A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance

Fatty acid transport from blood vessels to skeletal muscle, across endothelial cells, is regulated by the branched chain amino acid metabolite 3-hydroxy-isobutyrate. This finding provides a mechanistic explanation for the link between high levels of branched chain amino acids and diabetes. Epidemiol...

Full description

Saved in:
Bibliographic Details
Published in:Nature medicine Vol. 22; no. 4; pp. 421 - 426
Main Authors: Jang, Cholsoon, Oh, Sungwhan F, Wada, Shogo, Rowe, Glenn C, Liu, Laura, Chan, Mun Chun, Rhee, James, Hoshino, Atsushi, Kim, Boa, Ibrahim, Ayon, Baca, Luisa G, Kim, Esl, Ghosh, Chandra C, Parikh, Samir M, Jiang, Aihua, Chu, Qingwei, Forman, Daniel E, Lecker, Stewart H, Krishnaiah, Saikumari, Rabinowitz, Joshua D, Weljie, Aalim M, Baur, Joseph A, Kasper, Dennis L, Arany, Zoltan
Format: Journal Article
Language:English
Published: New York Nature Publishing Group US 01.04.2016
Nature Publishing Group
Subjects:
ISSN:1078-8956, 1546-170X, 1546-170X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fatty acid transport from blood vessels to skeletal muscle, across endothelial cells, is regulated by the branched chain amino acid metabolite 3-hydroxy-isobutyrate. This finding provides a mechanistic explanation for the link between high levels of branched chain amino acids and diabetes. Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear 1 , 2 , 3 . Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species 4 , a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a ), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
AbstractList Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
Epidemiological and experimental data implicate branchedchain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear (1-3). Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species (4), a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGCla (also known as PGC-1α; encoded by Ppargcla), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1 alpha ; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1 alpha to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
Fatty acid transport from blood vessels to skeletal muscle, across endothelial cells, is regulated by the branched chain amino acid metabolite 3-hydroxy-isobutyrate. This finding provides a mechanistic explanation for the link between high levels of branched chain amino acids and diabetes. Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear 1 , 2 , 3 . Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species 4 , a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a ), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie this link remain unclear1, 2, 3. Insulin resistance in skeletal muscle stems from the excess accumulation of lipid species4, a process that requires blood-borne lipids to initially traverse the blood vessel wall. How this trans-endothelial transport occurs and how it is regulated are not well understood. Here we leveraged PPARGC1a (also known as PGC-1α; encoded by Ppargc1a), a transcriptional coactivator that regulates broad programs of fatty acid consumption, to identify 3-hydroxyisobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a new paracrine regulator of trans-endothelial fatty acid transport. We found that 3-HIB is secreted from muscle cells, activates endothelial fatty acid transport, stimulates muscle fatty acid uptake in vivo and promotes lipid accumulation in muscle, leading to insulin resistance in mice. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the ability of PGC-1α to promote endothelial fatty acid uptake. 3-HIB levels are elevated in muscle from db/db mice with diabetes and from human subjects with diabetes, as compared to those without diabetes. These data unveil a mechanism in which the metabolite 3-HIB, by regulating the trans-endothelial flux of fatty acids, links the regulation of fatty acid flux to BCAA catabolism, providing a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
Audience Academic
Author Rhee, James
Chu, Qingwei
Kasper, Dennis L
Forman, Daniel E
Baca, Luisa G
Hoshino, Atsushi
Lecker, Stewart H
Chan, Mun Chun
Wada, Shogo
Oh, Sungwhan F
Jang, Cholsoon
Liu, Laura
Kim, Boa
Jiang, Aihua
Baur, Joseph A
Arany, Zoltan
Weljie, Aalim M
Krishnaiah, Saikumari
Kim, Esl
Rowe, Glenn C
Ghosh, Chandra C
Parikh, Samir M
Ibrahim, Ayon
Rabinowitz, Joshua D
Author_xml – sequence: 1
  givenname: Cholsoon
  surname: Jang
  fullname: Jang, Cholsoon
  organization: Perelman School of Medicine, University of Pennsylvania, Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 2
  givenname: Sungwhan F
  surname: Oh
  fullname: Oh, Sungwhan F
  organization: Department of Microbiology and Immunobiology, Harvard Medical School
– sequence: 3
  givenname: Shogo
  surname: Wada
  fullname: Wada, Shogo
  organization: Perelman School of Medicine, University of Pennsylvania
– sequence: 4
  givenname: Glenn C
  surname: Rowe
  fullname: Rowe, Glenn C
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School, Present address: Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
– sequence: 5
  givenname: Laura
  surname: Liu
  fullname: Liu, Laura
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 6
  givenname: Mun Chun
  surname: Chan
  fullname: Chan, Mun Chun
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 7
  givenname: James
  surname: Rhee
  fullname: Rhee, James
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital
– sequence: 8
  givenname: Atsushi
  surname: Hoshino
  fullname: Hoshino, Atsushi
  organization: Perelman School of Medicine, University of Pennsylvania
– sequence: 9
  givenname: Boa
  surname: Kim
  fullname: Kim, Boa
  organization: Perelman School of Medicine, University of Pennsylvania
– sequence: 10
  givenname: Ayon
  surname: Ibrahim
  fullname: Ibrahim, Ayon
  organization: Perelman School of Medicine, University of Pennsylvania
– sequence: 11
  givenname: Luisa G
  surname: Baca
  fullname: Baca, Luisa G
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 12
  givenname: Esl
  surname: Kim
  fullname: Kim, Esl
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 13
  givenname: Chandra C
  surname: Ghosh
  fullname: Ghosh, Chandra C
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 14
  givenname: Samir M
  surname: Parikh
  fullname: Parikh, Samir M
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 15
  givenname: Aihua
  surname: Jiang
  fullname: Jiang, Aihua
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 16
  givenname: Qingwei
  surname: Chu
  fullname: Chu, Qingwei
  organization: Perelman School of Medicine, University of Pennsylvania
– sequence: 17
  givenname: Daniel E
  surname: Forman
  fullname: Forman, Daniel E
  organization: Department of Medicine, University of Pittsburgh
– sequence: 18
  givenname: Stewart H
  surname: Lecker
  fullname: Lecker, Stewart H
  organization: Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 19
  givenname: Saikumari
  surname: Krishnaiah
  fullname: Krishnaiah, Saikumari
  organization: Perelman School of Medicine, University of Pennsylvania
– sequence: 20
  givenname: Joshua D
  surname: Rabinowitz
  fullname: Rabinowitz, Joshua D
  organization: Lewis-Sigler Institute for Integrative Genomics, Princeton University
– sequence: 21
  givenname: Aalim M
  surname: Weljie
  fullname: Weljie, Aalim M
  organization: Perelman School of Medicine, University of Pennsylvania
– sequence: 22
  givenname: Joseph A
  surname: Baur
  fullname: Baur, Joseph A
  organization: Perelman School of Medicine, University of Pennsylvania
– sequence: 23
  givenname: Dennis L
  surname: Kasper
  fullname: Kasper, Dennis L
  organization: Department of Microbiology and Immunobiology, Harvard Medical School
– sequence: 24
  givenname: Zoltan
  surname: Arany
  fullname: Arany, Zoltan
  email: zarany@mail.med.upenn.edu
  organization: Perelman School of Medicine, University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26950361$$D View this record in MEDLINE/PubMed
BookMark eNqN0ttq3DAQBmBTUppDS9-gGApNe-GtZFsHXy6hh0Ag0BO9M2N5vKsgS1tJDs3bR9vdJtmw0OILC_PNCM8_x9mBdRaz7CUlM0oq-d6Os5ow8SQ7oqzmBRXk50E6EyEL2TB-mB2HcEUIqQhrnmWHJW8YqTg9yvQ87zxYtcS-UEvQNodRW5eD0n0-YoTOGR0x772-xpBfQ1CTAZ8PEOPNRsVUH1bOxxxsnyuYQoLahsmkbh6DDjFdgM-zpwOYgC-275Ps-8cP384-FxeXn87P5heF4kLGQpWE1Vgjr3lPaMW6rpHl0AnOOwp06CUrK8XLWgyMppNkDYDqOk56YM0gsDrJ3m76rrz7NWGI7aiDQmPAoptCSyVhjNKa1_-mQjQy8apJ9PUjeuUmb9OP_FFESlFW92oBBlttB5eGo9ZN23nNaFOnRNa9ij1qgRY9mJTroNPnHT_b49PT46jV3oJ3OwXJRPwdFyma0J5__fL_9vLHrn3zwC4RTFwGZ6aonQ278NV2WlM3Yt-uvB7B37R_9y6B0w1Q3oXgcbgjlLTrjW7t2K43-n5Yd1LpCOsb0xC02eO3mYbU0S7QPwjqEb0FNhb_gw
CitedBy_id crossref_primary_10_1161_CIRCRESAHA_120_318003
crossref_primary_10_1016_j_phymed_2024_156348
crossref_primary_10_1161_CIRCRESAHA_117_310865
crossref_primary_10_1038_srep33102
crossref_primary_10_1016_j_numecd_2021_01_027
crossref_primary_10_1016_j_cophys_2019_09_003
crossref_primary_10_1038_s41467_020_16662_2
crossref_primary_10_1038_s41467_021_22272_3
crossref_primary_10_3389_fcimb_2023_1218326
crossref_primary_10_1007_s10620_025_09072_1
crossref_primary_10_1016_j_coph_2017_03_007
crossref_primary_10_1111_1750_3841_15818
crossref_primary_10_1016_j_mad_2018_07_004
crossref_primary_10_1172_JCI148556
crossref_primary_10_1097_XCE_0000000000000201
crossref_primary_10_1093_jn_nxaa096
crossref_primary_10_2337_db20_0510
crossref_primary_10_1038_nrendo_2016_76
crossref_primary_10_2337_db21_0490
crossref_primary_10_1186_s40168_022_01396_8
crossref_primary_10_1002_mnfr_201700756
crossref_primary_10_1177_09645284231207871
crossref_primary_10_1016_j_phrs_2023_106892
crossref_primary_10_1038_s41589_018_0132_2
crossref_primary_10_1038_s41467_023_43529_z
crossref_primary_10_3390_metabo11120889
crossref_primary_10_3390_molecules30010056
crossref_primary_10_3389_fendo_2020_00534
crossref_primary_10_3390_nu15010068
crossref_primary_10_2337_db16_1334
crossref_primary_10_2337_db18_0927
crossref_primary_10_1016_j_tcb_2020_10_003
crossref_primary_10_1038_s41586_019_1503_x
crossref_primary_10_1016_j_tma_2019_09_001
crossref_primary_10_1210_endrev_bnaa025
crossref_primary_10_1210_endrev_bnaa026
crossref_primary_10_1016_j_neuint_2020_104908
crossref_primary_10_1126_scitranslmed_aad4000
crossref_primary_10_1007_s00125_021_05481_9
crossref_primary_10_1038_s41467_020_16795_4
crossref_primary_10_1016_j_bbadis_2016_09_009
crossref_primary_10_3390_metabo13060766
crossref_primary_10_1111_hepr_13346
crossref_primary_10_1016_j_clnu_2025_03_008
crossref_primary_10_1186_s12967_019_2091_0
crossref_primary_10_1007_s00125_016_4182_2
crossref_primary_10_1146_annurev_physiol_020518_114731
crossref_primary_10_1126_scitranslmed_ado7225
crossref_primary_10_1016_j_anifeedsci_2020_114757
crossref_primary_10_1172_JCI141828
crossref_primary_10_1186_s12986_018_0298_3
crossref_primary_10_1016_j_molmet_2019_03_002
crossref_primary_10_1016_j_bbadis_2019_165579
crossref_primary_10_1038_nm_4245
crossref_primary_10_1038_s41569_023_00887_x
crossref_primary_10_3390_cells12242796
crossref_primary_10_1016_j_jtha_2023_06_039
crossref_primary_10_1111_1751_7915_14361
crossref_primary_10_1002_fsn3_70346
crossref_primary_10_4239_wjd_v12_i8_1146
crossref_primary_10_1038_s41467_022_31670_0
crossref_primary_10_1007_s40618_025_02641_1
crossref_primary_10_1016_j_molmet_2023_101694
crossref_primary_10_1038_nature18646
crossref_primary_10_1038_s41467_023_42456_3
crossref_primary_10_2337_db16_1475
crossref_primary_10_1002_jssc_201800910
crossref_primary_10_1016_j_molmet_2022_101454
crossref_primary_10_1038_s41467_022_31249_9
crossref_primary_10_1111_acel_13595
crossref_primary_10_3390_ijms20246201
crossref_primary_10_1016_j_cmet_2020_05_018
crossref_primary_10_3389_fphys_2019_00515
crossref_primary_10_3390_metabo11120834
crossref_primary_10_1016_j_ebiom_2017_12_008
crossref_primary_10_1016_j_ebiom_2021_103799
crossref_primary_10_1016_j_biochi_2019_10_017
crossref_primary_10_1007_s41664_017_0030_8
crossref_primary_10_1007_s00125_017_4380_6
crossref_primary_10_1161_CIRCRESAHA_116_310498
crossref_primary_10_1038_s41598_023_30036_w
crossref_primary_10_1007_s00535_024_02092_0
crossref_primary_10_1093_ajcn_nqz024
crossref_primary_10_15252_emmm_202216951
crossref_primary_10_4049_jimmunol_1801151
crossref_primary_10_1016_j_numecd_2017_07_001
crossref_primary_10_1371_journal_pone_0314053
crossref_primary_10_3390_metabo15090581
crossref_primary_10_1016_j_metabol_2016_12_018
crossref_primary_10_4239_wjd_v12_i8_1164
crossref_primary_10_3389_fphys_2021_702826
crossref_primary_10_1016_j_mce_2016_11_014
crossref_primary_10_1016_j_jprot_2020_103823
crossref_primary_10_1038_s41467_023_43900_0
crossref_primary_10_1007_s00726_022_03140_w
crossref_primary_10_3390_nu14194127
crossref_primary_10_1038_s12276_024_01263_6
crossref_primary_10_1186_s12916_016_0706_3
crossref_primary_10_1038_s41467_023_39752_3
crossref_primary_10_1042_BCJ20180088
crossref_primary_10_1111_bph_13624
crossref_primary_10_1016_j_cjca_2016_12_013
crossref_primary_10_1161_ATVBAHA_122_318876
crossref_primary_10_1038_s41598_018_20549_0
crossref_primary_10_7841_ksbbj_2025_40_1_10
crossref_primary_10_1186_s40104_024_01046_z
crossref_primary_10_3390_ijms25136819
crossref_primary_10_1371_journal_pone_0184721
crossref_primary_10_1002_btm2_70075
crossref_primary_10_1016_j_coph_2017_11_005
crossref_primary_10_1080_14779072_2023_2174102
crossref_primary_10_1002_smtd_202000160
crossref_primary_10_1007_s10741_023_10353_y
crossref_primary_10_1161_ATVBAHA_124_321964
crossref_primary_10_3389_fnmol_2024_1482999
crossref_primary_10_1007_s11357_023_00782_w
crossref_primary_10_1097_CM9_0000000000003075
crossref_primary_10_1016_j_ajpath_2023_12_006
crossref_primary_10_3389_fcell_2024_1446964
crossref_primary_10_3390_nu11061225
crossref_primary_10_3390_nu14132582
crossref_primary_10_1155_2019_8247019
crossref_primary_10_3390_nu13093240
crossref_primary_10_1016_j_cmet_2023_10_005
crossref_primary_10_1016_j_jnutbio_2017_09_026
crossref_primary_10_1016_j_jpba_2021_114381
crossref_primary_10_3389_fphys_2017_00923
crossref_primary_10_1007_s40618_019_01022_9
crossref_primary_10_1016_j_numecd_2016_03_013
crossref_primary_10_1186_s12263_024_00752_7
crossref_primary_10_1007_s40519_021_01266_6
crossref_primary_10_1007_s00204_021_03105_0
crossref_primary_10_1007_s00125_018_4611_5
crossref_primary_10_2337_db19_0920
crossref_primary_10_3389_fendo_2017_00267
crossref_primary_10_1016_j_cell_2024_03_030
crossref_primary_10_3389_fnut_2024_1524738
crossref_primary_10_1016_j_lfs_2023_122137
crossref_primary_10_1038_s41467_021_23782_w
crossref_primary_10_1186_s13098_023_01022_z
crossref_primary_10_3390_ijms26010090
crossref_primary_10_1111_jhn_13076
crossref_primary_10_3390_nu16234208
crossref_primary_10_1096_fj_201901994R
crossref_primary_10_3389_fimmu_2019_01674
crossref_primary_10_3389_fcvm_2022_965899
crossref_primary_10_1016_j_cmet_2018_03_017
crossref_primary_10_3390_metabo10020076
crossref_primary_10_1038_s41569_018_0007_y
crossref_primary_10_1161_CIRCRESAHA_118_313237
crossref_primary_10_1016_j_gtc_2019_09_003
crossref_primary_10_1186_s13099_018_0270_9
crossref_primary_10_3389_fcvm_2020_542519
crossref_primary_10_1002_lipd_12126
crossref_primary_10_3390_jcm10030548
crossref_primary_10_1038_s41430_024_01525_6
crossref_primary_10_3390_jcm12186053
crossref_primary_10_1210_er_2017_00211
crossref_primary_10_1016_j_aquaculture_2024_742053
crossref_primary_10_1016_j_phrs_2025_107943
crossref_primary_10_1016_j_envres_2023_117776
crossref_primary_10_1002_ijc_33877
crossref_primary_10_1016_j_molmet_2021_101261
crossref_primary_10_1038_s42255_023_00794_y
crossref_primary_10_1016_j_tjnut_2025_04_017
crossref_primary_10_1016_j_nutres_2024_06_009
crossref_primary_10_5713_ab_23_0387
crossref_primary_10_1186_s12263_017_0582_2
crossref_primary_10_1016_j_ejmech_2020_113111
crossref_primary_10_1186_s10020_021_00371_7
crossref_primary_10_1186_s12916_022_02688_4
crossref_primary_10_1016_j_cmet_2016_09_018
crossref_primary_10_1038_s41467_025_56013_7
crossref_primary_10_3389_fendo_2023_1107162
crossref_primary_10_1016_j_biochi_2021_11_004
crossref_primary_10_3389_fmicb_2024_1494139
crossref_primary_10_1016_j_cell_2018_03_055
crossref_primary_10_1016_j_jdiacomp_2018_01_007
crossref_primary_10_3390_metabo13070821
crossref_primary_10_1111_joim_20090
crossref_primary_10_1038_s41392_024_01756_w
crossref_primary_10_1016_j_cmet_2020_07_010
crossref_primary_10_1002_jsfa_11728
crossref_primary_10_1111_dom_13799
crossref_primary_10_3389_fphys_2017_00853
crossref_primary_10_3390_nu16203501
crossref_primary_10_3390_nu13072229
crossref_primary_10_1007_s10522_025_10309_9
crossref_primary_10_1080_01635581_2019_1653474
crossref_primary_10_2337_dc16_2452
crossref_primary_10_1172_JCI99315
crossref_primary_10_1096_fj_201802842RR
crossref_primary_10_1186_s13024_018_0260_x
crossref_primary_10_1242_jcs_258964
crossref_primary_10_1007_s00592_024_02349_3
crossref_primary_10_1038_s41569_025_01162_x
crossref_primary_10_1038_s41398_020_0831_9
crossref_primary_10_1016_j_theriogenology_2023_11_020
crossref_primary_10_3390_nu17152450
crossref_primary_10_1111_eci_70096
crossref_primary_10_1113_EP086019
crossref_primary_10_1016_j_clnu_2023_10_028
crossref_primary_10_1002_oby_22834
crossref_primary_10_1080_10408398_2023_2198605
crossref_primary_10_1016_j_cmet_2018_10_013
crossref_primary_10_3389_fcvm_2021_789267
crossref_primary_10_3390_biomedicines9020226
crossref_primary_10_1016_j_cmet_2018_10_015
crossref_primary_10_1080_10408398_2021_1977910
crossref_primary_10_1161_HYPERTENSIONAHA_119_13735
crossref_primary_10_3390_nu14071454
crossref_primary_10_1126_science_aal2379
crossref_primary_10_1111_acel_13626
crossref_primary_10_1007_s00535_018_1435_5
crossref_primary_10_1074_jbc_RA120_013121
crossref_primary_10_1016_j_clnu_2019_06_017
crossref_primary_10_1210_clinem_dgad148
crossref_primary_10_4239_wjd_v15_i1_53
crossref_primary_10_1016_j_clnesp_2024_03_013
crossref_primary_10_3390_ijms19040954
crossref_primary_10_1186_s13073_024_01308_5
crossref_primary_10_1016_j_lfs_2025_123614
crossref_primary_10_1016_j_scitotenv_2024_173624
crossref_primary_10_1038_s41598_017_14120_6
crossref_primary_10_1016_j_clnu_2025_07_033
crossref_primary_10_1042_BCJ20200686
crossref_primary_10_1371_journal_pgen_1007040
crossref_primary_10_1002_mnfr_202100007
crossref_primary_10_1016_j_cca_2022_12_005
crossref_primary_10_2337_db19_1174
crossref_primary_10_1016_j_coph_2022_102286
crossref_primary_10_1038_nrm_2017_36
crossref_primary_10_1016_j_jamda_2016_12_081
crossref_primary_10_1038_s41598_022_25747_5
crossref_primary_10_3390_molecules23040807
crossref_primary_10_3389_fphys_2023_1197224
crossref_primary_10_1016_j_nantod_2019_100834
crossref_primary_10_1152_physrev_00001_2017
crossref_primary_10_1016_j_atherosclerosis_2023_117246
crossref_primary_10_3390_ijms23084325
crossref_primary_10_1038_s41598_022_21814_z
crossref_primary_10_3390_ijms18061188
crossref_primary_10_1111_acel_13725
crossref_primary_10_1016_j_tem_2024_04_014
crossref_primary_10_1038_s41569_022_00760_3
crossref_primary_10_1136_bmjdrc_2019_000822
crossref_primary_10_1007_s10545_017_0091_x
crossref_primary_10_1007_s15034_016_0947_4
crossref_primary_10_3390_nu14163345
crossref_primary_10_1155_2022_5677073
crossref_primary_10_1210_clinem_dgac141
crossref_primary_10_1371_journal_ppat_1008918
crossref_primary_10_1152_ajpendo_00337_2017
crossref_primary_10_1161_CIRCRESAHA_120_317933
crossref_primary_10_1016_j_cmet_2018_05_017
crossref_primary_10_3390_antiox14030256
crossref_primary_10_3390_genes13122301
crossref_primary_10_1016_j_jbc_2024_108004
crossref_primary_10_1146_annurev_physiol_021115_105134
crossref_primary_10_1155_2018_9601801
crossref_primary_10_1038_s43856_023_00382_x
crossref_primary_10_1007_s00125_017_4222_6
crossref_primary_10_1016_j_heliyon_2024_e27472
crossref_primary_10_1016_j_vph_2017_01_001
crossref_primary_10_1016_j_aca_2019_11_009
crossref_primary_10_1111_obr_13856
crossref_primary_10_3390_jcm9051369
crossref_primary_10_3390_nu15173801
crossref_primary_10_1186_s41110_023_00230_x
crossref_primary_10_3945_cdn_117_002071
crossref_primary_10_1042_BSR20180127
crossref_primary_10_3892_mmr_2021_12494
crossref_primary_10_1016_j_bbalip_2021_158887
crossref_primary_10_3390_molecules27248656
crossref_primary_10_1038_s41580_018_0044_8
crossref_primary_10_1002_med_21883
crossref_primary_10_1080_87559129_2024_2437410
crossref_primary_10_1017_S1751731120000749
crossref_primary_10_1002_apj_3086
crossref_primary_10_3390_nu13124567
crossref_primary_10_3390_metabo14080436
crossref_primary_10_1002_ehf2_13572
crossref_primary_10_1039_D5MO00018A
crossref_primary_10_1038_s41388_024_03228_5
crossref_primary_10_1038_s41598_023_44629_y
crossref_primary_10_1038_s41598_023_47334_y
crossref_primary_10_1155_2021_1798783
crossref_primary_10_3389_fendo_2025_1501305
crossref_primary_10_3389_fendo_2023_1269633
crossref_primary_10_3389_fmed_2021_765873
crossref_primary_10_1186_s43556_022_00091_2
crossref_primary_10_3390_nu11040829
crossref_primary_10_1038_s41467_021_27289_2
crossref_primary_10_1111_obr_13403
crossref_primary_10_1097_MOL_0000000000000494
crossref_primary_10_1016_j_jnutbio_2025_109839
crossref_primary_10_1016_j_heliyon_2023_e19108
crossref_primary_10_1016_j_cmet_2018_12_020
crossref_primary_10_1016_j_xcrm_2025_102327
crossref_primary_10_1016_j_clnu_2019_10_022
crossref_primary_10_1016_j_cmet_2023_09_002
crossref_primary_10_1161_CIRCULATIONAHA_119_040551
crossref_primary_10_1038_s41467_023_38433_5
crossref_primary_10_1126_sciadv_adt3552
crossref_primary_10_1038_s42255_021_00520_6
crossref_primary_10_3389_fcvm_2024_1410006
crossref_primary_10_1007_s11010_020_03720_y
crossref_primary_10_1167_iovs_65_11_5
crossref_primary_10_1186_s40104_019_0423_9
crossref_primary_10_1016_j_cmet_2021_12_018
crossref_primary_10_2147_DMSO_S388117
crossref_primary_10_1002_rcm_8779
crossref_primary_10_1016_j_jchromb_2023_123930
crossref_primary_10_1053_j_ajkd_2020_01_019
crossref_primary_10_3389_fmed_2016_00057
crossref_primary_10_3390_nu17020227
crossref_primary_10_1016_j_cnd_2019_01_003
crossref_primary_10_17476_jmbs_2025_14_2_124
crossref_primary_10_1038_s41387_022_00213_3
crossref_primary_10_1016_j_molmet_2016_04_006
crossref_primary_10_1038_s41467_021_21962_2
crossref_primary_10_3389_fendo_2025_1510910
crossref_primary_10_1007_s11154_019_09533_9
crossref_primary_10_1007_s11892_018_1048_7
crossref_primary_10_3390_cells11101706
crossref_primary_10_1093_jn_nxy062
crossref_primary_10_1016_j_lfs_2024_122891
crossref_primary_10_1007_s00125_019_05001_w
crossref_primary_10_1016_j_ebiom_2023_104569
crossref_primary_10_3390_ijms23074022
crossref_primary_10_15252_embj_2019103812
crossref_primary_10_1016_j_cclet_2020_12_042
crossref_primary_10_1016_j_cmet_2023_06_008
crossref_primary_10_1016_j_tibs_2017_01_004
crossref_primary_10_1038_s42255_019_0112_1
crossref_primary_10_3390_cells11213523
crossref_primary_10_14814_phy2_13798
crossref_primary_10_3389_fendo_2025_1579477
crossref_primary_10_4240_wjgs_v15_i11_2596
crossref_primary_10_1177_17562848221138676
crossref_primary_10_1016_j_cmet_2019_08_011
crossref_primary_10_3390_ijms19113634
crossref_primary_10_1016_j_ebiom_2023_104441
crossref_primary_10_1128_mSystems_00048_19
crossref_primary_10_1016_j_ejim_2021_07_002
crossref_primary_10_3389_fimmu_2020_551758
crossref_primary_10_3168_jds_2020_18339
crossref_primary_10_1038_s41591_018_0061_3
crossref_primary_10_1093_advances_nmaa161
crossref_primary_10_3389_fnut_2023_1279066
crossref_primary_10_1242_dev_143438
crossref_primary_10_1016_j_advnut_2024_100347
crossref_primary_10_1016_j_cmet_2021_03_025
crossref_primary_10_1016_j_cca_2018_09_028
crossref_primary_10_3389_fpsyt_2020_579538
crossref_primary_10_1186_s12933_020_01188_0
crossref_primary_10_14814_phy2_14673
crossref_primary_10_1007_s10555_021_10016_0
crossref_primary_10_3389_fnut_2022_974902
crossref_primary_10_1146_annurev_physiol_020518_114455
crossref_primary_10_1002_ptr_7822
crossref_primary_10_1007_s40200_024_01516_1
crossref_primary_10_1038_s41598_025_09132_6
crossref_primary_10_1186_s12864_017_3548_2
crossref_primary_10_7555_JBR_35_20200191
crossref_primary_10_1016_j_numecd_2017_09_009
crossref_primary_10_1371_journal_pone_0199351
crossref_primary_10_1210_jendso_bvaa127
crossref_primary_10_1093_advances_nmab073
crossref_primary_10_1016_j_nutres_2019_03_012
crossref_primary_10_3389_fvets_2025_1646332
crossref_primary_10_1089_ars_2020_8161
crossref_primary_10_1016_j_cell_2024_07_012
crossref_primary_10_1038_s41387_024_00298_y
crossref_primary_10_1007_s12035_018_1270_y
crossref_primary_10_1161_CIRCRESAHA_121_319817
crossref_primary_10_1161_JAHA_123_031617
crossref_primary_10_1016_j_tma_2021_05_001
crossref_primary_10_3390_nu14010214
crossref_primary_10_1155_2018_4207067
crossref_primary_10_3390_ijms22179139
crossref_primary_10_1093_nar_gky570
crossref_primary_10_1016_j_freeradbiomed_2021_12_009
crossref_primary_10_1002_dmrr_3490
crossref_primary_10_3390_biom12070969
crossref_primary_10_1038_s41598_020_73943_y
crossref_primary_10_3389_fcell_2018_00082
crossref_primary_10_1161_HYPERTENSIONAHA_118_10919
crossref_primary_10_1186_s13023_023_02885_1
crossref_primary_10_1113_EP092008
crossref_primary_10_3390_antibiotics13040352
crossref_primary_10_1038_nrendo_2016_46
crossref_primary_10_1016_j_copbio_2019_05_002
crossref_primary_10_3390_nu9070642
crossref_primary_10_1038_s41467_021_27187_7
crossref_primary_10_3389_fnut_2023_1189982
crossref_primary_10_1016_j_tem_2021_11_004
crossref_primary_10_1042_BST20200991
crossref_primary_10_1093_jnci_djae181
crossref_primary_10_3389_fendo_2020_00617
crossref_primary_10_1038_s41387_022_00200_8
crossref_primary_10_1126_science_aav0558
crossref_primary_10_3390_metabo10050205
crossref_primary_10_15252_embr_202050663
crossref_primary_10_59717_j_xinn_med_2024_100090
crossref_primary_10_1177_0963689720927394
Cites_doi 10.1038/nm.2307
10.1016/j.celrep.2013.04.023
10.1182/blood-2011-08-375816
10.1210/er.2006-0037
10.1016/j.metabol.2014.01.006
10.1016/j.cmet.2009.02.002
10.1016/j.cmet.2013.12.003
10.1371/journal.pone.0129084
10.1021/cb300194b
10.1016/j.cmet.2006.12.003
10.1016/j.cmet.2012.01.024
10.1038/nature08945
10.1073/pnas.0810339105
10.1023/A:1016611824696
10.1038/ncomms8078
10.1056/NEJMra1011035
10.1007/s00125-015-3656-y
10.1016/j.cardfail.2014.03.007
10.1016/S0387-7604(01)00196-6
10.1038/nature06613
10.1016/j.cmet.2013.12.014
10.1038/nature00904
10.1242/jcs.103.1.23
10.1016/S0022-2275(20)38227-4
ContentType Journal Article
Copyright Springer Nature America, Inc. 2016
COPYRIGHT 2016 Nature Publishing Group
Copyright Nature Publishing Group Apr 2016
Copyright_xml – notice: Springer Nature America, Inc. 2016
– notice: COPYRIGHT 2016 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/nm.4057
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale Science In Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Toxicology Abstracts

MEDLINE
Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1546-170X
EndPage 426
ExternalDocumentID 4012885541
A451941079
26950361
10_1038_nm_4057
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: P30 DK019525
– fundername: NIA NIH HHS
  grantid: R01 AG043483
– fundername: NIDDK NIH HHS
  grantid: DK098656
– fundername: NIDDK NIH HHS
  grantid: R01 DK095072
– fundername: NHLBI NIH HHS
  grantid: HL094499
– fundername: NIDDK NIH HHS
  grantid: DK049210
– fundername: NIDDK NIH HHS
  grantid: R01 DK098656
– fundername: NIAMS NIH HHS
  grantid: AR062128
– fundername: NHLBI NIH HHS
  grantid: R01 HL093234
– fundername: NHLBI NIH HHS
  grantid: HL093234
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
ABFSG
ACSTC
AFANA
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
XRW
CGR
CUY
CVF
ECM
EIF
NPM
ACMFV
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c678t-c2054e4e646d0135bb982fb766b1a1fd8523c6247f5123c859aacbb60da59f7e3
IEDL.DBID BENPR
ISICitedReferencesCount 461
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373457700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1078-8956
1546-170X
IngestDate Tue Oct 07 09:28:12 EDT 2025
Thu Oct 02 03:46:22 EDT 2025
Fri Oct 03 09:51:35 EDT 2025
Sat Nov 29 13:02:08 EST 2025
Sat Nov 29 11:48:20 EST 2025
Mon Nov 24 15:42:12 EST 2025
Wed Nov 26 10:16:45 EST 2025
Wed Nov 26 09:53:49 EST 2025
Thu May 22 20:51:40 EDT 2025
Wed Feb 19 02:40:21 EST 2025
Tue Nov 18 22:23:14 EST 2025
Sat Nov 29 06:02:22 EST 2025
Fri Feb 21 02:37:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c678t-c2054e4e646d0135bb982fb766b1a1fd8523c6247f5123c859aacbb60da59f7e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://nrs.harvard.edu/urn-3:HUL.InstRepos:29407669
PMID 26950361
PQID 1779088723
PQPubID 33975
PageCount 6
ParticipantIDs proquest_miscellaneous_1805511464
proquest_miscellaneous_1779880539
proquest_journals_1779088723
gale_infotracmisc_A451941079
gale_infotracgeneralonefile_A451941079
gale_infotracacademiconefile_A451941079
gale_incontextgauss_ISR_A451941079
gale_incontextgauss_IOV_A451941079
gale_healthsolutions_A451941079
pubmed_primary_26950361
crossref_primary_10_1038_nm_4057
crossref_citationtrail_10_1038_nm_4057
springer_journals_10_1038_nm_4057
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2016
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Giesbertz (CR16) 2015; 58
Shulman (CR4) 2014; 371
Darland, D'Amore (CR23) 2001; 4
Hagberg (CR8) 2010; 464
Abbott, Hughes, Revest, Greenwood (CR19) 1992; 103
Handschin, Spiegelman (CR6) 2006; 27
Titchenell, Chu, Monks, Birnbaum (CR24) 2015; 6
Avogaro, Bier (CR15) 1989; 30
Arany (CR7) 2008; 451
Roberts (CR9) 2014; 19
Hatazawa (CR12) 2015; 10
Henkin (CR13) 2012; 7
Arany (CR11) 2007; 5
Sasaki (CR18) 2001; 23
Newgard (CR2) 2009; 9
Forman (CR25) 2014; 20
Newgard (CR3) 2012; 15
Choi (CR14) 2008; 105
Rowe (CR21) 2013; 3
Sawada (CR22) 2014; 19
Lin (CR10) 2002; 418
Mullen, Ohlendieck (CR17) 2010; 25
Xie (CR20) 2012; 119
Chan, Arany (CR5) 2014; 63
Wang (CR1) 2011; 17
CB Newgard (BFnm4057_CR2) 2009; 9
Z Arany (BFnm4057_CR7) 2008; 451
LD Roberts (BFnm4057_CR9) 2014; 19
Z Arany (BFnm4057_CR11) 2007; 5
CS Choi (BFnm4057_CR14) 2008; 105
P Giesbertz (BFnm4057_CR16) 2015; 58
TJ Wang (BFnm4057_CR1) 2011; 17
M Sasaki (BFnm4057_CR18) 2001; 23
Y Hatazawa (BFnm4057_CR12) 2015; 10
N Sawada (BFnm4057_CR22) 2014; 19
AH Henkin (BFnm4057_CR13) 2012; 7
C Handschin (BFnm4057_CR6) 2006; 27
GI Shulman (BFnm4057_CR4) 2014; 371
DC Darland (BFnm4057_CR23) 2001; 4
DE Forman (BFnm4057_CR25) 2014; 20
J Lin (BFnm4057_CR10) 2002; 418
NJ Abbott (BFnm4057_CR19) 1992; 103
PM Titchenell (BFnm4057_CR24) 2015; 6
Z Xie (BFnm4057_CR20) 2012; 119
CE Hagberg (BFnm4057_CR8) 2010; 464
GC Rowe (BFnm4057_CR21) 2013; 3
CB Newgard (BFnm4057_CR3) 2012; 15
A Avogaro (BFnm4057_CR15) 1989; 30
E Mullen (BFnm4057_CR17) 2010; 25
MC Chan (BFnm4057_CR5) 2014; 63
20127051 - Int J Mol Med. 2010 Mar;25(3):445-58
22928772 - ACS Chem Biol. 2012 Nov 16;7(11):1884-91
11377004 - Brain Dev. 2001 Jul;23(4):243-5
25963408 - Nat Commun. 2015 May 12;6:7078
23707060 - Cell Rep. 2013 May 30;3(5):1449-56
1429907 - J Cell Sci. 1992 Sep;103 ( Pt 1):23-37
22411873 - Blood. 2012 May 3;119(18):4321-32
2614280 - J Lipid Res. 1989 Nov;30(11):1811-7
26988615 - Nat Rev Endocrinol. 2016 May;12(5):249
25229917 - N Engl J Med. 2014 Sep 18;371(12):1131-41
17189205 - Cell Metab. 2007 Jan;5(1):35-46
19066218 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19926-31
26114427 - PLoS One. 2015 Jun 26;10 (6):e0129084
26058503 - Diabetologia. 2015 Sep;58(9):2133-43
24704539 - J Card Fail. 2014 Jun;20(6):422-30
18599867 - Circ Res. 2008 Aug 15;103(4):360-8
19356713 - Cell Metab. 2009 Apr;9(4):311-26
12181572 - Nature. 2002 Aug 15;418(6899):797-801
24559845 - Metabolism. 2014 Apr;63(4):441-51
17018837 - Endocr Rev. 2006 Dec;27(7):728-35
21423183 - Nat Med. 2011 Apr;17(4):448-53
18288196 - Nature. 2008 Feb 21;451(7181):1008-12
24411942 - Cell Metab. 2014 Jan 7;19(1):96-108
22560213 - Cell Metab. 2012 May 2;15(5):606-14
20228789 - Nature. 2010 Apr 8;464(7290):917-21
11824373 - Angiogenesis. 2001;4(1):11-20
References_xml – volume: 17
  start-page: 448
  year: 2011
  end-page: 453
  ident: CR1
  article-title: Metabolite profiles and the risk of developing diabetes
  publication-title: Nat. Med.
  doi: 10.1038/nm.2307
– volume: 3
  start-page: 1449
  year: 2013
  end-page: 1456
  ident: CR21
  article-title: Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.04.023
– volume: 119
  start-page: 4321
  year: 2012
  end-page: 4332
  ident: CR20
  article-title: Vascular endothelial hyperpermeability induces the clinical symptoms of Clarkson disease (the systemic capillary leak syndrome)
  publication-title: Blood
  doi: 10.1182/blood-2011-08-375816
– volume: 27
  start-page: 728
  year: 2006
  end-page: 735
  ident: CR6
  article-title: Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2006-0037
– volume: 63
  start-page: 441
  year: 2014
  end-page: 451
  ident: CR5
  article-title: The many roles of PGC-1α in muscle—recent developments
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2014.01.006
– volume: 9
  start-page: 311
  year: 2009
  end-page: 326
  ident: CR2
  article-title: A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2009.02.002
– volume: 19
  start-page: 96
  year: 2014
  end-page: 108
  ident: CR9
  article-title: β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.12.003
– volume: 10
  start-page: e0129084
  year: 2015
  ident: CR12
  article-title: Metabolomic analysis of the skeletal muscle of mice overexpressing PGC-1α
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0129084
– volume: 7
  start-page: 1884
  year: 2012
  end-page: 1891
  ident: CR13
  article-title: Real-time noninvasive imaging of fatty acid uptake
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb300194b
– volume: 5
  start-page: 35
  year: 2007
  end-page: 46
  ident: CR11
  article-title: The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.12.003
– volume: 15
  start-page: 606
  year: 2012
  end-page: 614
  ident: CR3
  article-title: Interplay between lipids and branched-chain amino acids in development of insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.01.024
– volume: 103
  start-page: 23
  year: 1992
  end-page: 37
  ident: CR19
  article-title: Development and characterisation of a rat brain capillary endothelial culture: towards an blood-brain barrier
  publication-title: J. Cell Sci.
– volume: 464
  start-page: 917
  year: 2010
  end-page: 921
  ident: CR8
  article-title: Vascular endothelial growth factor B controls endothelial fatty acid uptake
  publication-title: Nature
  doi: 10.1038/nature08945
– volume: 105
  start-page: 19926
  year: 2008
  end-page: 19931
  ident: CR14
  article-title: Paradoxical effects of increased expression of PGC-1α on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0810339105
– volume: 4
  start-page: 11
  year: 2001
  end-page: 20
  ident: CR23
  article-title: TGFβ is required for the formation of capillary-like structures in three-dimensional cocultures of 10T1/2 and endothelial cells
  publication-title: Angiogenesis
  doi: 10.1023/A:1016611824696
– volume: 6
  start-page: 7078
  year: 2015
  ident: CR24
  article-title: Hepatic insulin signalling is dispensable for suppression of glucose output by insulin
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8078
– volume: 371
  start-page: 1131
  year: 2014
  end-page: 1141
  ident: CR4
  article-title: Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1011035
– volume: 58
  start-page: 2133
  year: 2015
  end-page: 2143
  ident: CR16
  article-title: Metabolite profiling in plasma and tissues of and mice identifies novel markers of obesity and type 2 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3656-y
– volume: 20
  start-page: 422
  year: 2014
  end-page: 430
  ident: CR25
  article-title: Analysis of skeletal muscle gene expression patterns and the impact of functional capacity in patients with systolic heart failure
  publication-title: J. Card. Fail.
  doi: 10.1016/j.cardfail.2014.03.007
– volume: 25
  start-page: 445
  year: 2010
  end-page: 458
  ident: CR17
  article-title: Proteomic profiling of non-obese type 2 diabetic skeletal muscle
  publication-title: Int. J. Mol. Med.
– volume: 23
  start-page: 243
  year: 2001
  end-page: 245
  ident: CR18
  article-title: A severely brain-damaged case of 3-hydroxyisobutyric aciduria
  publication-title: Brain Dev.
  doi: 10.1016/S0387-7604(01)00196-6
– volume: 451
  start-page: 1008
  year: 2008
  end-page: 1012
  ident: CR7
  article-title: HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α
  publication-title: Nature
  doi: 10.1038/nature06613
– volume: 19
  start-page: 246
  year: 2014
  end-page: 258
  ident: CR22
  article-title: Endothelial PGC-1α mediates vascular dysfunction in diabetes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.12.014
– volume: 418
  start-page: 797
  year: 2002
  end-page: 801
  ident: CR10
  article-title: Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres
  publication-title: Nature
  doi: 10.1038/nature00904
– volume: 30
  start-page: 1811
  year: 1989
  end-page: 1817
  ident: CR15
  article-title: Contribution of 3-hydroxyisobutyrate to the measurement of 3-hydroxybutyrate in human plasma: comparison of enzymatic and gas-liquid chromatography-mass spectrometry assays in normal and in diabetic subjects
  publication-title: J. Lipid Res.
– volume: 119
  start-page: 4321
  year: 2012
  ident: BFnm4057_CR20
  publication-title: Blood
  doi: 10.1182/blood-2011-08-375816
– volume: 20
  start-page: 422
  year: 2014
  ident: BFnm4057_CR25
  publication-title: J. Card. Fail.
  doi: 10.1016/j.cardfail.2014.03.007
– volume: 103
  start-page: 23
  year: 1992
  ident: BFnm4057_CR19
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.103.1.23
– volume: 105
  start-page: 19926
  year: 2008
  ident: BFnm4057_CR14
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0810339105
– volume: 27
  start-page: 728
  year: 2006
  ident: BFnm4057_CR6
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2006-0037
– volume: 10
  start-page: e0129084
  year: 2015
  ident: BFnm4057_CR12
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0129084
– volume: 19
  start-page: 246
  year: 2014
  ident: BFnm4057_CR22
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.12.014
– volume: 464
  start-page: 917
  year: 2010
  ident: BFnm4057_CR8
  publication-title: Nature
  doi: 10.1038/nature08945
– volume: 19
  start-page: 96
  year: 2014
  ident: BFnm4057_CR9
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.12.003
– volume: 451
  start-page: 1008
  year: 2008
  ident: BFnm4057_CR7
  publication-title: Nature
  doi: 10.1038/nature06613
– volume: 23
  start-page: 243
  year: 2001
  ident: BFnm4057_CR18
  publication-title: Brain Dev.
  doi: 10.1016/S0387-7604(01)00196-6
– volume: 5
  start-page: 35
  year: 2007
  ident: BFnm4057_CR11
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.12.003
– volume: 7
  start-page: 1884
  year: 2012
  ident: BFnm4057_CR13
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb300194b
– volume: 371
  start-page: 1131
  year: 2014
  ident: BFnm4057_CR4
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1011035
– volume: 25
  start-page: 445
  year: 2010
  ident: BFnm4057_CR17
  publication-title: Int. J. Mol. Med.
– volume: 17
  start-page: 448
  year: 2011
  ident: BFnm4057_CR1
  publication-title: Nat. Med.
  doi: 10.1038/nm.2307
– volume: 3
  start-page: 1449
  year: 2013
  ident: BFnm4057_CR21
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.04.023
– volume: 58
  start-page: 2133
  year: 2015
  ident: BFnm4057_CR16
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3656-y
– volume: 6
  start-page: 7078
  year: 2015
  ident: BFnm4057_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8078
– volume: 63
  start-page: 441
  year: 2014
  ident: BFnm4057_CR5
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2014.01.006
– volume: 15
  start-page: 606
  year: 2012
  ident: BFnm4057_CR3
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.01.024
– volume: 4
  start-page: 11
  year: 2001
  ident: BFnm4057_CR23
  publication-title: Angiogenesis
  doi: 10.1023/A:1016611824696
– volume: 9
  start-page: 311
  year: 2009
  ident: BFnm4057_CR2
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2009.02.002
– volume: 30
  start-page: 1811
  year: 1989
  ident: BFnm4057_CR15
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)38227-4
– volume: 418
  start-page: 797
  year: 2002
  ident: BFnm4057_CR10
  publication-title: Nature
  doi: 10.1038/nature00904
– reference: 1429907 - J Cell Sci. 1992 Sep;103 ( Pt 1):23-37
– reference: 17189205 - Cell Metab. 2007 Jan;5(1):35-46
– reference: 11377004 - Brain Dev. 2001 Jul;23(4):243-5
– reference: 22411873 - Blood. 2012 May 3;119(18):4321-32
– reference: 22928772 - ACS Chem Biol. 2012 Nov 16;7(11):1884-91
– reference: 19356713 - Cell Metab. 2009 Apr;9(4):311-26
– reference: 25963408 - Nat Commun. 2015 May 12;6:7078
– reference: 18288196 - Nature. 2008 Feb 21;451(7181):1008-12
– reference: 26114427 - PLoS One. 2015 Jun 26;10 (6):e0129084
– reference: 11824373 - Angiogenesis. 2001;4(1):11-20
– reference: 22560213 - Cell Metab. 2012 May 2;15(5):606-14
– reference: 23707060 - Cell Rep. 2013 May 30;3(5):1449-56
– reference: 26988615 - Nat Rev Endocrinol. 2016 May;12(5):249
– reference: 2614280 - J Lipid Res. 1989 Nov;30(11):1811-7
– reference: 24704539 - J Card Fail. 2014 Jun;20(6):422-30
– reference: 25229917 - N Engl J Med. 2014 Sep 18;371(12):1131-41
– reference: 24411942 - Cell Metab. 2014 Jan 7;19(1):96-108
– reference: 21423183 - Nat Med. 2011 Apr;17(4):448-53
– reference: 18599867 - Circ Res. 2008 Aug 15;103(4):360-8
– reference: 12181572 - Nature. 2002 Aug 15;418(6899):797-801
– reference: 20228789 - Nature. 2010 Apr 8;464(7290):917-21
– reference: 17018837 - Endocr Rev. 2006 Dec;27(7):728-35
– reference: 20127051 - Int J Mol Med. 2010 Mar;25(3):445-58
– reference: 19066218 - Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19926-31
– reference: 24559845 - Metabolism. 2014 Apr;63(4):441-51
– reference: 26058503 - Diabetologia. 2015 Sep;58(9):2133-43
SSID ssj0003059
Score 2.6508136
Snippet Fatty acid transport from blood vessels to skeletal muscle, across endothelial cells, is regulated by the branched chain amino acid metabolite...
Epidemiological and experimental data implicate branched-chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie...
Epidemiological and experimental data implicate branchedchain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms that underlie...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 421
SubjectTerms 13/1
13/106
13/109
13/44
13/51
13/89
14/19
14/34
14/5
38/39
59
59/5
631/337
631/80/304
64
64/60
692/163/2743/137/773
82
Accumulation
Amino acids
Amino Acids, Branched-Chain - metabolism
Animals
Biological transport
Biomedicine
Cancer Research
Development and progression
Diabetes
Experimental data
Fatty acids
Fatty Acids - genetics
Fatty Acids - metabolism
Fluctuations
Genetic aspects
Health aspects
Humans
Hydroxybutyrates - metabolism
Infectious Diseases
Insulin - genetics
Insulin - metabolism
Insulin resistance
Insulin Resistance - genetics
letter
Lipids
Metabolic Diseases
Metabolites
Mice
Mice, Inbred NOD
Molecular Medicine
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Neurosciences
Obesity - genetics
Obesity - metabolism
Obesity - pathology
Pathogenesis
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Properties
Transcription factors
Transcription Factors - biosynthesis
Transcription Factors - genetics
Title A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance
URI https://link.springer.com/article/10.1038/nm.4057
https://www.ncbi.nlm.nih.gov/pubmed/26950361
https://www.proquest.com/docview/1779088723
https://www.proquest.com/docview/1779880539
https://www.proquest.com/docview/1805511464
Volume 22
WOSCitedRecordID wos000373457700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M7P
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: BENPR
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Health and Medical Complete
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: 7X7
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M2O
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M2P
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLSAuPMorUIpBqD2FbhIncU5oQa3g0O2qPLS3yHGcNhKblN0sUv89M7ETmoIqJC6WVv4ieTMPj-OZbwDeFFmMG7vkLleBj4NQrowDz9V-FCaaj7M8lG2ziXg6FfN5MrMf3FY2rbLzia2jzmtF38j3PSLGQ4vwg3fnP1zqGkW3q7aFxgZsElMZH8Hm-4Pp7KT3xajNick6FK7Ao4ApmyVS8P1q8ZaClcF-dNUrX9qWrtyTttvP4b3_Xfh9uGsDTzYxmvIAbuhqC26ZVpQXW3D7yF6yP4RywjJqt3Gmc1edybJiclFWNZOqzNlCN6g2VLjM8iVR1rIul5UVsmkuDKrpKNOZrHKm5HqFQJv2zvCAT0Eratsj-Hp48OXDR9d2ZHAVbmqNq3yM8DTXEY9yjB3DLEuEj-KOosyTXpELPNaqyOdxgXFEoESYSKmyLBrnMkyKWAePYVTVlX4KLOKiyPzCEzn14EXhKT_GWDQr1JjrWGgHdju5pMrSlVPXjO9pe20eiLRapCRAB1gPPDcMHX9CXpJgU1Na2tt0OiFuHY7KkTjwukUQI0ZFKTen-GZW6afjb_8A-nwyAO1ZUFHjepW0ZQ74r4lpa4DcHSBPDc_434DbAyA6ADWc7hQvtQ5olf7WOgde9dP0JCXVVbpeGwy67zBIrsHgfEiV69yBJ8YW-rfsR0mIAZCHT3fGcWkBQxE8u36Rz-EORqKRSYnahlGzXOsXcFP9bMrVcgc24nncjmLHWjj-OvKP23FGYzz7BfpSWSA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8rzwKK9AoQZBewrdOC_ngNAKqLpquyBa0N5Sx3Haldhs2WRB-6f4jczESWgKqrj0wCUXf4kcZ16OZ74BeJElITp26dmecjlehLJl6Dq25oEfaa-XpL6smk2Ew6EYjaKPS_CzqYWhtMrGJlaGOp0q-ke-6RAxHmoEd9-cfLOpaxSdrjYtNIxY7OjFD9yyFa8H7_D7vuR86_3B22277ipgKzTMpa04Rina04EXpBj_-EkSCY5TDoLEkU6WCtyaqYB7YYa-0FXCj6RUSRL0UulHWahdfO4luIx2PKQUsnDUbvBIdyKT4yhsgRsPU6RLFOSb-eQVhUYd73fWB5xygmdOZStnt3Xrf1um23CzDqtZ3-jBHVjS-QpcNY02Fytwba9OIbgL4z5LqJnIsU5tdSzHOZOTcT5lUo1TNtElKgWVZbN0RoS8rMnUZZksy4VBlQ0hPJN5ypScFwisk_rZTBcUkqMu3YPPF_LK92E5n-b6IbDAE1nCM0ek1GHYcSLFQ4y0k0z1PB0KbcF6IwexqsnYqSfI17hKCnBFnE9iEhgLWAs8Mfwjf0LWSJBiUzjbWqy4T8xBHgpjZMHzCkF8HzklFB3hyhTx4MOXfwDtf-qANmpQNsX5KlkXceBbE49YB7neQR4ZFvW_AVc7QDRvqjvcCHpcm9ci_i3lFjxrh-lOShnM9XRuMOicfDc6B4PjPtXlexY8MLrXrjIPIh_DOwfvbpTx1AS6n-DR-ZNcg-vbB3u78e5guPMYbmDMHZjkr1VYLmdz_QSuqO_luJg9rewJg8OL1sxfavmvyQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAhUXHuUVKHRBUE4m8Xptrw8IRZSIqDREvNSbWa_XbSTilNgB5a_x65jx2qEuqOLSAxdf9rO1Xs9rvTPfADzJkhAduxKO0B7Hi9SOCj3XMTzwIyN6SeqrqtlEOBrJg4NovAY_m1oYSqtsbGJlqNOZpn_kXZeI8VAjuNfN6rSI8e7g5fE3hzpI0Ulr007DisieWf7A7VvxYriL3_op54PXH1-9ceoOA45GI106mmPEYoQJRJBiLOQnSSQ5Tj8IEle5WSpxm6YDLsIM_aKnpR8ppZMk6KXKj7LQePjcC3AxFL5P2rXPxysvgHoU2XxH6UjchNiCXaIj7-bT5xQmtTzhaX9wwiGeOqGtHN_g2v-8ZNfhah1us77VjxuwZvJNuGwbcC43YWO_Ti24CZM-S6jJyJFJHX2kJjlT00k-Y0pPUjY1JSoLlWuzdE5EvazJ4GWZKsulRZUNUTxTecq0WhQIrJP92dwUFKqjjt2CT-fyyrdhPZ_l5i6wQMgs4ZkrU-o87LqR5iFG4Emme8KE0nRgp5GJWNck7dQr5GtcJQt4Ms6nMQlPB9gKeGx5Sf6EbJNQxbagdmXJ4j4xCgkUzKgDjysE8YDkJB6HuDJFPHz3-R9AH963QM9qUDbD-WpVF3fgWxO_WAu500IeWnb1vwG3WkA0e7o93Ah9XJvdIv4t8R14tBqmOymVMDezhcWg0_K96AwMjvtUry86cMfq4WqVeRD5GPa5eHejmCcm0P4E986e5DZsoELGb4ejvftwBUPxwOaEbcF6OV-YB3BJfy8nxfxhZVoYfDlvxfwFSm24lg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+branched-chain+amino+acid+metabolite+drives+vascular+fatty+acid+transport+and+causes+insulin+resistance&rft.jtitle=Nature+medicine&rft.au=Jang%2C+Cholsoon&rft.au=Oh%2C+Sungwhan+F&rft.au=Wada%2C+Shogo&rft.au=Rowe%2C+Glenn+C&rft.date=2016-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1078-8956&rft.spage=421&rft_id=info:doi/10.1038%2Fnm.4057&rft.externalDocID=A451941079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon