RESUME: Turning an SWI acquisition into a fast qMRI protocol

Susceptibility Weighted Imaging (SWI) is a common MRI technique that exploits the magnetic susceptibility differences between the tissues to provide valuable image contrasts, both in research and clinical contexts. However, despite its increased clinical use, SWI is not intrinsically suitable for qu...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 12; no. 12; p. e0189933
Main Authors: Monti, Serena, Borrelli, Pasquale, Tedeschi, Enrico, Cocozza, Sirio, Palma, Giuseppe
Format: Journal Article
Language:English
Published: United States Public Library of Science 20.12.2017
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Susceptibility Weighted Imaging (SWI) is a common MRI technique that exploits the magnetic susceptibility differences between the tissues to provide valuable image contrasts, both in research and clinical contexts. However, despite its increased clinical use, SWI is not intrinsically suitable for quantitation purposes. Conversely, quantitative Magnetic Resonance Imaging (qMRI) provides a way to disentangle the sources of common MR image contrasts (e.g. proton density, T1, etc.) and to measure physical parameters intrinsically related to tissue microstructure. Unfortunately, the poor signal-to-noise ratio and resolution, coupled with the long imaging time of most qMRI strategies, have hindered the integration of quantitative imaging into clinical protocols. Here we present the RElaxometry and SUsceptibility Mapping Expedient (RESUME) to show that the standard acquisition leading to a clinical SWI dataset can be easily turned into a thorough qMRI protocol at the cost of a further 50% of the SWI scan time. The R1, [Formula: see text], proton density and magnetic susceptibility maps provided by the RESUME scheme alongside the SWI reconstruction exhibit high reproducibility and accuracy, and a submillimeter resolution is proven to be compatible with a total scan time of 7 minutes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0189933