A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction

Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 18; no. Suppl 16; pp. 569 - 220
Main Authors: Deng, Lei, Fan, Chao, Zeng, Zhiwen
Format: Journal Article
Language:English
Published: London BioMed Central 28.12.2017
BioMed Central Ltd
BMC
Subjects:
ISSN:1471-2105, 1471-2105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. Results In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. Conclusions We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-017-1971-7