Metabolic Variability in Micro-Populations

Biological cells in a population are variable in practically every property. Much is known about how variability of single cells is reflected in the statistical properties of infinitely large populations; however, many biologically relevant situations entail finite times and intermediate-sized popul...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 7; číslo 12; s. e52105
Hlavní autoři: Elhanati, Yuval, Brenner, Naama
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 27.12.2012
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Biological cells in a population are variable in practically every property. Much is known about how variability of single cells is reflected in the statistical properties of infinitely large populations; however, many biologically relevant situations entail finite times and intermediate-sized populations. The statistical properties of an ensemble of finite populations then come into focus, raising questions concerning inter-population variability and dependence on initial conditions. Recent technologies of microfluidic and microdroplet-based population growth realize these situations and make them immediately relevant for experiments and biotechnological application. We here study the statistical properties, arising from metabolic variability of single cells, in an ensemble of micro-populations grown to saturation in a finite environment such as a micro-droplet. We develop a discrete stochastic model for this growth process, describing the possible histories as a random walk in a phenotypic space with an absorbing boundary. Using a mapping to Polya's Urn, a classic problem of probability theory, we find that distributions approach a limiting inoculum-dependent form after a large number of divisions. Thus, population size and structure are random variables whose mean, variance and in general their distribution can reflect initial conditions after many generations of growth. Implications of our results to experiments and to biotechnology are discussed.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: NB YE. Performed the experiments: NB YE. Wrote the paper: YE NB.
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0052105