Ensuring protocol compliance and data transparency in clinical trials using Blockchain smart contracts

Background Clinical Trials (CTs) help in testing and validating the safety and efficacy of newly discovered drugs on specific patient population cohorts. However, these trials usually experience many challenges, such as extensive time frames, high financial cost, regulatory and administrative barrie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC medical research methodology Ročník 20; číslo 1; s. 224 - 17
Hlavní autoři: Omar, Ilhaam A., Jayaraman, Raja, Salah, Khaled, Simsekler, Mecit Can Emre, Yaqoob, Ibrar, Ellahham, Samer
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 07.09.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1471-2288, 1471-2288
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Background Clinical Trials (CTs) help in testing and validating the safety and efficacy of newly discovered drugs on specific patient population cohorts. However, these trials usually experience many challenges, such as extensive time frames, high financial cost, regulatory and administrative barriers, and insufficient workforce. In addition, CTs face several data management challenges pertaining to protocol compliance, patient enrollment, transparency, traceability, data integrity, and selective reporting. Blockchain can potentially address such challenges because of its intrinsic features and properties. Although existing literature broadly discusses the applicability of blockchain-based solutions for CTs, only a few studies present their working proof-of-concept. Methods We propose a blockchain-based framework for CT data management, using Ethereum smart contracts, which employs IPFS as the file storage system to automate processes and information exchange among CT stakeholders. CT documents stored in the IPFS are difficult to tamper with as they are given unique cryptographic hashes. We present algorithms that capture various stages of CT data management. We develop the Ethereum smart contract using Remix IDE that is validated under different scenarios. Results The proposed framework results are advantageous to all stakeholders ensuring transparency, data integrity, and protocol compliance. Although the proposed solution is tested on the Ethereum blockchain platform, it can be deployed in private blockchain networks using their native smart contract technologies. We make our smart contract code publicly available on Github. Conclusions We conclude that the proposed framework can be highly effective in ensuring that the trial abides by the protocol and the functions are executed only by the stakeholders who are given permission. It also assures data integrity and promotes transparency and traceability of information among stakeholders.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2288
1471-2288
DOI:10.1186/s12874-020-01109-5