Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms

This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature selection as a filter based feature selection, and principal component analysis (PCA) as a feature extraction algorithm are considered. A number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 15; H. 2; S. e0228422
Hauptverfasser: Raihan-Al-Masud, Md, Mondal, M. Rubaiyat Hossain
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 06.02.2020
Public Library of Science (PLoS)
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the application of machine learning algorithms for predicting spinal abnormalities. As a data preprocessing step, univariate feature selection as a filter based feature selection, and principal component analysis (PCA) as a feature extraction algorithm are considered. A number of machine learning approaches namely support vector machine (SVM), logistic regression (LR), bagging ensemble methods are considered for the diagnosis of spinal abnormality. The SVM, LR, bagging SVM and bagging LR models are applied on a dataset of 310 samples publicly available in Kaggle repository. The performance of classification of abnormal and normal spinal patients is evaluated in terms of a number of factors including training and testing accuracy, recall, and miss rate. The classifier models are also evaluated by optimizing the kernel parameters, and by using the results of receiver operating characteristic (ROC) and precision-recall curves. Results indicate that when 78% data are used for training, the observed training accuracies for SVM, LR, bagging SVM and bagging LR are 86.30%, 85.47%, 86.72% and 85.06%, respectively. On the other hand, the accuracies for the test dataset for SVM, LR, bagging SVM and bagging LR are the same being 86.96%. However, bagging SVM is the most attractive as it has a higher recall value and a lower miss rate compared to others. Hence, bagging SVM is suitable for the classification of spinal patients when applied on the most five important features of spinal samples.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0228422