Construction of Multi-Scale Consistent Brain Networks: Methods and Applications
Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common cor...
Saved in:
| Published in: | PloS one Vol. 10; no. 4; p. e0118175 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
13.04.2015
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: BG TL. Performed the experiments: BG TZ HC YT. Analyzed the data: BG TL. Contributed reagents/materials/analysis tools: XH DZ JH LG. Wrote the paper: BG TL YT. Competing Interests: The authors have declared that no competing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0118175 |