Statistical inferences for polarity identification in natural language
Information forms the basis for all human behavior, including the ubiquitous decision-making that people constantly perform in their every day lives. It is thus the mission of researchers to understand how humans process information to reach decisions. In order to facilitate this task, this work pro...
Saved in:
| Published in: | PloS one Vol. 13; no. 12; p. e0209323 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
21.12.2018
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Information forms the basis for all human behavior, including the ubiquitous decision-making that people constantly perform in their every day lives. It is thus the mission of researchers to understand how humans process information to reach decisions. In order to facilitate this task, this work proposes LASSO regularization as a statistical tool to extract decisive words from textual content in order to study the reception of granular expressions in natural language. This differs from the usual use of the LASSO as a predictive model and, instead, yields highly interpretable statistical inferences between the occurrences of words and an outcome variable. Accordingly, the method suggests direct implications for the social sciences: it serves as a statistical procedure for generating domain-specific dictionaries as opposed to frequently employed heuristics. In addition, researchers can now identify text segments and word choices that are statistically decisive to authors or readers and, based on this knowledge, test hypotheses from behavioral research. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0209323 |