. 2007 Oct;27(20):7266-72
19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7
19367476 - Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):98-116
18498753 - Mol Cell. 2008 May 23;30(4):519-29
12226657 - Nature. 2002 Sep 12;419(6903):135-41
15149598 - Mol Cell. 2004 May 21;14(4):491-500
19332561 - Mol Cell Biol. 2009 Jun;29(11):3113-23
10398605 - Science. 1999 Jul 9;285(5425):263-5
12968183 - Nature. 2003 Sep 11;425(6954):188-91
16969082 - Cell Cycle. 2006 Sep;5(17):1918-22
21269891 - DNA Repair (Amst). 2011 Apr 3;10(4):438-44
20159558 - Mol Cell. 2010 Feb 12;37(3):396-407
References_xml – volume: 78
  start-page: 99
  year: 2009
  ident: ref50
  article-title: Separate roles of structured and unstructured regions of Y-family DNA polymerases.
  publication-title: Adv Protein Chem Struct Biol
  doi: 10.1016/S1876-1623(08)78004-0
– volume: 104
  start-page: 15591
  year: 2007
  ident: ref3
  article-title: What a difference a decade makes: Insights into translesion synthesis.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0704219104
– volume: 105
  start-page: 16125
  year: 2008
  ident: ref49
  article-title: Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0802727105
– volume: 406
  start-page: 1015
  year: 2000
  ident: ref5
  article-title: Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions.
  publication-title: Nature
  doi: 10.1038/35023030
– volume: 27
  start-page: 7266
  year: 2007
  ident: ref25
  article-title: Mutations in the ubiquitin binding UBZ motif of DNA polymerase η do not impair its function in translesion synthesis during replication.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01196-07
– volume: 42
  start-page: 237
  year: 2011
  ident: ref44
  article-title: SHPRH and HLTF Act in a Damage-Specific Manner to Coordinate Different Forms of Postreplication Repair and Prevent Mutagenesis.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.02.026
– volume: 279
  start-page: 53298
  year: 2004
  ident: ref34
  article-title: Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells. The Role of DNA polymerase κ.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M409155200
– volume: 6
  start-page: 943
  year: 2005
  ident: ref4
  article-title: Suffering in silence: The tolerance of DNA damage.
  publication-title: Nature Rev Mol Cell Biol
  doi: 10.1038/nrm1781
– volume: 26
  start-page: 3527
  year: 2006
  ident: ref45
  article-title: Rad18 regulates DNA polymerase κ and is required for recovery from S-phase checkpoint-mediated arrest.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.26.9.3527-3540.2006
– volume: 7
  start-page: 1636
  year: 2008
  ident: ref35
  article-title: Reduced fidelity and increased efficiency of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproduct, in human cells lacking DNA polymerase η.
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2008.06.008
– volume: 310
  start-page: 1821
  year: 2005
  ident: ref22
  article-title: Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis.
  publication-title: Science
  doi: 10.1126/science.1120615
– volume: 23
  start-page: 3886
  year: 2004
  ident: ref14
  article-title: Rad18 guides polη to replication stalling sites through physical interaction and PCNA monoubiquitination.
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600383
– volume: 283
  start-page: 9071
  year: 2008
  ident: ref43
  article-title: DNA damage-induced ubiquitylation of RFC2 subunit of replication factor C complex.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M709835200
– volume: 5
  start-page: 1595
  year: 2006
  ident: ref30
  article-title: Gaps and forks in DNA Replication: Rediscovering old models.
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2006.07.002
– year: 2011
  ident: ref33
  article-title: DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity.
  publication-title: Nucleic Acids Res
– volume: 54
  start-page: 184
  year: 2010
  ident: ref17
  article-title: Regulatory Functions of Ubiquitin and SUMO in DNA Repair Pathways.
  publication-title: Subcell Biochem
  doi: 10.1007/978-1-4419-6676-6_15
– volume: 25
  start-page: 2829
  year: 2006
  ident: ref16
  article-title: P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation.
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209315
– volume: 105
  start-page: 17724
  year: 2008
  ident: ref24
  article-title: Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase η in translesion DNA synthesis.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0809844105
– volume: 29
  start-page: 3113
  year: 2009
  ident: ref31
  article-title: Separate domains of Rev1 mediate two modes of DNA damage bypass in mammalian cells.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00071-09
– volume: 399
  start-page: 700
  year: 1999
  ident: ref10
  article-title: The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η.
  publication-title: Nature
  doi: 10.1038/21447
– volume: 129
  start-page: 665
  year: 2007
  ident: ref42
  article-title: PCNA, the maestro of the replication fork.
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.003
– volume: 4
  start-page: e366
  year: 2006
  ident: ref28
  article-title: A role for PCNA ubiquitination in immunoglobulin hypermutation.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040366
– volume: 28
  start-page: 383
  year: 2009
  ident: ref6
  article-title: Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals.
  publication-title: EMBO J
  doi: 10.1038/emboj.2008.281
– volume: 22
  start-page: 407
  year: 2006
  ident: ref15
  article-title: p53 and p21 regulate error-prone DNA repair to yield a lower mutation load.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2006.03.022
– volume: 106
  start-page: E20; author reply E21
  year: 2009
  ident: ref26
  article-title: Ubiquitin-binding motif of human DNA polymerase η is required for correct localization.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0812744106
– volume: 24
  start-page: 4267
  year: 2004
  ident: ref48
  article-title: Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.10.4267-4274.2004
– year: 2011
  ident: ref38
  article-title: HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: Existence of an alternative E3 ligase.
  publication-title: DNA Repair (Amst)
– volume: 9
  start-page: 729
  year: 2010
  ident: ref7
  article-title: Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis.
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.4.10727
– volume: 18
  start-page: 174
  year: 2008
  ident: ref8
  article-title: DNA polymerase ζ (polζ) in higher eukaryotes.
  publication-title: Cell Research
  doi: 10.1038/cr.2007.117
– volume: 47
  start-page: 4141
  year: 2008
  ident: ref46
  article-title: Ubiquitylation of proliferating cell nuclear antigen and recruitment of human DNA polymerase η.
  publication-title: Biochemistry
  doi: 10.1021/bi702329h
– volume: 38
  start-page: 6456
  year: 2010
  ident: ref47
  article-title: Role of the ubiquitin-binding domain of Polη in Rad18-independent translesion DNA synthesis in human cell extracts.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq403
– volume: 36
  start-page: 6767
  year: 2008
  ident: ref20
  article-title: REV1 restrains DNA polymerase ζ to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn651
– volume: 285
  start-page: 263
  year: 1999
  ident: ref9
  article-title: hRAD30 mutations in the variant form of xeroderma pigmentosum.
  publication-title: Science
  doi: 10.1126/science.285.5425.263
– volume: 419
  start-page: 135
  year: 2002
  ident: ref11
  article-title: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO.
  publication-title: Nature
  doi: 10.1038/nature00991
– volume: 8
  start-page: 689
  year: 2009
  ident: ref21
  article-title: Ubiquitination and deubiquitination of PCNA in response to stalling of the replication fork.
  publication-title: Cell Cycle
  doi: 10.4161/cc.8.5.7707
– volume: 16
  start-page: 314
  year: 2009
  ident: ref40
  article-title: Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype.
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2009.01.001
– volume: 35
  start-page: 1334
  year: 2007
  ident: ref18
  article-title: Conservation of DNA damage tolerance pathways from yeast to humans.
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST0351334
– volume: 37
  start-page: 143
  ident: ref41
  article-title: CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.12.018
– volume: 74
  start-page: 317
  year: 2005
  ident: ref1
  article-title: Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function.
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.74.082803.133250
– volume: 5
  start-page: 1918
  year: 2006
  ident: ref2
  article-title: Keeping mammalian mutation load in check. Regulation of the activity of error-prone DNA polymerases by p53 and p21.
  publication-title: Cell Cycle
  doi: 10.4161/cc.5.17.3193
– volume: 44
  start-page: 98
  year: 2009
  ident: ref32
  article-title: Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis.
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.1080/10409230902849180
– volume: 204
  start-page: 1989
  year: 2007
  ident: ref29
  article-title: A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification.
  publication-title: J Exp Med
  doi: 10.1084/jem.20070902
– volume: 23
  start-page: 474
  year: 2003
  ident: ref37
  article-title: Enhanced genomic instability and defective postreplication repair in RAD18 knockout mouse embryonic stem cells.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.2.474-481.2003
– volume: 425
  start-page: 188
  year: 2003
  ident: ref12
  article-title: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation.
  publication-title: Nature
  doi: 10.1038/nature01965
– volume: 107
  start-page: 10401
  year: 2010
  ident: ref27
  article-title: DNA polymerase η lacking the ubiquitin-binding domain promotes replicative lesion bypass in humans cells.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1005492107
– volume: 30
  start-page: 519
  year: 2008
  ident: ref19
  article-title: PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.03.024
– volume: 37
  start-page: 396
  year: 2010
  ident: ref23
  article-title: Regulation of translesion synthesis DNA polymerase η by monoubiquitination.
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.12.039
– volume: 14
  start-page: 491
  year: 2004
  ident: ref13
  article-title: Interaction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(04)00259-X
– volume: 8
  start-page: 339
  year: 2006
  ident: ref39
  article-title: Regulation of monoubiquitinated PCNA by DUB autocleavage.
  publication-title: Nature Cell Biol
  doi: 10.1038/ncb1378
– volume: 106
  start-page: 11552
  year: 2009
  ident: ref36
  article-title: DNA polymerase ζ cooperates with polymerases κ and ι in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0812548106
– reference: 10398605 - Science. 1999 Jul 9;285(5425):263-5
– reference: 21396873 - Mol Cell. 2011 Apr 22;42(2):237-49
– reference: 21908406 - Nucleic Acids Res. 2012 Jan;40(1):170-80
– reference: 16357261 - Science. 2005 Dec 16;310(5755):1821-4
– reference: 19240217 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):E20; author reply E21
– reference: 20498091 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10401-5
– reference: 18321066 - Biochemistry. 2008 Apr 1;47(13):4141-50
– reference: 17898175 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15591-8
– reference: 20129063 - Mol Cell. 2010 Jan 15;37(1):143-9
– reference: 15149598 - Mol Cell. 2004 May 21;14(4):491-500
– reference: 16969082 - Cell Cycle. 2006 Sep;5(17):1918-22
– reference: 19001268 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17724-9
– reference: 19153606 - EMBO J. 2009 Feb 18;28(4):383-93
– reference: 18498753 - Mol Cell. 2008 May 23;30(4):519-29
– reference: 16341080 - Nat Rev Mol Cell Biol. 2005 Dec;6(12):943-53
– reference: 21222283 - Subcell Biochem. 2010;54:184-94
– reference: 19221475 - Cell Cycle. 2009 Mar 1;8(5):689-92
– reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41
– reference: 19217432 - Dev Cell. 2009 Feb;16(2):314-20
– reference: 16678112 - Mol Cell. 2006 May 5;22(3):407-13
– reference: 15952890 - Annu Rev Biochem. 2005;74:317-53
– reference: 20663485 - Adv Protein Chem Struct Biol. 2009;78:99-146
– reference: 16407842 - Oncogene. 2006 May 11;25(20):2829-38
– reference: 18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46
– reference: 18953031 - Nucleic Acids Res. 2008 Dec;36(21):6767-80
– reference: 16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8
– reference: 19332561 - Mol Cell Biol. 2009 Jun;29(11):3113-23
– reference: 19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7
– reference: 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305
– reference: 17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98
– reference: 16531995 - Nat Cell Biol. 2006 Apr;8(4):339-47
– reference: 10385124 - Nature. 1999 Jun 17;399(6737):700-4
– reference: 18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30
– reference: 20529881 - Nucleic Acids Res. 2010 Oct;38(19):6456-65
– reference: 10984059 - Nature. 2000 Aug 31;406(6799):1015-9
– reference: 18157155 - Cell Res. 2008 Jan;18(1):174-83
– reference: 17956345 - Biochem Soc Trans. 2007 Nov;35(Pt 5):1334-7
– reference: 20139724 - Cell Cycle. 2010 Feb 15;9(4):729-35
– reference: 19367476 - Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):98-116
– reference: 20159558 - Mol Cell. 2010 Feb 12;37(3):396-407
– reference: 16611994 - Mol Cell Biol. 2006 May;26(9):3527-40
– reference: 18245774 - J Biol Chem. 2008 Apr 4;283(14):9071-9
– reference: 17105346 - PLoS Biol. 2006 Nov;4(11):e366
– reference: 21269891 - DNA Repair (Amst). 2011 Apr 3;10(4):438-44
– reference: 12509447 - Mol Cell Biol. 2003 Jan;23(2):474-81
– reference: 12968183 - Nature. 2003 Sep 11;425(6954):188-91
– reference: 15359278 - EMBO J. 2004 Oct 1;23(19):3886-96
– reference: 15121847 - Mol Cell Biol. 2004 May;24(10):4267-74
– reference: 17512402 - Cell. 2007 May 18;129(4):665-79
– reference: 17709386 - Mol Cell Biol. 2007 Oct;27(20):7266-72
SSID ssj0035897
Score 2.390629
Snippet Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and...
  Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions,...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1002262
SubjectTerms Animals
Biology
Biomedical research
Brewer's yeast
Cancer
Cisplatin - pharmacology
Cyclin-dependent kinases
Deoxyribonucleic acid
DNA
DNA - biosynthesis
DNA - drug effects
DNA - genetics
DNA Damage
DNA Repair
DNA Replication
DNA synthesis
DNA, Single-Stranded - biosynthesis
DNA, Single-Stranded - genetics
E coli
Experiments
Genetic aspects
Mice
Mutagenesis
Mutation
Physiological aspects
Plasmids
Proliferating Cell Nuclear Antigen - genetics
Proliferating Cell Nuclear Antigen - metabolism
Proteins
Ubiquitin - genetics
Ubiquitin - metabolism
Ubiquitin-proteasome system
Ubiquitination
Ultraviolet Rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQBRIviO8FBlgIiRfCGrux48cymEBCZeJj2pvlj2REatOyJEj777mz02pBSNsDr_U5Uu_O9-Xz7wh5lQnFrC9VajMJCYq3NjWSz1I-qyrwONLycHt-8lkuFsXpqTq-NOoLe8IiPHBk3IH1hZV4uZNzM6tKYdzUWAtZj3KV80UIjSDq2SZT0QbzvIhjVfKcpxLS-uHRHJfZwSCjtxsQUAAgZYKNnFLA7t9Z6MlmuW7_FX7-3UV5yS0d3SV3hniSzuP_uEdulM19citOmLx4QPzx4WJOe1v_6uuujpU_Wre0XoW4u-neUNt3tFl3FEHEGzjvSwpxLO3Qhy1LrKXR9_CJ9qKBULHFrQ1dmdUq1Eco1v3bh-TH0Yfvhx_TYbBC6oSSXWqEZ6UypfcKy6CMO1-KCpyZnFpTZqIQnrsCAlpmvOUzwSzC4DuZWScrCwHPIzJp1k25R6jAhK1S3FRTC8mTtZJVauqtAetlpZMJ4VvOajegjuPwi6UOV2kSso_IKI3y0IM8EpLudm0i6sYV9O9QaDtaxMwOP4Am6UGT9FWalJAXKHIdH6DuTr6eM6EEzladJeRloEDcjAYbc85M37b605eTaxB9W1yH6OuI6PVAVK2BZ84MLyaA8wjaNaLcH1GCiXCj5T3U4i3rWmAkDmaESBiW6FazNe7ClrumXPetVgHpifE8IY-jou_YC16O4wv8hMjRERjxf7zS1D8DdjkH45Az8eR_COwpuR0r_Njxt08m3XlfPiM33e-ubs-fB4PwB5YKZss
  priority: 102
  providerName: Directory of Open Access Journals
Title PCNA Ubiquitination Is Important, But Not Essential for Translesion DNA Synthesis in Mammalian Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/21931560
https://www.proquest.com/docview/900776235
https://pubmed.ncbi.nlm.nih.gov/PMC3169526
https://doaj.org/article/bd8b7458253a4fe6ac0abb4029cfcd8a
http://dx.doi.org/10.1371/journal.pgen.1002262
Volume 7
WOSCitedRecordID wos000295419100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M7P
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: PIMPY
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: PLOS
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: FPL
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegA4kL37DAKBZC4kJGG7d2fGxLKyptJdrYVE6R7TgQqU3LkiLtv-c9Jy1kYmJceoifK-tn-335fRDytstloBMrfd0VYKAkWvtKsJ7PemkKEkdo5l7Pz4_EbBbO5zL6bSheecFnovuhxvRwDYC6gqEBsty9gHGOIVyT6GjLeVk_lKJOj7tuZkP8uCr9O17cWi9Wxd8Uzavxkn8IoMmD_136Q3K_VjXpoDobj8gtmz8md6vmk5dPSBKNZgN6prMfm6zMKqcgnRZ0unQqeV6-p8NNSWerko4LTFGCk0pBxaVOvC0sutnoR_iL08sctMgiK2iW02O1XDrXCR3ZxaJ4Ss4m4y-jT37dc8E3XIrSVzwJrFQ2SSR6SANmEstTkHOio5Xt8pAnzISg6wYq0azHA40V8o3oaiNSDbrQM9LKV7ndJ5SjLZdKptKOBrtKaxGkspNoBYxNCyM8wrZbEZu6IDn2xVjE7pVNgGFSARUjfnGNn0f83ax1VZDjH_RD3OUdLZbTdh9go-L6dsY6gRXhC2KfqV5quTIdpTWY1tKkJgmVR17jGYmr3NQdU4gHAZcc2672PPLGUWBJjRxjdr6pTVHE08_nNyA6nd2E6KRB9K4mSleAmVF1MgUgj_W8GpQHDUrgHqYxvI_HfgtdAUBiz0ZQkmGIbq9CjLMwGi-3q00RS1cEKmB9jzyvbsYOXhCADJPzPSIad6aBf3Mkz767suYM-EY_4C-uX9FLcq9y6WOI3wFplRcb-4rcMT_LrLhok9tiLtxv2CZ7w_EsOmk7F0vbcYk2hvVGMBJNj6OvvwB-9WVh
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQAMELd1hgMAsh8UJGE7dx_NiVVavoQsUu2pvlWyBSm44lRdq_5xwnrQhiYg-8VfVx5X62z8XH5zMh76JExNo6EeqIQ4BitQ4VZ_2Q9fMcLA7XzGfPz6Y8y9LzczFrKYWwFqZFEGLE-bLymXz8sCzdxxbJJnG6FzEerYX3LgBrzyUaoza-zUWU4u2u8Wy6VspskAreVs5d17NjmTyB_0ZNb-Eg_uaD_nmV8jfbNH74H__VI_KgdVDpsOnxmNxy5RNyt3my8uopsbNRNqSnuvixKuqiOUqkk4pOFt6RL-sPdH9V02xZ04MKC5tgfVNwjKk3inOHh3P0E_zE8VUJvmdVVLQo6ZFaLPyBCx25-bx6Rk7HByejw7B9qSE0ieB1qBIbO6GctQLPVWNmrEtysI68p5WLkjSxzKTgIcfKatZPYo28-oZH2vBcgwf1nGyVAMc2oQlGgLlgKu9piMa05nEuelYrUIeaGx4Qtp4laVoac3xNYy59bo5DONMAJRE_2eIXkHDT66Kh8fiH_D4ugI0sknD7L2DuZDtnUlsYEeYdB0z1c5co01NaQ0AuTG5sqgKyi8tHNhWtG1Uih3EiEnystR-Qt14CiThKvOnzTa2qSk6-nN1A6Di7idDXjtD7VihfAmZGtSUYgDyygHUkdzqSoHNMp3kbF_AaugqAxJcewbWGJrreJRJ74R2-0i1XlRSeOipmg4C8aDbNBl4wmwxL-gPCO9upg3-3pSy-ezJ0BtpmECcvrx_RLrl3eHI0ldNJ9vkVud8kBfCS4A7Zqi9X7jW5Y37WRXX5xquMXxD6d0o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGuYgX7rDAYBZC4oVsTdza8WPXraKihIqxaS8o8iWBSG06lhRp_55znKQiiIm98FbVx5bz2T5Xn2NC3gRchtqm0teBAAPFau0rwQY-G2QZSByhmYuen85EHEdnZ3K-Rb62uTANgmAjLlali-Tjj1WR7jdI7mO9ojp6uhcwEbQ99s4BcFdQNITj7SoOoWeswgSkG-SmkEGEttlkPmsZNRtGUjTZdFcN1JFWrqj_hnX3cGJ_00v_vF75m7ya3P_PX_qA3GsUWTqqR3lIttLiEbldP215-ZjY-Tge0ROd_1jnVV67HOm0pNOlU_iL6h09WFc0XlX0qMQEKDgHFBRo6oTnIkUnHj2EIY4vC9BRy7ykeUE_quXSOWboOF0syifkZHL0Zfzeb1508A2XovIVt2EqVWqtRP9ryIxNeQZSVPS1SgMecctMBJp0qKxmAx5qrL9vRKCNyDRoWk9JrwCItgnlaClmkqmsr8Fq01qEmexbrYBtamGER1i7colpyp3jqxuLxMXwBJg9NVAJwpk0cHrE3_Q6r8t9_IP-ADfFhhaLdbs_YD2TZh0TbWFGGJ8cMjXIUq5MX2kNhrs0mbGR8sgubqmkznzdsJxkFHLJ8VHXgUdeOwos2FHgjaBval2WyfTT6TWIjuPrEH3uEL1tiLIVYGZUk6oByOOe7FDudCiBN5lO8zZu6ha6EoDEFyFBBYcm2p6cBHvhXb8iXa3LRLoSUyEbeuRZfZA28IJ4ZZj67xHROWId_LstRf7dFU1nwJWGIX9-9Yx2yZ354SSZTeMPL8jdOnaAdwl3SK-6WKcvyS3zs8rLi1eOi_wCJGiGfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PCNA+ubiquitination+is+important%2C+but+not+essential+for+translesion+DNA+synthesis+in+mammalian+cells&rft.jtitle=PLoS+genetics&rft.au=Hendel%2C+Ayal&rft.au=Krijger%2C+Peter+H.L&rft.au=Diamant%2C+Noam&rft.au=Goren%2C+Zohar&rft.date=2011-09-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=7&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pgen.1002262&rft.externalDBID=ISN&rft.externalDocID=A269690004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon