The biological and clinical significance of emerging SARS-CoV-2 variants

The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and r...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature reviews. Genetics Ročník 22; číslo 12; s. 757 - 773
Hlavní autori: Tao, Kaiming, Tzou, Philip L., Nouhin, Janin, Gupta, Ravindra K., de Oliveira, Tulio, Kosakovsky Pond, Sergei L., Fera, Daniela, Shafer, Robert W.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 01.12.2021
Nature Publishing Group
Predmet:
ISSN:1471-0056, 1471-0064, 1471-0064
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research. In this Review, the authors describe our latest understanding of the emergence and properties of SARS-CoV-2 genetic variants, particularly those designated as WHO (World Health Organization) ‘variants of concern’. They focus on the consequences of these variants for antibody-mediated virus neutralization, with important implications for reinfection risk and for vaccine effectiveness. Key points The past several months have witnessed the emergence of four SARS-CoV-2 variants of concern (Alpha, Beta, Gamma and Delta) associated with increased transmissibility, increased risk of reinfection and/or reduced vaccine efficacy. Many additional SARS-CoV-2 variants sharing mutations and biological features with these variants are also increasingly being identified. The increasing number of SARS-CoV-2 variants share a repertoire of mutations that is enabling the virus to spread despite rising population immunity while maintaining or increasing its replication fitness. Whereas most emerging mutations reduce the protective effects of neutralizing antibodies generated by infection and vaccination, several recently identified mutations appear to antagonize the innate immune response to initial infection. The emergence of SARS-CoV-2 variants requires an expanded research agenda to improve our understanding of emerging SARS-CoV-2 mutations and the correlates of protective immunity against variants with these mutations.
AbstractList The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research. In this Review, the authors describe our latest understanding of the emergence and properties of SARS-CoV-2 genetic variants, particularly those designated as WHO (World Health Organization) ‘variants of concern’. They focus on the consequences of these variants for antibody-mediated virus neutralization, with important implications for reinfection risk and for vaccine effectiveness. The past several months have witnessed the emergence of four SARS-CoV-2 variants of concern (Alpha, Beta, Gamma and Delta) associated with increased transmissibility, increased risk of reinfection and/or reduced vaccine efficacy.Many additional SARS-CoV-2 variants sharing mutations and biological features with these variants are also increasingly being identified.The increasing number of SARS-CoV-2 variants share a repertoire of mutations that is enabling the virus to spread despite rising population immunity while maintaining or increasing its replication fitness.Whereas most emerging mutations reduce the protective effects of neutralizing antibodies generated by infection and vaccination, several recently identified mutations appear to antagonize the innate immune response to initial infection.The emergence of SARS-CoV-2 variants requires an expanded research agenda to improve our understanding of emerging SARS-CoV-2 mutations and the correlates of protective immunity against variants with these mutations.
The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.
The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research. In this Review, the authors describe our latest understanding of the emergence and properties of SARS-CoV-2 genetic variants, particularly those designated as WHO (World Health Organization) 'variants of concern'. They focus on the consequences of these variants for antibody-mediated virus neutralization, with important implications for reinfection risk and for vaccine effectiveness. Key points The past several months have witnessed the emergence of four SARS-CoV-2 variants of concern (Alpha, Beta, Gamma and Delta) associated with increased transmissibility, increased risk of reinfection and/or reduced vaccine efficacy. Many additional SARS-CoV-2 variants sharing mutations and biological features with these variants are also increasingly being identified. The increasing number of SARS-CoV-2 variants share a repertoire of mutations that is enabling the virus to spread despite rising population immunity while maintaining or increasing its replication fitness. Whereas most emerging mutations reduce the protective effects of neutralizing antibodies generated by infection and vaccination, several recently identified mutations appear to antagonize the innate immune response to initial infection. The emergence of SARS-CoV-2 variants requires an expanded research agenda to improve our understanding of emerging SARS-CoV-2 mutations and the correlates of protective immunity against variants with these mutations.
The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.
The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.In this Review, the authors describe our latest understanding of the emergence and properties of SARS-CoV-2 genetic variants, particularly those designated as WHO (World Health Organization) ‘variants of concern’. They focus on the consequences of these variants for antibody-mediated virus neutralization, with important implications for reinfection risk and for vaccine effectiveness.
The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research. In this Review, the authors describe our latest understanding of the emergence and properties of SARS-CoV-2 genetic variants, particularly those designated as WHO (World Health Organization) ‘variants of concern’. They focus on the consequences of these variants for antibody-mediated virus neutralization, with important implications for reinfection risk and for vaccine effectiveness. Key points The past several months have witnessed the emergence of four SARS-CoV-2 variants of concern (Alpha, Beta, Gamma and Delta) associated with increased transmissibility, increased risk of reinfection and/or reduced vaccine efficacy. Many additional SARS-CoV-2 variants sharing mutations and biological features with these variants are also increasingly being identified. The increasing number of SARS-CoV-2 variants share a repertoire of mutations that is enabling the virus to spread despite rising population immunity while maintaining or increasing its replication fitness. Whereas most emerging mutations reduce the protective effects of neutralizing antibodies generated by infection and vaccination, several recently identified mutations appear to antagonize the innate immune response to initial infection. The emergence of SARS-CoV-2 variants requires an expanded research agenda to improve our understanding of emerging SARS-CoV-2 mutations and the correlates of protective immunity against variants with these mutations.
Audience Academic
Author Gupta, Ravindra K.
Nouhin, Janin
Kosakovsky Pond, Sergei L.
Tao, Kaiming
Fera, Daniela
Shafer, Robert W.
de Oliveira, Tulio
Tzou, Philip L.
Author_xml – sequence: 1
  givenname: Kaiming
  surname: Tao
  fullname: Tao, Kaiming
  organization: Division of Infectious Diseases, Department of Medicine, Stanford University
– sequence: 2
  givenname: Philip L.
  surname: Tzou
  fullname: Tzou, Philip L.
  organization: Division of Infectious Diseases, Department of Medicine, Stanford University
– sequence: 3
  givenname: Janin
  orcidid: 0000-0003-4985-8377
  surname: Nouhin
  fullname: Nouhin, Janin
  organization: Division of Infectious Diseases, Department of Medicine, Stanford University
– sequence: 4
  givenname: Ravindra K.
  surname: Gupta
  fullname: Gupta, Ravindra K.
  organization: Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge
– sequence: 5
  givenname: Tulio
  surname: de Oliveira
  fullname: de Oliveira, Tulio
  organization: KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal
– sequence: 6
  givenname: Sergei L.
  surname: Kosakovsky Pond
  fullname: Kosakovsky Pond, Sergei L.
  organization: Institute for Genomics and Evolutionary Medicine, Temple University
– sequence: 7
  givenname: Daniela
  orcidid: 0000-0002-1706-9288
  surname: Fera
  fullname: Fera, Daniela
  organization: Department of Chemistry and Biochemistry, Swarthmore College
– sequence: 8
  givenname: Robert W.
  orcidid: 0000-0003-2513-2643
  surname: Shafer
  fullname: Shafer, Robert W.
  email: rshafer@stanford.edu
  organization: Division of Infectious Diseases, Department of Medicine, Stanford University, Department of Pathology, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34535792$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAUhU1JaR7tH-iiGAqlXTiVZFmSN4VhaJtAoJBJuxWyLHsUZCmV7DD9972TSSdxKMELvb5zr3R8jrMDH7zJsrcYnWJUis-J4oqzAhFcIESRKDYvsiNM-XbJ6MF-XrHD7Dila4Qww7x8lR2WtCorXpOj7OxqbfLGBhd6q5XLlW9z7ay_WyTbe9vB1GuThy43g4m99X2-WlyuimX4VZD8VkWr_JheZy875ZJ5cz-eZD-_fb1anhUXP76fLxcXhWacjEXLm4pTRBSruUGCNEp1FSVctLjWrG5aXOkWLtcqRlpTMyR0VdKGd6gRXHNdnmRfdnVvpmYwrTZ-jMrJm2gHFf_IoKycn3i7ln24lYKCGwRDgY_3BWL4PZk0ysEmbZxT3oQpSQL3o4hhRgF9_wS9DlP08Dygas4wEaR6oHrljLS-C9BXb4vKBROE8RK8Bur0PxR8rRmshh_bWdifCT7NBMCMZjP2akpJnq8u5-yHR-zaKDeuU3DTaINPc_DdY_f2tv0LBABkB-gYUoqm2yMYyW3q5C51ElIn71InNyAST0TajmrbHN5o3fPScidN0Mf3Jj5Y_IzqL5SN6AE
CitedBy_id crossref_primary_10_1038_s41392_023_01309_7
crossref_primary_10_1093_molbev_msac046
crossref_primary_10_1111_eci_14004
crossref_primary_10_1136_bmjopen_2022_066763
crossref_primary_10_1038_s41591_022_01882_4
crossref_primary_10_1371_journal_ppat_1010465
crossref_primary_10_1007_s10238_023_01163_5
crossref_primary_10_1016_j_molstruc_2023_135409
crossref_primary_10_3390_life14070814
crossref_primary_10_3389_fmed_2023_1294699
crossref_primary_10_1186_s12874_022_01755_x
crossref_primary_10_1371_journal_pbio_3001652
crossref_primary_10_1002_hsr2_1377
crossref_primary_10_1186_s13256_025_05431_8
crossref_primary_10_3390_ijms222212412
crossref_primary_10_1016_j_csbj_2024_05_037
crossref_primary_10_1038_s41421_023_00536_0
crossref_primary_10_3390_v15040855
crossref_primary_10_1002_hsr2_1373
crossref_primary_10_1177_11779322231182050
crossref_primary_10_3390_v15010070
crossref_primary_10_1002_jmv_29275
crossref_primary_10_1016_j_heliyon_2023_e17701
crossref_primary_10_1128_jvi_00955_23
crossref_primary_10_1002_jmv_70604
crossref_primary_10_3389_fpubh_2022_966847
crossref_primary_10_1038_s43856_024_00600_0
crossref_primary_10_1093_glycob_cwad097
crossref_primary_10_1155_2022_9594931
crossref_primary_10_7554_eLife_82069
crossref_primary_10_1016_j_ebiom_2022_103934
crossref_primary_10_3390_vaccines10050696
crossref_primary_10_3390_vaccines13030224
crossref_primary_10_1016_j_eclinm_2025_103194
crossref_primary_10_3389_fmed_2022_877391
crossref_primary_10_1002_cbic_202200327
crossref_primary_10_1016_j_heliyon_2023_e23039
crossref_primary_10_1128_mmbr_00026_21
crossref_primary_10_1007_s12519_022_00659_6
crossref_primary_10_3389_fcimb_2025_1548787
crossref_primary_10_3389_fphar_2022_936925
crossref_primary_10_7759_cureus_75438
crossref_primary_10_1007_s11684_023_1043_5
crossref_primary_10_1016_j_nmd_2022_04_001
crossref_primary_10_3390_microorganisms12091745
crossref_primary_10_1371_journal_pone_0278294
crossref_primary_10_3390_microorganisms12091863
crossref_primary_10_1128_jvi_01571_23
crossref_primary_10_3390_vaccines9121435
crossref_primary_10_1016_j_jiph_2022_06_007
crossref_primary_10_1080_14787210_2024_2345881
crossref_primary_10_3390_jcm11113187
crossref_primary_10_3390_v14112556
crossref_primary_10_1016_j_sjbs_2022_103372
crossref_primary_10_3390_ijms241914965
crossref_primary_10_12688_f1000research_122019_2
crossref_primary_10_1371_journal_pone_0285722
crossref_primary_10_1093_ehjqcco_qcae016
crossref_primary_10_3390_v15040999
crossref_primary_10_3390_v16030430
crossref_primary_10_1016_j_bbrc_2023_04_002
crossref_primary_10_1016_j_imu_2022_100873
crossref_primary_10_1002_adsr_202400188
crossref_primary_10_3389_fphar_2025_1570206
crossref_primary_10_1093_ve_veac109
crossref_primary_10_3389_fpubh_2023_1244662
crossref_primary_10_1371_journal_pcbi_1013261
crossref_primary_10_1209_0295_5075_ad7a9e
crossref_primary_10_1016_j_heliyon_2024_e25618
crossref_primary_10_3390_biology11081136
crossref_primary_10_3390_microorganisms12061185
crossref_primary_10_1038_s41598_023_41928_2
crossref_primary_10_1016_j_biopha_2022_113368
crossref_primary_10_3389_fmicb_2022_945133
crossref_primary_10_3390_vaccines11020314
crossref_primary_10_1038_s41467_022_31259_7
crossref_primary_10_1038_s41598_024_72842_w
crossref_primary_10_1007_s00705_022_05530_7
crossref_primary_10_3389_fchem_2022_933102
crossref_primary_10_1016_j_ejmech_2023_115376
crossref_primary_10_1016_j_omtm_2022_03_013
crossref_primary_10_1016_j_cell_2022_07_002
crossref_primary_10_1016_j_bios_2023_115238
crossref_primary_10_1186_s42269_024_01207_0
crossref_primary_10_1007_s10930_022_10073_6
crossref_primary_10_1038_s41592_022_01444_z
crossref_primary_10_1016_j_xcrp_2025_102756
crossref_primary_10_1371_journal_pone_0293416
crossref_primary_10_4014_jmb_2308_08020
crossref_primary_10_1016_j_bmcl_2022_128629
crossref_primary_10_1172_JCI168080
crossref_primary_10_1016_j_virs_2022_11_007
crossref_primary_10_1038_s41467_023_36295_5
crossref_primary_10_3389_fpubh_2024_1325474
crossref_primary_10_1016_j_virs_2022_11_005
crossref_primary_10_1016_S1473_3099_22_00069_X
crossref_primary_10_1126_science_abm0811
crossref_primary_10_1002_prot_26422
crossref_primary_10_1007_s41030_023_00231_1
crossref_primary_10_3390_v15071555
crossref_primary_10_1016_j_virusres_2022_198882
crossref_primary_10_3390_microorganisms10020280
crossref_primary_10_1007_s00277_022_04884_x
crossref_primary_10_1016_j_imlet_2024_106887
crossref_primary_10_1128_msystems_00035_22
crossref_primary_10_3390_v14030465
crossref_primary_10_1016_j_scitotenv_2024_170961
crossref_primary_10_3390_v17050625
crossref_primary_10_2196_40958
crossref_primary_10_1017_S095026882200084X
crossref_primary_10_1038_s41392_022_00937_9
crossref_primary_10_3389_fbioe_2022_1090281
crossref_primary_10_3389_fsci_2024_1298248
crossref_primary_10_1016_j_ijheh_2023_114224
crossref_primary_10_1016_j_biopha_2022_113538
crossref_primary_10_1016_j_jviromet_2023_114759
crossref_primary_10_1016_j_ijbiomac_2023_129051
crossref_primary_10_1038_s42003_022_03739_5
crossref_primary_10_3390_app12115546
crossref_primary_10_1016_j_cmi_2022_04_015
crossref_primary_10_1111_ped_15740
crossref_primary_10_1016_j_sjbs_2022_103315
crossref_primary_10_3390_ijerph182312680
crossref_primary_10_1016_j_isci_2024_110208
crossref_primary_10_1128_jvi_00383_22
crossref_primary_10_3389_fmolb_2025_1575747
crossref_primary_10_1007_s40259_022_00529_7
crossref_primary_10_1016_j_celrep_2023_112842
crossref_primary_10_1093_femsre_fuac042
crossref_primary_10_1016_j_jtemb_2025_127625
crossref_primary_10_2478_jtim_2023_0118
crossref_primary_10_3390_ijms26031263
crossref_primary_10_1128_spectrum_05258_22
crossref_primary_10_3390_jcm12134337
crossref_primary_10_1136_bmjopen_2022_062187
crossref_primary_10_3390_v15081699
crossref_primary_10_1515_dx_2021_0149
crossref_primary_10_1128_jcm_00178_22
crossref_primary_10_3390_v15081690
crossref_primary_10_3390_v16030472
crossref_primary_10_1038_s41467_024_54505_6
crossref_primary_10_3389_fimmu_2022_1053437
crossref_primary_10_3390_v14051037
crossref_primary_10_3390_vaccines13050481
crossref_primary_10_3390_ijms242216151
crossref_primary_10_1128_spectrum_03120_22
crossref_primary_10_4081_mrm_2023_906
crossref_primary_10_3390_vetsci10010006
crossref_primary_10_1038_s41598_024_54920_1
crossref_primary_10_1016_j_compbiomed_2024_109101
crossref_primary_10_3389_fmed_2022_1015620
crossref_primary_10_3390_ijms24021147
crossref_primary_10_3390_v17050722
crossref_primary_10_1016_j_jinf_2024_106310
crossref_primary_10_2147_IDR_S480086
crossref_primary_10_3390_v14020443
crossref_primary_10_1038_s41467_023_38251_9
crossref_primary_10_1101_gr_276407_121
crossref_primary_10_3389_fmicb_2024_1386271
crossref_primary_10_1080_21645515_2022_2045857
crossref_primary_10_3390_vaccines10030432
crossref_primary_10_1038_s41579_022_00722_z
crossref_primary_10_1038_s41598_022_18517_w
crossref_primary_10_1073_pnas_2219523120
crossref_primary_10_1016_j_jmb_2023_168170
crossref_primary_10_1371_journal_pone_0317104
crossref_primary_10_1016_j_jim_2023_113523
crossref_primary_10_1073_pnas_2203760119
crossref_primary_10_1007_s00477_021_02166_y
crossref_primary_10_15252_embr_202255900
crossref_primary_10_1016_j_virs_2022_10_006
crossref_primary_10_3390_biology11121786
crossref_primary_10_1016_j_jinf_2022_01_004
crossref_primary_10_1038_s41598_025_00280_3
crossref_primary_10_1016_j_chom_2022_07_016
crossref_primary_10_1038_s41598_023_30252_4
crossref_primary_10_1016_j_scitotenv_2022_155599
crossref_primary_10_1016_j_aca_2023_341531
crossref_primary_10_3389_fchem_2023_1083399
crossref_primary_10_1038_s41598_022_21481_0
crossref_primary_10_1128_msystems_00095_21
crossref_primary_10_3389_fmicb_2025_1639187
crossref_primary_10_3390_ijms25168839
crossref_primary_10_1186_s40246_023_00515_2
crossref_primary_10_1016_j_scitotenv_2022_157546
crossref_primary_10_1073_pnas_2221652120
crossref_primary_10_1016_j_genrep_2022_101549
crossref_primary_10_1080_07391102_2024_2327537
crossref_primary_10_1186_s12941_024_00750_y
crossref_primary_10_1016_j_envres_2022_112816
crossref_primary_10_1016_j_ebiom_2024_105385
crossref_primary_10_3201_eid2802_212422
crossref_primary_10_3389_fimmu_2024_1444620
crossref_primary_10_1016_j_chom_2022_07_006
crossref_primary_10_1007_s12274_021_3949_z
crossref_primary_10_1016_j_isci_2025_113498
crossref_primary_10_1093_nargab_lqad002
crossref_primary_10_3390_v15010108
crossref_primary_10_1016_j_chom_2023_09_012
crossref_primary_10_1093_ve_veac040
crossref_primary_10_1016_j_jmb_2023_167973
crossref_primary_10_1016_j_jphotobiol_2022_112538
crossref_primary_10_1038_s41598_023_48647_8
crossref_primary_10_1186_s12879_023_08525_0
crossref_primary_10_1016_j_idm_2025_04_003
crossref_primary_10_1186_s12911_022_01931_5
crossref_primary_10_3389_fcimb_2022_1009372
crossref_primary_10_3390_v15010222
crossref_primary_10_3389_fimmu_2023_1160283
crossref_primary_10_3390_pathogens13121051
crossref_primary_10_1007_s11427_022_2166_y
crossref_primary_10_12688_gatesopenres_13654_1
crossref_primary_10_3390_ijerph19094930
crossref_primary_10_3390_v14050854
crossref_primary_10_3390_v15122291
crossref_primary_10_1093_procel_pwac027
crossref_primary_10_3389_fcimb_2023_1180297
crossref_primary_10_1016_j_csbj_2025_05_021
crossref_primary_10_1038_s41401_022_01043_w
crossref_primary_10_3389_fmicb_2023_1228128
crossref_primary_10_3390_jpm12122001
crossref_primary_10_3390_tropicalmed8070340
crossref_primary_10_1007_s00521_024_10278_z
crossref_primary_10_1093_nargab_lqad037
crossref_primary_10_1002_admi_202400005
crossref_primary_10_1371_journal_pcbi_1012215
crossref_primary_10_1080_14789450_2022_2085564
crossref_primary_10_1016_j_bbrc_2023_04_088
crossref_primary_10_1016_j_scitotenv_2023_167844
crossref_primary_10_3390_ijms222212114
crossref_primary_10_1093_bib_bbac513
crossref_primary_10_12688_f1000research_72896_3
crossref_primary_10_12688_f1000research_72896_4
crossref_primary_10_2217_imt_2021_0168
crossref_primary_10_12688_f1000research_72896_2
crossref_primary_10_3389_fimmu_2022_957407
crossref_primary_10_1016_j_virusres_2022_198786
crossref_primary_10_3389_fimmu_2023_1223730
crossref_primary_10_1166_jbn_2024_3933
crossref_primary_10_3390_bios14100465
crossref_primary_10_3390_ph15060741
crossref_primary_10_1016_j_isci_2024_109716
crossref_primary_10_1093_ve_veac064
crossref_primary_10_3390_v15112153
crossref_primary_10_1038_s41467_023_43189_z
crossref_primary_10_1007_s00604_023_05671_9
crossref_primary_10_3390_v17030362
crossref_primary_10_1016_j_biopha_2022_113522
crossref_primary_10_1016_j_ygeno_2022_110466
crossref_primary_10_3390_vetsci9070363
crossref_primary_10_1016_j_ijsu_2022_106656
crossref_primary_10_1016_j_jmoldx_2022_04_003
crossref_primary_10_1126_sciimmunol_abp9312
crossref_primary_10_1007_s10238_023_01264_1
crossref_primary_10_3390_v14091989
crossref_primary_10_3390_v14010055
crossref_primary_10_1080_07391102_2023_2260484
crossref_primary_10_3390_v16020177
crossref_primary_10_1007_s10528_024_10962_8
crossref_primary_10_1097_MD_0000000000036417
crossref_primary_10_1093_cid_ciac498
crossref_primary_10_3390_microorganisms11030580
crossref_primary_10_1016_j_eehl_2025_100135
crossref_primary_10_1038_s41576_023_00610_z
crossref_primary_10_3390_atmos12121640
crossref_primary_10_3389_fnano_2022_1060756
crossref_primary_10_3390_v14020399
crossref_primary_10_1016_j_mran_2022_100227
crossref_primary_10_2215_CJN_10300721
crossref_primary_10_3389_fimmu_2022_898520
crossref_primary_10_1016_j_cgh_2024_07_028
crossref_primary_10_3390_v14091878
crossref_primary_10_3390_ijms231710091
crossref_primary_10_3390_v14010104
crossref_primary_10_3390_ph16040608
crossref_primary_10_1016_j_phytol_2025_102991
crossref_primary_10_1016_j_artmed_2023_102722
crossref_primary_10_3390_cryst12070990
crossref_primary_10_1016_j_talanta_2023_124937
crossref_primary_10_1016_j_biopha_2022_113810
crossref_primary_10_1038_s41598_024_75658_w
crossref_primary_10_1016_j_drudis_2022_103468
crossref_primary_10_1093_infdis_jiad496
crossref_primary_10_1155_2022_7336309
crossref_primary_10_1515_cclm_2021_1287
crossref_primary_10_1002_anse_202300001
crossref_primary_10_1016_j_bioorg_2022_106264
crossref_primary_10_1093_qjmed_hcac014
crossref_primary_10_1038_s41586_021_04342_0
crossref_primary_10_1186_s12879_022_07555_4
crossref_primary_10_1016_j_compbiomed_2022_105574
crossref_primary_10_2147_IDR_S360103
crossref_primary_10_1002_jmv_28032
crossref_primary_10_3389_fimmu_2022_993754
crossref_primary_10_1038_s41421_024_00733_5
crossref_primary_10_18621_eurj_1211808
crossref_primary_10_1111_odi_14319
crossref_primary_10_1038_s12276_024_01197_z
crossref_primary_10_3390_molecules27010295
crossref_primary_10_1371_journal_pone_0265489
crossref_primary_10_3389_fpubh_2022_966756
crossref_primary_10_1038_s41541_022_00481_1
crossref_primary_10_3390_ijms231911497
crossref_primary_10_1093_ve_veac034
crossref_primary_10_1002_smll_202200836
crossref_primary_10_3390_microorganisms10020306
crossref_primary_10_1016_j_ijid_2021_11_040
crossref_primary_10_1039_D2RA00277A
crossref_primary_10_3390_vaccines10101728
crossref_primary_10_1093_ve_veac024
crossref_primary_10_1016_j_jiph_2022_11_028
crossref_primary_10_3390_bios12121129
crossref_primary_10_3390_healthcare11182539
crossref_primary_10_3389_fmed_2021_755463
crossref_primary_10_1016_j_jiph_2023_06_004
crossref_primary_10_3389_fmolb_2024_1403635
crossref_primary_10_3390_biom12111680
crossref_primary_10_1016_S1473_3099_21_00688_5
crossref_primary_10_1016_j_ebiom_2023_104700
crossref_primary_10_3390_microorganisms11020529
crossref_primary_10_3389_fpubh_2022_990832
crossref_primary_10_3390_ijms23116189
crossref_primary_10_1016_j_antiviral_2022_105507
crossref_primary_10_1038_s41598_021_02489_4
crossref_primary_10_1038_s41598_022_22552_y
crossref_primary_10_1128_jvi_02059_21
crossref_primary_10_1186_s12985_024_02506_8
crossref_primary_10_1016_j_omtn_2023_01_008
crossref_primary_10_1016_j_ccm_2024_10_015
crossref_primary_10_1016_j_scitotenv_2023_166300
crossref_primary_10_1002_minf_202300055
crossref_primary_10_1038_s41586_021_04387_1
crossref_primary_10_3390_ph18060861
crossref_primary_10_1016_j_micpath_2022_105400
crossref_primary_10_1371_journal_pone_0289990
crossref_primary_10_1186_s12916_022_02312_5
crossref_primary_10_3390_ijms24076369
crossref_primary_10_3390_diagnostics12112609
crossref_primary_10_1016_j_heliyon_2023_e15083
crossref_primary_10_1016_j_snb_2023_133382
crossref_primary_10_1038_s41598_023_48594_4
crossref_primary_10_1016_j_cell_2023_06_001
crossref_primary_10_1002_jmv_28615
crossref_primary_10_3390_v14040752
crossref_primary_10_19127_bshealthscience_1296114
crossref_primary_10_1128_jcm_00342_22
crossref_primary_10_1016_j_ijid_2022_06_032
crossref_primary_10_1016_j_jiph_2022_10_007
crossref_primary_10_1007_s13206_024_00174_y
crossref_primary_10_1080_22221751_2022_2098060
crossref_primary_10_1002_admt_202200965
crossref_primary_10_1016_j_bios_2024_116375
crossref_primary_10_1016_j_ejps_2023_106564
crossref_primary_10_1016_j_ebiom_2023_104960
crossref_primary_10_1007_s11695_023_06506_5
crossref_primary_10_1016_j_ijid_2025_107912
crossref_primary_10_3390_ani13193094
crossref_primary_10_1080_21645515_2025_2485840
crossref_primary_10_1038_s41598_024_57982_3
crossref_primary_10_3390_v14071374
crossref_primary_10_3390_environments11120279
crossref_primary_10_1016_j_biopha_2022_112802
crossref_primary_10_1002_ptr_7442
crossref_primary_10_1016_j_bjid_2024_103735
crossref_primary_10_3390_v15041017
crossref_primary_10_1016_j_heliyon_2024_e27452
crossref_primary_10_1038_s41598_024_76013_9
crossref_primary_10_1016_j_sasc_2025_200195
crossref_primary_10_3390_diagnostics11112092
crossref_primary_10_1002_jmv_28996
crossref_primary_10_1038_s41587_022_01604_8
crossref_primary_10_3390_ijerph19148377
crossref_primary_10_1002_jmv_28990
crossref_primary_10_1007_s00705_022_05385_y
crossref_primary_10_1371_journal_pone_0265680
crossref_primary_10_3389_fmed_2022_795889
crossref_primary_10_1002_slct_202304776
crossref_primary_10_1002_jmv_70377
crossref_primary_10_3390_v14061318
crossref_primary_10_1007_s42977_023_00159_2
crossref_primary_10_1128_spectrum_01736_22
crossref_primary_10_3389_fcimb_2022_933100
crossref_primary_10_3390_vaccines12111236
crossref_primary_10_1371_journal_pone_0274043
crossref_primary_10_1080_07391102_2022_2095305
crossref_primary_10_1016_j_virol_2024_110319
crossref_primary_10_5993_AJHB_47_6_20
crossref_primary_10_1016_j_advnut_2023_06_003
crossref_primary_10_1016_j_csbj_2022_05_053
crossref_primary_10_3390_v15091862
crossref_primary_10_1016_j_diabres_2022_109984
crossref_primary_10_1007_s00705_022_05395_w
crossref_primary_10_3390_ijms23052870
crossref_primary_10_1186_s43162_022_00121_z
crossref_primary_10_1016_j_nmni_2022_100967
crossref_primary_10_1038_s41598_024_77405_7
crossref_primary_10_1016_j_tibtech_2022_07_012
crossref_primary_10_1097_MCP_0000000000000868
crossref_primary_10_3390_pathogens11010045
crossref_primary_10_1007_s11356_022_19979_1
crossref_primary_10_1371_journal_pone_0279956
crossref_primary_10_3389_fimmu_2024_1363572
crossref_primary_10_1177_13596535221082773
crossref_primary_10_1016_j_virs_2025_05_008
crossref_primary_10_3389_fimmu_2022_977064
crossref_primary_10_1016_j_jmii_2023_03_008
crossref_primary_10_1016_j_compbiomed_2022_106129
crossref_primary_10_3390_vaccines10091538
crossref_primary_10_3389_fimmu_2023_1130398
crossref_primary_10_1128_jcm_02283_21
crossref_primary_10_3389_fcimb_2022_919346
crossref_primary_10_1134_S1070363222060123
crossref_primary_10_3389_fimmu_2022_879792
crossref_primary_10_1038_s41421_024_00734_4
crossref_primary_10_1038_s41598_023_37866_8
crossref_primary_10_3390_vaccines10050703
crossref_primary_10_3389_fimmu_2022_869809
crossref_primary_10_1089_vim_2022_0121
crossref_primary_10_1089_vim_2022_0122
crossref_primary_10_3389_fmed_2022_825245
crossref_primary_10_1080_07391102_2023_2252069
crossref_primary_10_2147_NDT_S491046
crossref_primary_10_3389_fmed_2022_849217
crossref_primary_10_1007_s00284_023_03366_1
crossref_primary_10_3390_v14071349
crossref_primary_10_1093_bfgp_elad051
crossref_primary_10_1016_j_heliyon_2024_e30208
crossref_primary_10_1186_s12967_023_04553_1
crossref_primary_10_1038_s41467_022_29135_5
crossref_primary_10_1007_s40620_022_01245_9
crossref_primary_10_1016_j_cell_2021_12_032
crossref_primary_10_1016_j_cellsig_2023_110798
crossref_primary_10_3390_v14122734
crossref_primary_10_1002_emp2_13115
crossref_primary_10_1021_jacs_2c03420
crossref_primary_10_1186_s12985_024_02607_4
crossref_primary_10_1002_mco2_143
crossref_primary_10_2217_fvl_2021_0277
crossref_primary_10_3389_fimmu_2022_863039
crossref_primary_10_1016_j_ijantimicag_2022_106606
crossref_primary_10_1007_s13721_024_00462_5
crossref_primary_10_1016_j_csbj_2022_04_022
crossref_primary_10_1038_s41598_022_21321_1
crossref_primary_10_1021_acsestwater_5c00142
crossref_primary_10_3389_fimmu_2022_908010
crossref_primary_10_1016_j_antiviral_2022_105445
crossref_primary_10_1093_ve_veae020
crossref_primary_10_1016_j_vaccine_2022_12_019
crossref_primary_10_3201_eid2907_230198
crossref_primary_10_1016_j_vaccine_2022_06_026
crossref_primary_10_1002_jmv_28437
crossref_primary_10_1038_s41598_022_19567_w
crossref_primary_10_1371_journal_pone_0325858
crossref_primary_10_1017_S0950268824000360
crossref_primary_10_1093_eurpub_ckad005
crossref_primary_10_3390_vaccines11010058
crossref_primary_10_1016_j_meegid_2022_105360
crossref_primary_10_3390_life13020304
crossref_primary_10_1016_j_jbc_2023_104960
crossref_primary_10_2144_fsoa_2023_0112
crossref_primary_10_1007_s13205_024_04184_3
crossref_primary_10_3389_fbioe_2022_1052436
crossref_primary_10_3390_v15030692
crossref_primary_10_1002_smtd_202401611
crossref_primary_10_1038_s41598_022_16914_9
crossref_primary_10_1016_j_prp_2022_154128
crossref_primary_10_3390_v14122714
crossref_primary_10_1016_j_ejor_2023_08_011
crossref_primary_10_1089_jamp_2022_0043
crossref_primary_10_1038_s41586_022_04661_w
crossref_primary_10_1093_ofid_ofac006
crossref_primary_10_1039_D2SC04775F
crossref_primary_10_3389_fmolb_2023_1288686
crossref_primary_10_1002_jmv_28442
crossref_primary_10_1016_j_jconrel_2025_01_044
crossref_primary_10_1038_s41586_022_04464_z
crossref_primary_10_1186_s12865_024_00625_z
crossref_primary_10_3389_fphar_2022_996005
crossref_primary_10_1136_bmjopen_2021_058074
crossref_primary_10_1177_13596535231208831
crossref_primary_10_3390_vaccines11030655
crossref_primary_10_3389_fmicb_2023_1136386
crossref_primary_10_3390_jpm13020279
crossref_primary_10_3389_fimmu_2022_966098
crossref_primary_10_3390_cells12020262
crossref_primary_10_3390_v14122728
crossref_primary_10_1038_s41598_023_30052_w
crossref_primary_10_3389_fphar_2022_1036208
crossref_primary_10_1007_s10096_023_04590_0
crossref_primary_10_3390_vaccines10060864
crossref_primary_10_1080_2162402X_2022_2120275
crossref_primary_10_1186_s12863_023_01133_6
crossref_primary_10_3390_ijms25158032
crossref_primary_10_7189_jogh_13_06027
crossref_primary_10_3390_biom13101467
crossref_primary_10_3389_fmed_2022_816314
crossref_primary_10_1128_spectrum_02468_22
crossref_primary_10_1111_irv_13083
crossref_primary_10_1186_s40580_023_00410_5
crossref_primary_10_3390_molecules28010208
crossref_primary_10_1128_spectrum_04632_22
crossref_primary_10_3389_bjbs_2022_10426
crossref_primary_10_1007_s13205_022_03430_w
crossref_primary_10_1016_j_diagmicrobio_2022_115789
crossref_primary_10_1148_radiol_220676
crossref_primary_10_1016_j_antiviral_2024_105879
crossref_primary_10_1126_science_abo7896
crossref_primary_10_1016_j_virol_2022_05_001
crossref_primary_10_3389_fimmu_2024_1377126
crossref_primary_10_1016_j_antiviral_2024_105992
crossref_primary_10_3389_fimmu_2023_1271353
crossref_primary_10_1038_s41467_024_47599_5
crossref_primary_10_1186_s43094_023_00510_3
crossref_primary_10_3390_v14122775
crossref_primary_10_3390_math13182908
crossref_primary_10_1182_bloodadvances_2023010371
crossref_primary_10_1007_s43538_023_00176_8
crossref_primary_10_1093_bib_bbad140
crossref_primary_10_1016_j_virusres_2023_199131
crossref_primary_10_1038_s41467_024_55024_0
crossref_primary_10_1016_j_vaccine_2025_126988
crossref_primary_10_3390_biom12091233
crossref_primary_10_1016_j_buildenv_2025_113333
crossref_primary_10_3389_fphar_2022_840727
crossref_primary_10_1148_radiol_222600
crossref_primary_10_1016_j_ymthe_2023_03_018
crossref_primary_10_1093_ofid_ofad147
crossref_primary_10_1093_pnasnexus_pgac049
crossref_primary_10_1002_jmv_27936
crossref_primary_10_1038_s41467_024_45180_8
crossref_primary_10_3390_v14092017
crossref_primary_10_5812_jjm_138090
crossref_primary_10_1097_MPG_0000000000003416
crossref_primary_10_1016_j_compbiomed_2023_107576
crossref_primary_10_1002_cti2_70019
crossref_primary_10_1111_imm_13764
crossref_primary_10_3390_v14030549
crossref_primary_10_1093_cid_ciac712
crossref_primary_10_3389_fimmu_2022_950666
crossref_primary_10_1016_j_snb_2023_133433
crossref_primary_10_1038_s41423_022_00924_8
crossref_primary_10_1111_febs_70163
crossref_primary_10_1016_j_isci_2025_112974
crossref_primary_10_1371_journal_ppat_1011131
crossref_primary_10_1007_s12010_023_04466_1
crossref_primary_10_3390_v15051129
crossref_primary_10_1016_j_cej_2024_148756
crossref_primary_10_3390_v16081192
crossref_primary_10_1371_journal_pone_0284483
crossref_primary_10_3389_fimmu_2022_833355
crossref_primary_10_3390_microorganisms11020397
crossref_primary_10_3390_v15122401
crossref_primary_10_1038_s41423_023_01104_y
crossref_primary_10_1016_j_antiviral_2024_105970
crossref_primary_10_1016_j_jgeb_2023_100347
crossref_primary_10_3389_fmolb_2022_976490
crossref_primary_10_1186_s11658_022_00352_6
crossref_primary_10_1016_j_clinbiochem_2022_08_004
crossref_primary_10_3389_fimmu_2024_1357731
crossref_primary_10_3389_fmicb_2022_934993
crossref_primary_10_3390_pathogens14080758
crossref_primary_10_1002_jcb_30243
crossref_primary_10_4103_aja202250
crossref_primary_10_1016_j_heliyon_2024_e36568
crossref_primary_10_1038_s41421_022_00449_4
crossref_primary_10_3390_biomedicines12040821
crossref_primary_10_1016_j_virusres_2024_199319
crossref_primary_10_1007_s10544_023_00649_z
crossref_primary_10_1126_sciimmunol_abo3425
crossref_primary_10_3390_v14092039
crossref_primary_10_1016_j_kint_2022_01_022
crossref_primary_10_3389_fmed_2022_995960
crossref_primary_10_1007_s11030_022_10440_6
crossref_primary_10_1038_s41598_023_40008_9
crossref_primary_10_17816_MAJ108725
crossref_primary_10_3389_fimmu_2023_1204543
crossref_primary_10_3390_covid5070100
crossref_primary_10_1016_j_virs_2022_09_007
crossref_primary_10_3389_fmolb_2024_1451280
crossref_primary_10_1016_j_watres_2024_121338
crossref_primary_10_1002_hsr2_70166
crossref_primary_10_3390_v14112416
crossref_primary_10_1016_j_annepidem_2022_08_051
crossref_primary_10_1016_j_compbiomed_2022_105903
crossref_primary_10_1038_s41564_022_01092_1
crossref_primary_10_3390_vaccines10060909
crossref_primary_10_1016_j_immuno_2025_100055
crossref_primary_10_3390_vaccines11030598
crossref_primary_10_5812_jjm_156608
crossref_primary_10_1002_jmv_27611
crossref_primary_10_1038_s41422_022_00700_3
crossref_primary_10_1038_s41422_022_00746_3
crossref_primary_10_7759_cureus_44755
crossref_primary_10_1186_s12879_023_08771_2
crossref_primary_10_3389_fimmu_2022_1016108
crossref_primary_10_1016_j_bj_2024_100766
crossref_primary_10_1002_mco2_666
crossref_primary_10_1186_s12951_023_01981_5
crossref_primary_10_3389_fmicb_2024_1459644
crossref_primary_10_1021_acs_jpcb_5c01718
crossref_primary_10_1016_j_jprot_2025_105397
crossref_primary_10_3389_fcimb_2022_894613
crossref_primary_10_1055_a_1956_9641
crossref_primary_10_1002_jmv_27735
crossref_primary_10_1038_s41392_023_01420_9
crossref_primary_10_1128_msphere_00659_22
crossref_primary_10_1038_s41467_022_30219_5
crossref_primary_10_1096_fj_202202099RR
crossref_primary_10_2174_1574893618666230809121509
crossref_primary_10_3390_biom13091421
crossref_primary_10_3390_ijms24032517
crossref_primary_10_1089_cmb_2022_0469
crossref_primary_10_1016_j_compbiomed_2023_107258
crossref_primary_10_3390_vaccines12080927
crossref_primary_10_3389_fmicb_2022_1022006
crossref_primary_10_3389_fmicb_2022_901848
crossref_primary_10_1016_j_virol_2023_06_005
crossref_primary_10_1016_j_pediatrneurol_2022_12_003
crossref_primary_10_1007_s11262_023_01984_2
crossref_primary_10_1038_s41598_024_70697_9
crossref_primary_10_1051_e3sconf_202455305047
crossref_primary_10_3390_vaccines10122063
crossref_primary_10_1016_j_biopha_2024_116900
crossref_primary_10_1093_pnasnexus_pgae558
crossref_primary_10_3390_ijerph192012997
crossref_primary_10_3390_bios13080784
crossref_primary_10_12688_f1000research_143633_3
crossref_primary_10_12688_f1000research_143633_2
crossref_primary_10_3390_v14040695
crossref_primary_10_12688_f1000research_143633_1
crossref_primary_10_3389_fmed_2022_888631
crossref_primary_10_1080_24694452_2024_2346728
crossref_primary_10_3390_life12020194
crossref_primary_10_1016_j_vaccine_2022_10_017
crossref_primary_10_1146_annurev_immunol_083122_043054
crossref_primary_10_1128_jvi_01301_22
crossref_primary_10_1371_journal_pone_0311993
crossref_primary_10_1109_TCBB_2024_3368046
crossref_primary_10_3390_ijms24109072
crossref_primary_10_1038_s41579_023_00878_2
crossref_primary_10_1002_anse_202200012
crossref_primary_10_1084_jem_20220367
crossref_primary_10_1371_journal_pone_0270024
crossref_primary_10_3390_v16050697
crossref_primary_10_1016_j_watres_2024_121463
crossref_primary_10_3389_fpubh_2023_1273443
crossref_primary_10_1002_jmv_27517
crossref_primary_10_1002_jmv_27759
crossref_primary_10_3389_fimmu_2022_871874
crossref_primary_10_3389_fimmu_2022_906687
crossref_primary_10_3389_fmats_2022_1039247
crossref_primary_10_1016_j_vaccine_2023_07_065
crossref_primary_10_1371_journal_pone_0281281
crossref_primary_10_3390_v15061355
crossref_primary_10_1080_0886022X_2023_2266227
crossref_primary_10_3389_fmed_2022_896352
crossref_primary_10_1002_jmv_27524
crossref_primary_10_1038_s42256_024_00966_9
crossref_primary_10_1371_journal_pone_0281399
crossref_primary_10_1038_s41598_025_92104_7
crossref_primary_10_1093_abt_tbac015
crossref_primary_10_1038_s41392_022_00920_4
Cites_doi 10.1101/2021.06.02.21258076
10.1101/2021.06.17.21259103
10.1101/2021.06.23.21259405
10.1128/JCM.00527-21
10.1093/infdis/jiab368
10.1101/2021.02.24.432576
10.1101/2021.02.12.21251658
10.1101/2021.06.28.21259673
10.1101/2021.05.27.21257096
10.1101/2021.03.09.434607
10.1101/2021.03.20.436257
10.1101/2021.01.12.20249080
10.1101/2021.06.22.449355
10.1038/s41586-021-03738-2
10.1101/2020.04.10.029454
10.21203/rs.3.rs-492659/v1
10.1101/2021.04.13.439482
10.1126/science.abj4176
10.1101/2021.06.05.21258365
10.1056/NEJMoa2107659
10.1128/mBio.01386-21
10.1101/2021.06.06.446826
10.1101/2021.06.21.21259241
10.1093/cid/ciab308
10.1101/2021.03.02.433156
10.1101/2021.03.03.21252812
10.1101/2021.05.19.21257469
10.1101/2021.02.23.21252268
10.1038/s41586-021-03739-1
10.1101/2021.06.18.21258689
10.1101/2021.03.06.434059
10.1101/2021.04.09.21255206
10.1101/2021.02.23.21252259
10.1101/2021.06.28.21259576
10.1093/cid/ciab646
10.1101/2021.03.08.434499
10.1136/annrheumdis-2021-220647
10.1101/2021.06.20.21259195
10.1101/2021.05.19.21257472
10.1016/S2666-5247(21)00129-4
10.1093/jtm/taab104
10.1093/cid/ciab283
10.1016/S2666-5247(21)00157-9
10.1101/2021.06.21.21259010
10.1101/2021.06.17.448820
10.1038/s41586-020-2180-5
10.1038/s41591-021-01413-7
10.1016/j.xcrm.2021.100204
10.1371/journal.pbio.3001115
10.1016/j.isci.2021.102311
10.1056/NEJMoa2101544
10.1016/j.chom.2020.11.007
10.1038/nrg2323
10.1038/s41467-020-19818-2
10.1038/s41467-021-21336-8
10.1016/j.chom.2021.02.003
10.1016/j.cell.2021.06.002
10.1056/NEJMc2107799
10.1002/jmv.26545
10.1038/s41586-020-2814-7
10.1016/j.chom.2020.11.012
10.1128/mSphere.00408-20
10.1016/j.chom.2021.03.002
10.1093/molbev/msaa314
10.1038/s41596-021-00491-8
10.1016/j.jmb.2020.07.009
10.1056/NEJMoa2027906
10.1038/s41591-021-01318-5
10.2807/1560-7917.ES.2021.26.11.2100256
10.1016/j.celrep.2021.109292
10.1016/j.chom.2021.06.009
10.1016/S0140-6736(21)01358-1
10.1016/j.cell.2021.01.037
10.1038/s41591-021-01294-w
10.1038/s41586-020-2294-9
10.1126/science.abc4776
10.1016/j.cell.2021.03.055
10.1126/science.abc6284
10.1126/science.abg6105
10.1038/s41579-020-00468-6
10.1016/j.cell.2020.12.015
10.1016/j.cell.2021.02.042
10.1016/j.chom.2021.05.010
10.1016/j.cell.2020.09.032
10.1001/jama.2021.0202
10.1016/j.bbrc.2020.10.012
10.1038/s41586-021-03324-6
10.1016/S2666-5247(21)00068-9
10.1002/jmv.27062
10.1126/science.abb2507
10.1016/j.vaccine.2021.05.063
10.1126/science.abe8499
10.1038/s41587-020-0631-z
10.1016/S2468-2667(21)00055-4
10.2807/1560-7917.ES.2020.26.1.2002106
10.1073/pnas.0508200103
10.1016/j.cell.2020.07.012
10.1001/jama.2021.4388
10.1056/NEJMc2106083
10.1016/S0140-6736(20)32661-1
10.1016/j.xcrm.2021.100313
10.1016/j.celrep.2021.108890
10.1016/j.cell.2021.03.028
10.1016/S2666-5247(20)30054-9
10.1038/s41586-021-03696-9
10.1038/s41586-020-03041-6
10.1016/j.xcrm.2021.100255
10.1016/j.chom.2021.03.005
10.3390/vaccines9010013
10.1038/s41591-021-01285-x
10.1016/j.chom.2021.06.006
10.1016/j.chom.2021.04.007
10.1038/s41591-021-01377-8
10.1016/j.immuni.2021.06.003
10.1038/s41586-020-2349-y
10.1016/j.cell.2021.06.020
10.1016/j.meegid.2021.104941
10.1084/jem.20201181
10.1073/pnas.2008281117
10.1126/sciimmunol.abg6461
10.1016/j.celrep.2020.108630
10.1056/NEJMoa2102214
10.3390/v13030392
10.1016/j.cell.2021.04.025
10.1056/NEJMc2103740
10.7554/eLife.64509
10.1016/j.cell.2020.06.043
10.1038/s41586-021-03470-x
10.1136/bmj.n579
10.1038/s41586-021-03412-7
10.1016/j.jbc.2021.100536
10.1016/j.cell.2021.02.037
10.1038/s41586-021-03398-2
10.1038/s41591-020-1083-1
10.1128/JVI.01394-09
10.1016/j.jmb.2021.167058
10.1056/NEJMc2104192
10.1016/j.cell.2020.09.037
10.1073/pnas.2007295117
10.1016/j.chom.2021.06.001
10.3390/v13071211
10.1056/NEJMoa2022483
10.1038/s41577-021-00522-1
10.1016/j.xcrm.2021.100355
10.1126/science.abf9302
10.1038/s41586-021-03693-y
10.1056/NEJMc2102179
10.1038/s41586-020-2895-3
10.1056/NEJMoa2035389
10.1126/science.abc6952
10.1016/j.cell.2021.02.033
10.1128/mBio.00696-21
10.1038/s41564-020-0771-4
10.1056/NEJMoa2035002
10.1016/S0140-6736(21)00628-0
10.1126/science.abd2161
10.1038/s41591-021-01386-7
10.1016/j.cub.2020.06.031
10.1126/science.abc7424
10.1038/s41586-021-03777-9
10.1016/S0140-6736(21)00947-8
10.3390/v13010134
10.1038/s41564-020-0770-5
10.1038/s41586-020-2571-7
10.1016/j.chom.2021.03.009
10.1016/j.immuni.2020.07.020
10.21203/rs.3.rs-524959/v2
10.1056/NEJMc2103022
10.1016/j.cell.2021.02.032
10.1016/j.chom.2020.07.018
10.1056/NEJMc2104974
10.1016/j.cell.2021.05.005
10.1038/s41586-021-03402-9
10.1126/science.abe9728
10.1056/NEJMsr2105280
10.1126/sciimmunol.abf7550
10.1056/NEJMoa2103055
10.1016/j.cell.2021.01.007
10.1056/NEJMoa2108891
10.1038/s41586-021-03426-1
10.1371/journal.ppat.1009453
10.1126/science.abf4830
10.1126/science.abh2644
10.1056/NEJMoa2034577
10.1038/s41586-020-2852-1
10.1038/s41586-020-2772-0
10.7554/eLife.69317
10.1016/j.chom.2021.02.020
10.1126/scitranslmed.abi9915
10.1038/s41586-020-2179-y
10.3390/v12050513
10.1038/s41586-021-03471-w
10.1016/j.cell.2020.10.049
10.1038/s41577-020-0321-6
10.1016/j.cell.2021.02.026
10.1016/j.immuni.2021.07.008
10.1016/S0140-6736(21)01290-3
10.1056/NEJMc2100362
10.1056/NEJMc2031364
10.1038/s41586-021-03291-y
10.1038/s41586-021-03361-1
10.1126/science.abi7994
10.1038/s41586-021-03237-4
10.1084/jem.20201993
10.1093/infdis/jiab082
10.1016/j.bbrc.2020.10.060
10.1016/j.chom.2021.01.014
10.2807/1560-7917.ES.2021.26.10.2100130
10.1016/j.celrep.2020.108234
10.1016/j.cell.2021.03.036
10.7554/eLife.61312
10.1016/j.lanepe.2021.100252
10.1371/journal.ppat.1009226
10.1126/science.abe5901
10.1371/journal.ppat.1000896
10.1016/j.bbrc.2020.11.026
10.1126/science.abf6950
10.1038/s41591-021-01270-4
10.1038/s41423-020-0514-8
10.1126/science.abg3055
10.1016/j.celrep.2021.109415
10.1038/s41586-020-2598-9
10.1038/s41541-020-00265-5
10.1038/s41591-021-01255-3
10.1038/s41579-021-00573-0
10.1038/s41586-021-03677-y
10.1016/j.cell.2021.03.013
10.1016/j.cell.2020.08.012
10.1016/j.cell.2020.02.058
10.1126/science.abd0831
10.1016/S0140-6736(21)00183-5
ContentType Journal Article
Copyright Springer Nature Limited 2021
2021. Springer Nature Limited.
COPYRIGHT 2021 Nature Publishing Group
Springer Nature Limited 2021.
Copyright_xml – notice: Springer Nature Limited 2021
– notice: 2021. Springer Nature Limited.
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Springer Nature Limited 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/s41576-021-00408-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE
MEDLINE - Academic

ProQuest Central Student

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1471-0064
EndPage 773
ExternalDocumentID PMC8447121
A682673357
34535792
10_1038_s41576_021_00408_x
Genre Journal Article
Review
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R24 AI136618
GroupedDBID ---
-DZ
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFFNX
AFKRA
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
IHW
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PHGZT
PHGZM
7QP
7QR
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c672t-d7b57402a697e082baaf54278d19c69bd15cd535da62de9608c534b7f0b87c7c3
IEDL.DBID M7P
ISICitedReferencesCount 765
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696747600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0056
1471-0064
IngestDate Tue Nov 04 01:55:20 EST 2025
Thu Sep 04 20:28:12 EDT 2025
Mon Oct 06 18:40:02 EDT 2025
Sat Nov 29 13:00:33 EST 2025
Sat Nov 29 10:18:24 EST 2025
Wed Nov 26 10:11:42 EST 2025
Thu May 22 21:21:56 EDT 2025
Thu Apr 03 07:09:03 EDT 2025
Tue Nov 18 20:07:19 EST 2025
Sat Nov 29 02:34:59 EST 2025
Fri Feb 21 02:36:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2021. Springer Nature Limited.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c672t-d7b57402a697e082baaf54278d19c69bd15cd535da62de9608c534b7f0b87c7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2513-2643
0000-0003-4985-8377
0000-0002-1706-9288
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8447121
PMID 34535792
PQID 2597612825
PQPubID 44267
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8447121
proquest_miscellaneous_2574406164
proquest_journals_2597612825
gale_infotracmisc_A682673357
gale_infotracacademiconefile_A682673357
gale_incontextgauss_ISR_A682673357
gale_healthsolutions_A682673357
pubmed_primary_34535792
crossref_primary_10_1038_s41576_021_00408_x
crossref_citationtrail_10_1038_s41576_021_00408_x
springer_journals_10_1038_s41576_021_00408_x
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Genetics
PublicationTitleAbbrev Nat Rev Genet
PublicationTitleAlternate Nat Rev Genet
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Braun (CR87) 2020; 587
Korber (CR8) 2020; 182
Jackson (CR6) 2021
Wu (CR151) 2021; 384
Day, Gandon, Lion, Otto (CR18) 2020; 30
Chen (CR117) 2021; 27
Rappazzo (CR68) 2021; 371
Wang (CR121) 2021; 593
Duffy, Shackelton, Holmes (CR3) 2008; 9
Wec (CR49) 2020; 369
McMahan (CR53) 2020; 590
Chen, Wang, Wang, Wei (CR168) 2020; 432
Gottlieb (CR64) 2021; 325
Plante (CR189) 2021; 29
Corti, Purcell, Snell, Veesler (CR67) 2021; 184
Wu (CR246) 2021
Boni (CR7) 2020; 5
Hoffmann (CR217) 2021; 184
Collier (CR159) 2021; 593
Copin (CR109) 2021; 184
Focosi, Tuccori, Baj, Maggi (CR98) 2021; 13
Motozono (CR92) 2021; 29
Zhang (CR166) 2021
Harvey (CR52) 2021; 19
Grifoni (CR89) 2021; 29
Yurkovetskiy (CR138) 2020; 183
Supasa (CR102) 2021; 184
Ozer (CR236) 2021
Deng (CR123) 2021; 184
Xie (CR115) 2021; 27
Earle (CR82) 2021; 39
Yu (CR85) 2020; 369
Chandrashekar (CR54) 2020; 369
Gao (CR93) 2021; 24
Tegally (CR16) 2021; 592
Khoury (CR59) 2021; 27
Voysey (CR248) 2020; 397
Candido (CR14) 2020; 369
Finkelstein (CR72) 2021; 13
Shiakolas (CR76) 2021; 2
Faulkner (CR99) 2021; 10
Tarke (CR91) 2021; 20
Ferrareze (CR157) 2021; 93
Thorne (CR185) 2021
Kemp (CR113) 2021; 592
MacLean (CR26) 2021; 19
Wang (CR228) 2021; 29
Riepler (CR125) 2021; 9
Wang (CR167) 2021; 54
Xia (CR188) 2020; 33
Abe (CR132) 2020; 5
Johnson (CR182) 2021; 591
Sahin (CR58) 2020; 586
Zhou (CR235) 2021
Jangra (CR161) 2021; 2
Tarke (CR94) 2021; 2
Plante (CR135) 2020; 592
Liu (CR179) 2020; 584
Thomson (CR169) 2021; 184
Wibmer (CR218) 2021; 27
Walsh (CR57) 2020; 383
Watanabe (CR46) 2020; 11
Sheikh, McMenamin, Taylor, Robertson (CR233) 2021; 397
Wang (CR206) 2021; 384
Kistler, Bedford (CR12) 2021; 10
Nadesalingam (CR244) 2021
Simmonds (CR9) 2020; 5
Muecksch (CR174) 2021; 54
Saito (CR183) 2021
CR111
Mavian (CR21) 2020; 117
CR110
Baum (CR105) 2020; 369
Challen (CR35) 2021
Shinde (CR216) 2021; 384
Choi (CR112) 2020; 383
Liu (CR118) 2021; 596
Zhang (CR134) 2021
Schmidt (CR107) 2020; 217
Muik (CR152) 2021; 371
Pinto (CR69) 2020; 583
Borges (CR201) 2021; 26
Dearlove (CR24) 2020; 117
Liu (CR127) 2021
Li (CR220) 2021; 184
Rees-Spear (CR149) 2021; 34
Kustin (CR226) 2021; 27
Hoffmann (CR234) 2021; 36
Gupta (CR66) 2021
Acevedo (CR238) 2021
Eguia (CR13) 2021; 17
Wang (CR153) 2021; 592
Hodcroft (CR180) 2021
Carvalho, Krammer, Iwasaki (CR45) 2021; 21
Winkler (CR79) 2021; 184
Dhar (CR34) 2021
Madhi (CR224) 2021; 384
CR215
Planas (CR204) 2021; 27
Abu-Raddad, Chemaitelly, Butt (CR211) 2021; 385
Minskaia (CR1) 2006; 103
Kidd (CR200) 2021; 223
Moyo-Gwete (CR101) 2021; 384
Wang (CR239) 2021; 595
Pegu (CR230) 2021
CR27
Bolze (CR33) 2021
Furer (CR242) 2021
CR23
Crawford (CR106) 2020; 12
Leung, Shum, Leung, Lam, Wu (CR197) 2021; 26
Graham (CR207) 2021; 6
Shen (CR222) 2021; 384
McCarthy (CR176) 2021; 371
Starr (CR128) 2020; 182
Liu (CR116) 2021; 385
Garcia-Beltran (CR208) 2021; 184
CR227
Souza (CR229) 2021
Walls (CR40) 2020; 181
Gobeil (CR143) 2021; 34
Buss (CR29) 2021; 371
Jackson, Zhang, Farzan, Choe (CR142) 2020; 538
Piccoli (CR47) 2020; 183
Cele (CR124) 2021; 593
Chen (CR97) 2021
CR38
CR37
Cerutti (CR70) 2021; 29
CR36
Wrapp (CR41) 2020; 367
Faria (CR19) 2021; 372
Sette, Crotty (CR84) 2021; 184
Gobeil (CR140) 2021; 373
Liu (CR100) 2021; 184
Zhu (CR146) 2021; 19
Barnes (CR71) 2020; 588
Peng (CR192) 2021
Meng (CR177) 2021; 35
Grabowski, Preibisch, Giziński, Kochańczyk, Lipniacki (CR158) 2021; 13
Liu (CR160) 2021; 29
Weisblum (CR48) 2020; 9
Tada (CR162) 2021; 12
Morel (CR20) 2020; 38
Bayarri-Olmos (CR171) 2021; 296
Chi (CR178) 2020; 369
Salvatore (CR31) 2021
Krause (CR245) 2021; 385
Schäfer (CR78) 2021; 218
Avanzato (CR114) 2020; 183
Munnink (CR170) 2021; 371
Yadav (CR231) 2021
Betton (CR203) 2021
Turner (CR240) 2021
Weissman (CR144) 2021; 29
Edara (CR122) 2021; 385
Garcia-Beltran (CR63) 2021; 184
Dolton (CR95) 2021
Sholukh (CR126) 2021
V’kovski, Kratzel, Steiner, Stalder, Thiel (CR44) 2020; 19
Martin (CR25) 2021
Jiang (CR186) 2020; 17
Golubchik (CR199) 2021
Graham, Baric (CR4) 2010; 84
Wink (CR237) 2021
Cathcart (CR175) 2021
Davies (CR194) 2021; 593
Bernal (CR232) 2021; 385
Case (CR108) 2020; 28
Agerer (CR96) 2021; 6
Volz (CR191) 2021; 593
Tablizo (CR156) 2021
Rambaut (CR22) 2020; 5
Atyeo (CR61) 2020; 53
Zhou (CR137) 2021; 592
Shen (CR148) 2021; 29
Haidar (CR243) 2021
Yuan, Liu, Wu, Wilson (CR73) 2021; 538
McCallum (CR221) 2021; 373
Benton (CR139) 2020; 588
Starr, Greaney, Dingens, Bloom (CR131) 2021; 2
Tan (CR133) 2020; 38
Edara, Hudson, Xie, Ahmed, Suthar (CR205) 2021; 325
Grint (CR202) 2021; 26
Saini (CR90) 2021; 6
Laffeber, de Koning, Kanaar, Lebbink (CR147) 2021; 433
Lan (CR42) 2020; 581
Bange (CR86) 2021; 27
Edridge (CR11) 2020; 26
Ferreira (CR165) 2021
Parker (CR187) 2021
McCallum (CR51) 2021; 184
Baden (CR55) 2021; 384
Giacomo, Mercatelli, Rakhimov, Giorgi (CR173) 2021; 93
Haas (CR210) 2021; 397
Greaney (CR164) 2021; 13
Dejnirattisai (CR103) 2021; 184
Gribble (CR5) 2021; 17
Eckerle (CR2) 2010; 6
Wall (CR209) 2021; 397
Zhou (CR104) 2021; 184
Zhang (CR141) 2020; 11
Brown (CR181) 2021
Pereson (CR17) 2021; 93
Bartsch (CR81) 2021; 12
Polack (CR56) 2020; 383
Poh (CR75) 2020; 11
DiPiazza, Graham, Ruckwardt (CR83) 2020; 538
Heath (CR212) 2021
Starr (CR129) 2021; 371
Hou (CR136) 2020; 370
van Dorp (CR10) 2020; 11
Karim, de Oliveira (CR28) 2021; 384
Emary (CR213) 2021; 397
Dejnirattisai (CR74) 2021; 184
Wang (CR77) 2021; 12
Challen (CR195) 2021; 372
Weinreich (CR62) 2021; 384
Sadoff (CR225) 2021; 384
Davies (CR198) 2021; 372
Edara (CR150) 2021; 325
Annavajhala (CR154) 2021
Li (CR163) 2020; 182
Greaney (CR50) 2021; 29
Goel (CR223) 2021; 6
Röltgen, Boyd (CR247) 2021; 29
Tauzin (CR80) 2021; 29
Zou (CR145) 2021; 6
Ranzani (CR249) 2021
Edara (CR219) 2021; 29
Hodcroft (CR172) 2021; 595
Jackson (CR88) 2020; 383
Sabino (CR30) 2021; 397
Riley (CR32) 2021
Leary (CR190) 2021
(CR39) 2020; 1
CR196
CR193
Xie (CR120) 2021; 16
Iwasaki, Yang (CR60) 2020; 20
Tegally (CR15) 2021; 27
Guo (CR184) 2021
Shang (CR43) 2020; 581
Weinreich (CR65) 2021
Collier (CR241) 2021
Bascos, Mirano-Bascos, Saloma (CR155) 2021
Planas (CR214) 2021; 596
Greaney (CR130) 2021; 29
Thi Nhu Thao (CR119) 2020; 582
A Nadesalingam (408_CR244) 2021
BA Johnson (408_CR182) 2021; 591
MT Finkelstein (408_CR72) 2021; 13
A Iwasaki (408_CR60) 2020; 20
N Faulkner (408_CR99) 2021; 10
MS Graham (408_CR207) 2021; 6
W Dejnirattisai (408_CR103) 2021; 184
RR Goel (408_CR223) 2021; 6
408_CR227
P Wang (408_CR228) 2021; 29
RL Gottlieb (408_CR64) 2021; 325
408_CR110
AJ Greaney (408_CR130) 2021; 29
408_CR111
A Rambaut (408_CR22) 2020; 5
H Zhou (408_CR235) 2021
JZ Zhang (408_CR134) 2021
CM Poh (408_CR75) 2020; 11
T Thi Nhu Thao (408_CR119) 2020; 582
R Wang (408_CR167) 2021; 54
TN Starr (408_CR131) 2021; 2
A Sette (408_CR84) 2021; 184
F Muecksch (408_CR174) 2021; 54
V Furer (408_CR242) 2021
H Xia (408_CR188) 2020; 33
DS Khoury (408_CR59) 2021; 27
X Chi (408_CR178) 2020; 369
D Planas (408_CR214) 2021; 596
WF Garcia-Beltran (408_CR63) 2021; 184
CO Barnes (408_CR71) 2020; 588
B Meng (408_CR177) 2021; 35
408_CR215
R Challen (408_CR195) 2021; 372
B Jackson (408_CR6) 2021
J Gribble (408_CR5) 2021; 17
X Zhu (408_CR146) 2021; 19
K McMahan (408_CR53) 2020; 590
K Guo (408_CR184) 2021
AJ Greaney (408_CR50) 2021; 29
B Morel (408_CR20) 2020; 38
T Kustin (408_CR226) 2021; 27
L Piccoli (408_CR47) 2020; 183
G Dolton (408_CR95) 2021
A Sheikh (408_CR233) 2021; 397
LG Thorne (408_CR185) 2021
SD Giacomo (408_CR173) 2021; 93
A Chandrashekar (408_CR54) 2020; 369
S Duffy (408_CR3) 2008; 9
A Muik (408_CR152) 2021; 371
NG Davies (408_CR198) 2021; 372
S Jangra (408_CR161) 2021; 2
C Motozono (408_CR92) 2021; 29
M McCallum (408_CR51) 2021; 184
SSA Karim (408_CR28) 2021; 384
B Zhou (408_CR137) 2021; 592
Y Liu (408_CR116) 2021; 385
G-L Wang (408_CR206) 2021; 384
EC Sabino (408_CR30) 2021; 397
PAG Ferrareze (408_CR157) 2021; 93
OA MacLean (408_CR26) 2021; 19
PL Wink (408_CR237) 2021
MF Boni (408_CR7) 2020; 5
A Gupta (408_CR66) 2021
T Carvalho (408_CR45) 2021; 21
Q Li (408_CR163) 2020; 182
L Zhang (408_CR141) 2020; 11
EJ Haas (408_CR210) 2021; 397
DA Collier (408_CR159) 2021; 593
D Weinreich (408_CR65) 2021
P Wang (408_CR121) 2021; 593
TN Starr (408_CR129) 2021; 371
PT Heath (408_CR212) 2021
JS Turner (408_CR240) 2021
E Minskaia (408_CR1) 2006; 103
C Mavian (408_CR21) 2020; 117
DJ Grint (408_CR202) 2021; 26
D Focosi (408_CR98) 2021; 13
BBO Munnink (408_CR170) 2021; 371
A Gao (408_CR93) 2021; 24
Y Weisblum (408_CR48) 2020; 9
L Riepler (408_CR125) 2021; 9
J Braun (408_CR87) 2020; 587
Z Liu (408_CR160) 2021; 29
CK Wibmer (408_CR218) 2021; 27
J Liu (408_CR118) 2021; 596
F Grabowski (408_CR158) 2021; 13
KE Kistler (408_CR12) 2021; 10
MK Annavajhala (408_CR154) 2021
SM-C Gobeil (408_CR143) 2021; 34
EB Hodcroft (408_CR180) 2021
M Yuan (408_CR73) 2021; 538
LF Buss (408_CR29) 2021; 371
EE Walsh (408_CR57) 2020; 383
A Tarke (408_CR94) 2021; 2
Q Li (408_CR220) 2021; 184
VV Edara (408_CR219) 2021; 29
AL Cathcart (408_CR175) 2021
S Riley (408_CR32) 2021
S Leary (408_CR190) 2021
AJ Greaney (408_CR164) 2021; 13
AZ Wec (408_CR49) 2020; 369
NG Davies (408_CR194) 2021; 593
DA Collier (408_CR241) 2021
A Baum (408_CR105) 2020; 369
VA Avanzato (408_CR114) 2020; 183
T Golubchik (408_CR199) 2021
MJ Pereson (408_CR17) 2021; 93
C Laffeber (408_CR147) 2021; 433
NAD Bascos (408_CR155) 2021
DJ Benton (408_CR139) 2020; 588
C Wang (408_CR77) 2021; 12
KA Earle (408_CR82) 2021; 39
D Weissman (408_CR144) 2021; 29
The COVID-19 Genomics UK (COG-UK) Consortium. (408_CR39) 2020; 1
D Zhou (408_CR104) 2021; 184
ML Acevedo (408_CR238) 2021
WT Harvey (408_CR52) 2021; 19
KR McCarthy (408_CR176) 2021; 371
PR Krause (408_CR245) 2021; 385
EM Bange (408_CR86) 2021; 27
JB Case (408_CR108) 2020; 28
AM Sholukh (408_CR126) 2021
E Volz (408_CR191) 2021; 593
408_CR196
G Haidar (408_CR243) 2021
A Schäfer (408_CR78) 2021; 218
408_CR193
D Wrapp (408_CR41) 2020; 367
WM Souza (408_CR229) 2021
SM-C Gobeil (408_CR140) 2021; 373
Y Watanabe (408_CR46) 2020; 11
V Borges (408_CR201) 2021; 26
JA Plante (408_CR135) 2020; 592
DS Candido (408_CR14) 2020; 369
K Wu (408_CR246) 2021
J Peng (408_CR192) 2021
X Xie (408_CR120) 2021; 16
DM Weinreich (408_CR62) 2021; 384
J Zou (408_CR145) 2021; 6
T Moyo-Gwete (408_CR101) 2021; 384
M Hoffmann (408_CR234) 2021; 36
J Lan (408_CR42) 2020; 581
EC Wall (408_CR209) 2021; 397
CW Tan (408_CR133) 2020; 38
K Leung (408_CR197) 2021; 26
RL Graham (408_CR4) 2010; 84
B Korber (408_CR8) 2020; 182
P V’kovski (408_CR44) 2020; 19
YJ Hou (408_CR136) 2020; 370
EC Thomson (408_CR169) 2021; 184
A Grifoni (408_CR89) 2021; 29
J Shang (408_CR43) 2020; 581
Z Wang (408_CR239) 2021; 595
A Tauzin (408_CR80) 2021; 29
C Atyeo (408_CR61) 2020; 53
KHD Crawford (408_CR106) 2020; 12
K Wu (408_CR151) 2021; 384
H Tegally (408_CR15) 2021; 27
M Voysey (408_CR248) 2020; 397
LJ Abu-Raddad (408_CR211) 2021; 385
M Salvatore (408_CR31) 2021
B Dearlove (408_CR24) 2020; 117
ES Winkler (408_CR79) 2021; 184
A Tarke (408_CR91) 2021; 20
SA Kemp (408_CR113) 2021; 592
X Shen (408_CR148) 2021; 29
R Bayarri-Olmos (408_CR171) 2021; 296
L Zhang (408_CR166) 2021
VV Edara (408_CR205) 2021; 325
AWD Edridge (408_CR11) 2020; 26
A Bolze (408_CR33) 2021
R Challen (408_CR35) 2021
YC Bartsch (408_CR81) 2021; 12
J Sadoff (408_CR225) 2021; 384
P Simmonds (408_CR9) 2020; 5
NR Faria (408_CR19) 2021; 372
AR Shiakolas (408_CR76) 2021; 2
MS Dhar (408_CR34) 2021
G Cerutti (408_CR70) 2021; 29
B Choi (408_CR112) 2020; 383
KRW Emary (408_CR213) 2021; 397
D Corti (408_CR67) 2021; 184
CG Rappazzo (408_CR68) 2021; 371
L van Dorp (408_CR10) 2020; 11
RE Chen (408_CR117) 2021; 27
P Supasa (408_CR102) 2021; 184
I Ferreira (408_CR165) 2021
M Betton (408_CR203) 2021
H Tegally (408_CR16) 2021; 592
X Shen (408_CR222) 2021; 384
OT Ranzani (408_CR249) 2021
A Saito (408_CR183) 2021
B Agerer (408_CR96) 2021; 6
F Schmidt (408_CR107) 2020; 217
M Hoffmann (408_CR217) 2021; 184
RT Eguia (408_CR13) 2021; 17
U Sahin (408_CR58) 2020; 586
LA Jackson (408_CR88) 2020; 383
D Planas (408_CR204) 2021; 27
T Day (408_CR18) 2020; 30
PD Yadav (408_CR231) 2021
JA Plante (408_CR189) 2021; 29
L Yurkovetskiy (408_CR138) 2020; 183
Z Wang (408_CR153) 2021; 592
VV Edara (408_CR150) 2021; 325
T Tada (408_CR162) 2021; 12
LR Baden (408_CR55) 2021; 384
J Chen (408_CR168) 2020; 432
D Pinto (408_CR69) 2020; 583
K Röltgen (408_CR247) 2021; 29
Y Liu (408_CR127) 2021
CB Jackson (408_CR142) 2020; 538
EA Ozer (408_CR236) 2021
WF Garcia-Beltran (408_CR208) 2021; 184
FA Tablizo (408_CR156) 2021
JL Bernal (408_CR232) 2021; 385
408_CR23
AC Walls (408_CR40) 2020; 181
MD Parker (408_CR187) 2021
408_CR27
X Deng (408_CR123) 2021; 184
JC Brown (408_CR181) 2021
SK Saini (408_CR90) 2021; 6
A Pegu (408_CR230) 2021
L Liu (408_CR179) 2020; 584
S Cele (408_CR124) 2021; 593
M McCallum (408_CR221) 2021; 373
M Kidd (408_CR200) 2021; 223
EB Hodcroft (408_CR172) 2021; 595
FP Polack (408_CR56) 2020; 383
C Rees-Spear (408_CR149) 2021; 34
DP Martin (408_CR25) 2021
X Chen (408_CR97) 2021
C Liu (408_CR100) 2021; 184
408_CR37
V. V Edara (408_CR122) 2021; 385
408_CR38
408_CR36
H Jiang (408_CR186) 2020; 17
X Xie (408_CR115) 2021; 27
SA Madhi (408_CR224) 2021; 384
LD Eckerle (408_CR2) 2010; 6
KT Abe (408_CR132) 2020; 5
TN Starr (408_CR128) 2020; 182
V Shinde (408_CR216) 2021; 384
W Dejnirattisai (408_CR74) 2021; 184
AT DiPiazza (408_CR83) 2020; 538
J Yu (408_CR85) 2020; 369
R Copin (408_CR109) 2021; 184
References_xml – year: 2021
  ident: CR34
  article-title: Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.06.02.21258076
– ident: CR196
– volume: 6
  start-page: 1
  year: 2021
  end-page: 4
  ident: CR145
  article-title: The effect of SARS-CoV-2 D614G mutation on BNT162b2 vaccine-elicited neutralization
  publication-title: NPJ Vaccines
– volume: 117
  start-page: 12522
  year: 2020
  end-page: 12523
  ident: CR21
  article-title: Sampling bias and incorrect rooting make phylogenetic network tracing of SARS-COV-2 infections unreliable
  publication-title: Proc. Natl Acad. Sci. USA
– year: 2021
  ident: CR32
  article-title: REACT-1 round 12 report: resurgence of SARS-CoV-2 infections in England associated with increased frequency of the Delta variant. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.06.17.21259103
– year: 2021
  ident: CR31
  article-title: Resurgence of SARS-CoV-2 in India: potential role of the B.1.617.2 (delta) variant and delayed interventions. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.06.23.21259405
– year: 2021
  ident: CR126
  article-title: Evaluation of cell-based and surrogate SARS-CoV-2 neutralization assays
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00527-21
– year: 2021
  ident: CR165
  article-title: SARS-CoV-2 B.1.617 mutations L452 and E484Q are not synergistic for antibody evasion
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiab368
– year: 2021
  ident: CR181
  article-title: Increased transmission of SARS-CoV-2 lineage B.1.1.7 (VOC 2020212/01) is not accounted for by a replicative advantage in primary airway cells or antibody escape. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.02.24.432576
– year: 2021
  ident: CR180
  article-title: Emergence in late 2020 of multiple lineages of SARS-CoV-2 spike protein variants affecting amino acid position 677. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.02.12.21251658
– volume: 592
  start-page: 616
  year: 2021
  end-page: 622
  ident: CR153
  article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants
  publication-title: Nature
– volume: 592
  start-page: 277
  year: 2021
  end-page: 282
  ident: CR113
  article-title: SARS-CoV-2 evolution during treatment of chronic infection
  publication-title: Nature
– year: 2021
  ident: CR238
  article-title: Infectivity and immune escape of the new SARS-CoV-2 variant of interest Lambda. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.06.28.21259673
– volume: 218
  year: 2021
  ident: CR78
  article-title: Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo
  publication-title: J. Exp. Med.
– volume: 17
  start-page: 998
  year: 2020
  end-page: 1000
  ident: CR186
  article-title: SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70
  publication-title: Cell Mol. Immunol.
– year: 2021
  ident: CR66
  article-title: Early COVID-19 treatment with SARS-CoV-2 neutralizing antibody sotrovimab. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.05.27.21257096
– volume: 184
  start-page: 1804
  year: 2021
  end-page: 1820.e16
  ident: CR79
  article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection
  publication-title: Cell
– volume: 29
  start-page: 508
  year: 2021
  end-page: 515
  ident: CR189
  article-title: The variant gambit: COVID-19’s next move
  publication-title: Cell Host Microbe
– year: 2021
  ident: CR175
  article-title: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.03.09.434607
– year: 2021
  ident: CR184
  article-title: Interferon resistance of emerging SARS-CoV-2 variants. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.03.20.436257
– year: 2021
  ident: CR199
  article-title: Early analysis of a potential link between viral load and the N501Y mutation in the SARS-COV-2 spike protein. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.01.12.20249080
– volume: 223
  start-page: 1666
  year: 2021
  end-page: 1670
  ident: CR200
  article-title: S-variant SARS-CoV-2 lineage B1.1.7 is associated with significantly higher viral loads in samples tested by ThermoFisher TaqPath RT-qPCR
  publication-title: J. Infect. Dis.
– volume: 27
  start-page: 1205
  year: 2021
  end-page: 1211
  ident: CR59
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat. Med.
– volume: 385
  start-page: 664
  year: 2021
  end-page: 666
  ident: CR122
  article-title: Infection and Vaccine-Induced Neutralizing-Antibody Responses to the SARS-CoV-2 B.1.617 Variants
  publication-title: N. Engl. J. Med.
– volume: 9
  start-page: 267
  year: 2008
  end-page: 276
  ident: CR3
  article-title: Rates of evolutionary change in viruses: patterns and determinants
  publication-title: Nat. Rev. Genet.
– volume: 19
  year: 2021
  ident: CR26
  article-title: Natural selection in the evolution of SARS-CoV-2 in bats created a generalist virus and highly capable human pathogen
  publication-title: PLoS Biol.
– volume: 538
  start-page: 108
  year: 2020
  end-page: 115
  ident: CR142
  article-title: Functional importance of the D614G mutation in the SARS-CoV-2 spike protein
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 325
  start-page: 1896
  year: 2021
  end-page: 1898
  ident: CR150
  article-title: Neutralizing Antibodies Against SARS-CoV-2 Variants After Infection and Vaccination
  publication-title: JAMA
– volume: 384
  start-page: 1468
  year: 2021
  end-page: 1470
  ident: CR151
  article-title: Serum neutralizing activity elicited by mRNA-1273 vaccine — preliminary report
  publication-title: N. Engl. J. Med.
– volume: 183
  start-page: 1024
  year: 2020
  end-page: 1042.e21
  ident: CR47
  article-title: Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology
  publication-title: Cell
– year: 2021
  ident: CR134
  article-title: Detection of antibodies neutralizing historical and emerging SARS-CoV-2 strains using a thermodynamically coupled de novo biosensor system. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.06.22.449355
– volume: 5
  year: 2020
  ident: CR132
  article-title: A simple protein-based surrogate neutralization assay for SARS-CoV-2
  publication-title: JCI Insight
– volume: 588
  start-page: 327
  year: 2020
  end-page: 330
  ident: CR139
  article-title: Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion
  publication-title: Nature
– volume: 11
  year: 2020
  ident: CR46
  article-title: Vulnerabilities in coronavirus glycan shields despite extensive glycosylation
  publication-title: Nat. Commun.
– volume: 385
  start-page: 472
  year: 2021
  end-page: 474
  ident: CR116
  article-title: BNT162b2-Elicited Neutralization against New SARS-CoV-2 Spike Variants
  publication-title: N. Engl. J. Med.
– ident: CR27
– year: 2021
  ident: CR240
  article-title: SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses
  publication-title: Nature
  doi: 10.1038/s41586-021-03738-2
– volume: 35
  start-page: 109292
  year: 2021
  ident: CR177
  article-title: Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the alpha variant B.1.1.7
  publication-title: Cell Rep.
– volume: 184
  start-page: 2362
  year: 2021
  end-page: 2371.e9
  ident: CR220
  article-title: SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape
  publication-title: Cell
– volume: 184
  start-page: 2348
  year: 2021
  end-page: 2361
  ident: CR104
  article-title: Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine induced sera
  publication-title: Cell
– year: 2021
  ident: CR190
  article-title: Generation of a novel SARS-CoV-2 sub-genomic RNA due to the R203K/G204R variant in nucleocapsid. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2020.04.10.029454
– volume: 184
  start-page: 2201
  year: 2021
  end-page: 2211
  ident: CR102
  article-title: Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera
  publication-title: Cell
– volume: 19
  year: 2021
  ident: CR146
  article-title: Cryo-electron microscopy structures of the N501Y SARS-CoV-2 spike protein in complex with ACE2 and 2 potent neutralizing antibodies
  publication-title: PLoS Biol.
– volume: 371
  start-page: 288
  year: 2021
  end-page: 292
  ident: CR29
  article-title: Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic
  publication-title: Science
– volume: 538
  start-page: 211
  year: 2020
  end-page: 217
  ident: CR83
  article-title: T cell immunity to SARS-CoV-2 following natural infection and vaccination
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 17
  year: 2021
  ident: CR5
  article-title: The coronavirus proofreading exoribonuclease mediates extensive viral recombination
  publication-title: PLoS Pathog.
– ident: CR38
– volume: 582
  start-page: 561
  year: 2020
  end-page: 565
  ident: CR119
  article-title: Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform
  publication-title: Nature
– volume: 29
  start-page: 529
  year: 2021
  end-page: 539.e3
  ident: CR148
  article-title: SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines
  publication-title: Cell Host Microbe
– volume: 84
  start-page: 3134
  year: 2010
  end-page: 3146
  ident: CR4
  article-title: Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission
  publication-title: J. Virol.
– volume: 5
  start-page: 1408
  year: 2020
  end-page: 1417
  ident: CR7
  article-title: Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic
  publication-title: Nat. Microbiol.
– volume: 26
  start-page: 2100131
  year: 2021
  ident: CR201
  article-title: Tracking SARS-CoV-2 lineage B.1.1.7 dissemination: insights from nationwide spike gene target failure (SGTF) and spike gene late detection (SGTL) data, Portugal, week 49 2020 to week 3 2021
  publication-title: Eur. Surveill.
– volume: 27
  start-page: 440
  year: 2021
  end-page: 446
  ident: CR15
  article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa
  publication-title: Nat. Med.
– volume: 371
  start-page: 172
  year: 2021
  end-page: 177
  ident: CR170
  article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans
  publication-title: Science
– volume: 9
  year: 2020
  ident: CR48
  article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
  publication-title: eLife
– volume: 12
  year: 2021
  ident: CR77
  article-title: A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies
  publication-title: Nat. Commun.
– volume: 2
  start-page: e283
  year: 2021
  end-page: e284
  ident: CR161
  article-title: SARS-CoV-2 spike E484K mutation reduces antibody neutralisation
  publication-title: Lancet Microbe
– year: 2021
  ident: CR166
  article-title: Comparison of 10 emerging SARS-CoV-2 variants: infectivity, animal tropism, and antibody neutralization. Preprint at
  publication-title: Research Square
  doi: 10.21203/rs.3.rs-492659/v1
– volume: 325
  start-page: 632
  year: 2021
  end-page: 644
  ident: CR64
  article-title: Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial
  publication-title: JAMA
– year: 2021
  ident: CR246
  article-title: Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.04.13.439482
– volume: 384
  start-page: 1866
  year: 2021
  end-page: 1868
  ident: CR28
  article-title: New SARS-CoV-2 variants — clinical, public health, and vaccine implications
  publication-title: N. Engl. J. Med.
– volume: 182
  start-page: 812
  year: 2020
  end-page: 827.e19
  ident: CR8
  article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus
  publication-title: Cell
– volume: 325
  start-page: 1896
  year: 2021
  end-page: 1898
  ident: CR205
  article-title: Neutralizing antibodies against SARS-CoV-2 variants after infection and vaccination
  publication-title: JAMA
– volume: 587
  start-page: 270
  year: 2020
  end-page: 274
  ident: CR87
  article-title: SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19
  publication-title: Nature
– year: 2021
  ident: CR230
  article-title: Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants
  publication-title: Science
  doi: 10.1126/science.abj4176
– volume: 372
  start-page: 815
  year: 2021
  end-page: 821
  ident: CR19
  article-title: Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil
  publication-title: Science
– ident: CR111
– volume: 384
  start-page: 2187
  year: 2021
  end-page: 2201
  ident: CR225
  article-title: Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19
  publication-title: N. Engl. J. Med.
– volume: 384
  start-page: 2352
  year: 2021
  end-page: 2354
  ident: CR222
  article-title: Neutralization of SARS-CoV-2 variants B.1.429 and B.1.351
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: CR35
  article-title: Early epidemiological signatures of novel SARS-CoV-2 variants: establishment of B.1.617.2 in England. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.06.05.21258365
– volume: 593
  start-page: 270
  year: 2021
  end-page: 274
  ident: CR194
  article-title: Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7
  publication-title: Nature
– year: 2021
  ident: CR212
  article-title: Safety and efficacy of NVX-CoV2373 Covid-19 vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2107659
– volume: 29
  start-page: 747
  year: 2021
  end-page: 751.e4
  ident: CR228
  article-title: Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization
  publication-title: Cell Host Microbe
– year: 2021
  ident: CR235
  article-title: B.1.526 SARS-CoV-2 variants identified in new york city are neutralized by vaccine-elicited and therapeutic monoclonal antibodies
  publication-title: mBio
  doi: 10.1128/mBio.01386-21
– volume: 6
  year: 2021
  ident: CR90
  article-title: SARS-CoV-2 genome-wide T cell epitope mapping reveals immunodominance and substantial CD8 T cell activation in COVID-19 patients
  publication-title: Sci. Immunol.
– volume: 6
  start-page: e335
  year: 2021
  end-page: e345
  ident: CR207
  article-title: Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study
  publication-title: Lancet Public Health
– volume: 385
  start-page: 187
  year: 2021
  end-page: 189
  ident: CR211
  article-title: Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: CR185
  article-title: Evolution of enhanced innate immune evasion by the SARS-CoV-2 B.1.1.7 UK variant. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.06.06.446826
– volume: 596
  start-page: 273
  year: 2021
  end-page: 275
  ident: CR118
  article-title: BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants
  publication-title: Nature
– volume: 29
  start-page: 1063
  year: 2021
  end-page: 1075
  ident: CR247
  article-title: Antibody and B cell responses to SARS-CoV-2 infection and vaccination
  publication-title: Cell Host Microbe
– volume: 369
  start-page: 812
  year: 2020
  end-page: 817
  ident: CR54
  article-title: SARS-CoV-2 infection protects against rechallenge in rhesus macaques
  publication-title: Science
– volume: 383
  start-page: 2439
  year: 2020
  end-page: 2450
  ident: CR57
  article-title: Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates
  publication-title: N. Engl. J. Med.
– volume: 584
  start-page: 450
  year: 2020
  end-page: 456
  ident: CR179
  article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike
  publication-title: Nature
– volume: 13
  year: 2021
  ident: CR164
  article-title: Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection
  publication-title: Sci. Transl Med.
– volume: 5
  start-page: 1403
  year: 2020
  end-page: 1407
  ident: CR22
  article-title: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology
  publication-title: Nat. Microbiol.
– year: 2021
  ident: CR237
  article-title: First identification of SARS-CoV-2 Lambda (C.37) variant in southern Brazil. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.06.21.21259241
– volume: 6
  year: 2010
  ident: CR2
  article-title: Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing
  publication-title: PLoS Pathog.
– volume: 11
  year: 2020
  ident: CR75
  article-title: Two linear epitopes on the SARS-CoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients
  publication-title: Nat. Commun.
– volume: 432
  start-page: 5212
  year: 2020
  end-page: 5226
  ident: CR168
  article-title: Mutations strengthened SARS-CoV-2 infectivity
  publication-title: J. Mol. Biol.
– volume: 593
  start-page: 130
  year: 2021
  end-page: 135
  ident: CR121
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
– volume: 590
  start-page: 630
  year: 2020
  end-page: 634
  ident: CR53
  article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques
  publication-title: Nature
– volume: 93
  start-page: 104941
  year: 2021
  ident: CR157
  article-title: E484K as an innovative phylogenetic event for viral evolution: genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil
  publication-title: Infect. Genet. Evol.
– volume: 29
  start-page: 23
  year: 2021
  end-page: 31.e4
  ident: CR144
  article-title: D614G spike mutation Increases SARS CoV-2 susceptibility to neutralization
  publication-title: Cell Host Microbe
– ident: CR37
– volume: 27
  start-page: 917
  year: 2021
  end-page: 924
  ident: CR204
  article-title: Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies
  publication-title: Nat. Med.
– volume: 12
  start-page: 513
  year: 2020
  ident: CR106
  article-title: Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays
  publication-title: Viruses
– year: 2021
  ident: CR203
  article-title: Sera neutralizing activities against SARS-CoV-2 and multiple variants six month after hospitalization for COVID-19
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab308
– volume: 592
  start-page: 116
  year: 2020
  end-page: 121
  ident: CR135
  article-title: Spike mutation D614G alters SARS-CoV-2 fitness
  publication-title: Nature
– volume: 384
  start-page: 2354
  year: 2021
  end-page: 2356
  ident: CR206
  article-title: Susceptibility of circulating SARS-CoV-2 variants to neutralization
  publication-title: N. Engl. J. Med.
– volume: 397
  start-page: 452
  year: 2021
  end-page: 455
  ident: CR30
  article-title: Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence
  publication-title: Lancet
– volume: 5
  start-page: e00408
  year: 2020
  end-page: e00420
  ident: CR9
  article-title: Rampant C→U hypermutation in the genomes of SARS-CoV-2 and other coronaviruses: causes and consequences for their short- and long-term evolutionary trajectories
  publication-title: mSphere
– volume: 34
  start-page: 108890
  year: 2021
  ident: CR149
  article-title: The effect of spike mutations on SARS-CoV-2 neutralization
  publication-title: Cell Rep.
– volume: 6
  year: 2021
  ident: CR96
  article-title: SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8 T cell responses
  publication-title: Sci. Immunol.
– volume: 183
  start-page: 1901
  year: 2020
  end-page: 1912.e9
  ident: CR114
  article-title: Case study: prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer
  publication-title: Cell
– volume: 29
  start-page: 1137
  year: 2021
  end-page: 1150
  ident: CR80
  article-title: A single dose of the SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector functions and T cell responses
  publication-title: Cell Host Microbe
– year: 2021
  ident: CR187
  article-title: Altered sub-genomic RNA expression in SARS-CoV-2 B.1.1.7 infections. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.03.02.433156
– year: 2021
  ident: CR156
  article-title: Genome sequencing and analysis of an emergent SARS-CoV-2 variant characterized by multiple spike protein mutations detected from the Central Visayas Region of the Philippines. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.03.03.21252812
– volume: 36
  start-page: 109415
  year: 2021
  ident: CR234
  article-title: SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination
  publication-title: Cell Rep.
– year: 2021
  ident: CR65
  article-title: REGEN-COV antibody cocktail clinical outcomes study in COVID-19 outpatients. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.05.19.21257469
– volume: 383
  start-page: 1920
  year: 2020
  end-page: 1931
  ident: CR88
  article-title: An mRNA vaccine against SARS-CoV-2 — preliminary report
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: CR25
  article-title: The emergence and ongoing convergent evolution of the N501Y lineages coincides with a major global shift in the SARS-CoV-2 selective landscape. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.02.23.21252268
– volume: 38
  start-page: 1777
  year: 2020
  end-page: 1791
  ident: CR20
  article-title: Phylogenetic analysis of SARS-CoV-2 data is difficult
  publication-title: Mol. Biol. Evol.
– volume: 27
  start-page: 1280
  year: 2021
  end-page: 1289
  ident: CR86
  article-title: CD8 T cells contribute to survival in patients with COVID-19 and hematologic cancer
  publication-title: Nat Med.
– ident: CR110
– volume: 10
  year: 2021
  ident: CR12
  article-title: Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229E
  publication-title: eLife
– volume: 369
  start-page: 806
  year: 2020
  end-page: 811
  ident: CR85
  article-title: DNA vaccine protection against SARS-CoV-2 in rhesus macaques
  publication-title: Science
– year: 2021
  ident: CR241
  article-title: Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2
  publication-title: Nature
  doi: 10.1038/s41586-021-03739-1
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: CR41
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 19
  start-page: 409
  year: 2021
  end-page: 424
  ident: CR52
  article-title: SARS-CoV-2 variants, spike mutations and immune escape
  publication-title: Nat. Rev. Microbiol.
– volume: 397
  start-page: 2461
  year: 2021
  end-page: 2462
  ident: CR233
  article-title: SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness
  publication-title: Lancet
– volume: 29
  start-page: 44
  year: 2021
  end-page: 57.e9
  ident: CR130
  article-title: Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition
  publication-title: Cell Host Microbe
– volume: 385
  start-page: 585
  year: 2021
  end-page: 594
  ident: CR232
  article-title: Effectiveness of COVID-19 vaccines against the B.1.617.2 variant
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: CR6
  article-title: Generation and transmission of inter-lineage recombinants in the SARS-CoV-2 pandemic. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.06.18.21258689
– volume: 373
  start-page: 648
  year: 2021
  end-page: 654
  ident: CR221
  article-title: SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern
  publication-title: Science
– volume: 26
  start-page: 2002106
  year: 2021
  ident: CR197
  article-title: Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020
  publication-title: Eur. Surveill.
– volume: 29
  start-page: 516
  year: 2021
  end-page: 521.e3
  ident: CR219
  article-title: Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 SARS-CoV-2 variant
  publication-title: Cell Host Microbe
– volume: 26
  start-page: 2100256
  year: 2021
  ident: CR202
  article-title: Case fatality risk of the SARS-CoV-2 variant of concern B.1.1.7 in England, 16 November to 5 February
  publication-title: Eur. Surveill.
– volume: 371
  start-page: 1152
  year: 2021
  end-page: 1153
  ident: CR152
  article-title: Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera
  publication-title: Science
– volume: 591
  start-page: 293
  year: 2021
  end-page: 299
  ident: CR182
  article-title: Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis
  publication-title: Nature
– volume: 184
  start-page: 2183
  year: 2021
  end-page: 2200.e22
  ident: CR74
  article-title: The antigenic anatomy of SARS-CoV-2 receptor binding domain
  publication-title: Cell
– year: 2021
  ident: CR155
  article-title: Structural analysis of spike protein mutations in an emergent SARS-CoV-2 variant from the Philippines. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.03.06.434059
– volume: 184
  start-page: 4220
  year: 2021
  end-page: 4336
  ident: CR100
  article-title: Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum
  publication-title: Cell
– volume: 384
  start-page: 1899
  year: 2021
  end-page: 1909
  ident: CR216
  article-title: Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant
  publication-title: N. Engl. J. Med.
– volume: 586
  start-page: 594
  year: 2020
  end-page: 599
  ident: CR58
  article-title: COVID-19 vaccine BNT162b1 elicits human antibody and T 1 T cell responses
  publication-title: Nature
– year: 2021
  ident: CR236
  article-title: High prevalence of SARS-CoV-2 B.1.1.7 (UK variant) and the novel B.1.525 lineage in Oyo State, Nigeria. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.04.09.21255206
– ident: CR215
– volume: 28
  start-page: 465
  year: 2020
  end-page: 474.e4
  ident: CR108
  article-title: Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice
  publication-title: Cell Host Microbe
– volume: 29
  start-page: 1076
  year: 2021
  end-page: 1092
  ident: CR89
  article-title: SARS-CoV-2 Human T cell Epitopes: adaptive immune response against COVID-19
  publication-title: Cell Host Microbe
– year: 2021
  ident: CR154
  article-title: A novel SARS-CoV-2 variant of concern, B.1.526, identified in New York. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.02.23.21252259
– volume: 385
  start-page: 179
  year: 2021
  end-page: 186
  ident: CR245
  article-title: SARS-CoV-2 variants and vaccines
  publication-title: N. Engl. J. Med.
– volume: 593
  start-page: 136
  year: 2021
  end-page: 141
  ident: CR159
  article-title: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies
  publication-title: Nature
– volume: 397
  start-page: 1819
  year: 2021
  end-page: 1829
  ident: CR210
  article-title: Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data
  publication-title: Lancet
– volume: 54
  start-page: 1853
  year: 2021
  end-page: 1868.e7
  ident: CR174
  article-title: Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations
  publication-title: Immunity
– ident: CR36
– volume: 372
  year: 2021
  ident: CR198
  article-title: Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England
  publication-title: Science
– year: 2021
  ident: CR243
  article-title: Immunogenicity of COVID-19 vaccination in immunocompromised patients: an observational, prospective cohort study interim analysis. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.06.28.21259576
– volume: 12
  year: 2021
  ident: CR81
  article-title: Discrete SARS-CoV-2 antibody titers track with functional humoral stability
  publication-title: Nat. Commun.
– year: 2021
  ident: CR97
  article-title: Neutralizing antibodies against SARS-CoV-2 variants induced by natural infection or vaccination: a systematic review and pooled meta-analysis
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab646
– volume: 1
  start-page: e99
  year: 2020
  end-page: e100
  ident: CR39
  article-title: An integrated national scale SARS-CoV-2 genomic surveillance network
  publication-title: Lancet Microbe
– volume: 13
  start-page: 1211
  year: 2021
  ident: CR98
  article-title: SARS-CoV-2 variants: a synopsis of in vitro efficacy data of convalescent plasma, currently marketed vaccines, and monoclonal antibodies
  publication-title: Viruses
– volume: 93
  start-page: 1722
  year: 2021
  end-page: 1731
  ident: CR17
  article-title: Phylogenetic analysis of SARS-CoV-2 in the first few months since its emergence
  publication-title: J. Med. Virol.
– volume: 596
  start-page: 276
  year: 2021
  end-page: 280
  ident: CR214
  article-title: Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization
  publication-title: Nature
– volume: 13
  start-page: 392
  year: 2021
  ident: CR158
  article-title: SARS-CoV-2 variant of concern 202012/01 has about twofold replicative advantage and acquires concerning mutations
  publication-title: Viruses
– volume: 581
  start-page: 215
  year: 2020
  end-page: 220
  ident: CR42
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
– volume: 433
  start-page: 167058
  year: 2021
  ident: CR147
  article-title: Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants
  publication-title: J. Mol. Biol.
– volume: 373
  year: 2021
  ident: CR140
  article-title: Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity
  publication-title: Science
– volume: 9
  start-page: 13
  year: 2021
  ident: CR125
  article-title: Comparison of four SARS-CoV-2 neutralization assays
  publication-title: Vaccines
– volume: 538
  start-page: 192
  year: 2021
  end-page: 203
  ident: CR73
  article-title: Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 21
  start-page: 245
  year: 2021
  end-page: 256
  ident: CR45
  article-title: The first 12 months of COVID-19: a timeline of immunological insights
  publication-title: Nat. Rev. Immunol.
– volume: 33
  start-page: 108234
  year: 2020
  ident: CR188
  article-title: Evasion of type I interferon by SARS-CoV-2
  publication-title: Cell Rep.
– volume: 11
  year: 2020
  ident: CR10
  article-title: No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2
  publication-title: Nat. Commun.
– volume: 54
  start-page: 1611
  year: 2021
  end-page: 1621.e5
  ident: CR167
  article-title: Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species
  publication-title: Immunity
– volume: 29
  start-page: 463
  year: 2021
  end-page: 476.e6
  ident: CR50
  article-title: Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies
  publication-title: Cell Host Microbe
– volume: 397
  start-page: 1351
  year: 2021
  end-page: 1362
  ident: CR213
  article-title: Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial
  publication-title: Lancet
– volume: 369
  start-page: 1255
  year: 2020
  end-page: 1260
  ident: CR14
  article-title: Evolution and epidemic spread of SARS-CoV-2 in Brazil
  publication-title: Science
– volume: 370
  start-page: 1464
  year: 2020
  end-page: 1468
  ident: CR136
  article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
  publication-title: Science
– volume: 181
  start-page: 281
  year: 2020
  end-page: 292.e6
  ident: CR40
  article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein
  publication-title: Cell
– volume: 27
  start-page: 622
  year: 2021
  end-page: 625
  ident: CR218
  article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma
  publication-title: Nat. Med.
– volume: 53
  start-page: 524
  year: 2020
  end-page: 532.e4
  ident: CR61
  article-title: Distinct early serological signatures track with SARS-CoV-2 survival
  publication-title: Immunity
– year: 2021
  ident: CR127
  article-title: The N501Y spike substitution enhances SARS-CoV-2 transmission. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.03.08.434499
– year: 2021
  ident: CR242
  article-title: Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2021-220647
– volume: 184
  start-page: 3086
  year: 2021
  end-page: 3108
  ident: CR67
  article-title: Tackling COVID-19 with neutralizing monoclonal antibodies
  publication-title: Cell
– volume: 184
  start-page: 2332
  year: 2021
  end-page: 2347.e16
  ident: CR51
  article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2
  publication-title: Cell
– ident: CR193
– ident: CR227
– volume: 93
  start-page: 5638
  year: 2021
  end-page: 5643
  ident: CR173
  article-title: Preliminary report on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike mutation T478K
  publication-title: J. Med. Virol.
– volume: 26
  start-page: 1691
  year: 2020
  end-page: 1693
  ident: CR11
  article-title: Seasonal coronavirus protective immunity is short-lasting
  publication-title: Nat. Med.
– volume: 592
  start-page: 438
  year: 2021
  end-page: 443
  ident: CR16
  article-title: Detection of a SARS-CoV-2 variant of concern in South Africa
  publication-title: Nature
– volume: 11
  year: 2020
  ident: CR141
  article-title: SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity
  publication-title: Nat. Commun.
– year: 2021
  ident: CR33
  article-title: Rapid displacement of SARS-CoV-2 variant B.1.1.7 by B.1.617.2 and P.1 in the United States. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.06.20.21259195
– volume: 39
  start-page: 4423
  year: 2021
  end-page: 4428
  ident: CR82
  article-title: Evidence for antibody as a protective correlate for COVID-19 vaccine
  publication-title: Vaccine
– volume: 371
  start-page: 1139
  year: 2021
  end-page: 1142
  ident: CR176
  article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape
  publication-title: Science
– volume: 20
  start-page: 100355
  year: 2021
  ident: CR91
  article-title: Impact of SARS-CoV-2 variants on the total CD4 and CD8 T cell reactivity in infected or vaccinated individuals
  publication-title: Cell Rep. Med.
– volume: 588
  start-page: 682
  year: 2020
  end-page: 687
  ident: CR71
  article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies
  publication-title: Nature
– volume: 184
  start-page: 3949
  year: 2021
  end-page: 3961
  ident: CR109
  article-title: The monoclonal antibody combination REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical and human studies
  publication-title: Cell
– volume: 397
  start-page: 99
  year: 2020
  end-page: 111
  ident: CR248
  article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK
  publication-title: Lancet
– volume: 369
  start-page: 731
  year: 2020
  end-page: 736
  ident: CR49
  article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies
  publication-title: Science
– volume: 592
  start-page: 122
  year: 2021
  end-page: 127
  ident: CR137
  article-title: SARS-CoV-2 spike D614G change enhances replication and transmission
  publication-title: Nature
– volume: 183
  start-page: 739
  year: 2020
  end-page: 751.e8
  ident: CR138
  article-title: Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant
  publication-title: Cell
– volume: 384
  start-page: 2161
  year: 2021
  end-page: 2163
  ident: CR101
  article-title: Cross-reactive neutralizing antibody responses elicited by SARS-CoV-2 501Y.V2 (B.1.351)
  publication-title: N. Engl. J. Med.
– volume: 184
  start-page: 1171
  year: 2021
  end-page: 1187.e20
  ident: CR169
  article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity
  publication-title: Cell
– volume: 16
  start-page: 1761
  year: 2021
  end-page: 1784
  ident: CR120
  article-title: Engineering SARS-CoV-2 using a reverse genetic system
  publication-title: Nat. Protoc.
– volume: 593
  start-page: 266
  year: 2021
  end-page: 269
  ident: CR191
  article-title: Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England
  publication-title: Nature
– volume: 217
  year: 2020
  ident: CR107
  article-title: Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses
  publication-title: J. Exp. Med.
– volume: 29
  start-page: 477
  year: 2021
  end-page: 488.e4
  ident: CR160
  article-title: Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization
  publication-title: Cell Host Microbe
– volume: 184
  start-page: 3426
  year: 2021
  end-page: 3437.e8
  ident: CR123
  article-title: Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant
  publication-title: Cell
– volume: 184
  start-page: 861
  year: 2021
  end-page: 880
  ident: CR84
  article-title: Adaptive immunity to SARS-CoV-2 and COVID-19
  publication-title: Cell
– volume: 6
  year: 2021
  ident: CR223
  article-title: Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination
  publication-title: Sci. Immunol.
– volume: 27
  start-page: 620
  year: 2021
  end-page: 621
  ident: CR115
  article-title: Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera
  publication-title: Nat. Med.
– volume: 34
  start-page: 108630
  year: 2021
  ident: CR143
  article-title: D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction
  publication-title: Cell Rep.
– year: 2021
  ident: CR249
  article-title: Effectiveness of the CoronaVac vaccine in the elderly population during a P.1 variant-associated epidemic of COVID-19 in Brazil: a test-negative case–control study. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.05.19.21257472
– volume: 184
  start-page: 2939
  year: 2021
  end-page: 2954
  ident: CR103
  article-title: Antibody evasion by the P.1 strain of SARS-CoV-2
  publication-title: Cell
– volume: 182
  start-page: 1284
  year: 2020
  end-page: 1294.e9
  ident: CR163
  article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity
  publication-title: Cell
– year: 2021
  ident: CR229
  article-title: Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study
  publication-title: Lancet Microbe.
  doi: 10.1016/S2666-5247(21)00129-4
– volume: 371
  start-page: 850
  year: 2021
  end-page: 854
  ident: CR129
  article-title: Prospective mapping of viral mutations that escape antibodies used to treat COVID-19
  publication-title: Science
– volume: 117
  start-page: 23652
  year: 2020
  end-page: 23662
  ident: CR24
  article-title: A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 2
  start-page: 100204
  year: 2021
  ident: CR94
  article-title: Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases
  publication-title: Cell Rep. Med.
– volume: 369
  start-page: 1014
  year: 2020
  end-page: 1018
  ident: CR105
  article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies
  publication-title: Science
– volume: 595
  start-page: 426
  year: 2021
  end-page: 431
  ident: CR239
  article-title: Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection
  publication-title: Nature
– volume: 30
  start-page: R849
  year: 2020
  end-page: R857
  ident: CR18
  article-title: On the evolutionary epidemiology of SARS-CoV-2
  publication-title: Curr. Biol.
– volume: 383
  start-page: 2291
  year: 2020
  end-page: 2293
  ident: CR112
  article-title: Persistence and evolution of SARS-CoV-2 in an immunocompromised host
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: CR231
  article-title: Neutralization of Beta and Delta variant with sera of COVID-19 recovered cases and vaccinees of inactivated COVID-19 vaccine BBV152/Covaxin2
  publication-title: J. Travel. Med.
  doi: 10.1093/jtm/taab104
– volume: 10
  year: 2021
  ident: CR99
  article-title: Reduced antibody cross-reactivity following infection with B.1.1.7 than with parental SARS-CoV-2 strains
  publication-title: Elife
– year: 2021
  ident: CR192
  article-title: Estimation of secondary household attack rates for emergent spike L452R SARS-CoV-2 variants detected by genomic surveillance at a community-based testing site in San Francisco
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab283
– volume: 595
  start-page: 707
  year: 2021
  end-page: 712
  ident: CR172
  article-title: Spread of a SARS-CoV-2 variant through Europe in the summer of 2020
  publication-title: Nature
– volume: 19
  start-page: 155
  year: 2020
  end-page: 170
  ident: CR44
  article-title: Coronavirus biology and replication: implications for SARS-CoV-2
  publication-title: Nat. Rev. Microbiol.
– volume: 24
  start-page: 102311
  year: 2021
  ident: CR93
  article-title: Learning from HIV-1 to predict the immunogenicity of T cell epitopes in SARS-COV-2
  publication-title: iScience
– volume: 13
  start-page: 134
  year: 2021
  ident: CR72
  article-title: Structural analysis of neutralizing epitopes of the SARS-CoV-2 spike to guide therapy and vaccine design strategies
  publication-title: Viruses
– volume: 27
  start-page: 717
  year: 2021
  end-page: 726
  ident: CR117
  article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies
  publication-title: Nat. Med.
– volume: 372
  start-page: n579
  year: 2021
  ident: CR195
  article-title: Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study
  publication-title: BMJ
– year: 2021
  ident: CR244
  article-title: Paucity and discordance of neutralising antibody responses to SARS-CoV-2 VOCs in vaccinated immunodeficient patients and health-care workers in the UK
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00157-9
– volume: 17
  year: 2021
  ident: CR13
  article-title: A human coronavirus evolves antigenically to escape antibody immunity
  publication-title: PLoS Pathog.
– volume: 184
  start-page: 476
  year: 2021
  end-page: 488.e11
  ident: CR63
  article-title: COVID-19-neutralizing antibodies predict disease severity and survival
  publication-title: Cell
– volume: 397
  start-page: 2331
  year: 2021
  end-page: 2333
  ident: CR209
  article-title: Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination
  publication-title: Lancet
– volume: 2
  start-page: 100313
  year: 2021
  ident: CR76
  article-title: Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions
  publication-title: Cell Rep. Med.
– ident: CR23
– volume: 296
  start-page: 100536
  year: 2021
  ident: CR171
  article-title: The SARS-CoV-2 Y453F mink variant displays a pronounced increase in ACE-2 affinity but does not challenge antibody neutralization
  publication-title: J. Biol. Chem.
– volume: 384
  start-page: 1885
  year: 2021
  end-page: 1898
  ident: CR224
  article-title: Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant
  publication-title: N. Engl. J. Med.
– volume: 2
  start-page: 100255
  year: 2021
  ident: CR131
  article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016
  publication-title: Cell Rep. Med.
– volume: 581
  start-page: 221
  year: 2020
  end-page: 224
  ident: CR43
  article-title: Structural basis of receptor recognition by SARS-CoV-2
  publication-title: Nature
– volume: 371
  start-page: 823
  year: 2021
  end-page: 829
  ident: CR68
  article-title: Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody
  publication-title: Science
– volume: 20
  start-page: 339
  year: 2020
  end-page: 341
  ident: CR60
  article-title: The potential danger of suboptimal antibody responses in COVID-19
  publication-title: Nat. Rev. Immunol.
– volume: 38
  start-page: 1073
  year: 2020
  end-page: 1078
  ident: CR133
  article-title: A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction
  publication-title: Nat. Biotechnol.
– volume: 384
  start-page: 238
  year: 2021
  end-page: 251
  ident: CR62
  article-title: REGN-COV2, a neutralizing antibody cocktail, in outpatients with COVID-19
  publication-title: N. Engl. J. Med.
– volume: 384
  start-page: 403
  year: 2021
  end-page: 416
  ident: CR55
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: CR95
  article-title: Emergence of immune escape at dominant SARS-CoV-2 killer T-cell epitope. Preprint at
  publication-title: medRxiv
  doi: 10.1101/2021.06.21.21259010
– volume: 184
  start-page: 2372
  year: 2021
  end-page: 2383.e9
  ident: CR208
  article-title: Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity
  publication-title: Cell
– volume: 369
  start-page: 650
  year: 2020
  end-page: 655
  ident: CR178
  article-title: A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2
  publication-title: Science
– volume: 583
  start-page: 290
  year: 2020
  end-page: 295
  ident: CR69
  article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody
  publication-title: Nature
– volume: 383
  start-page: 2603
  year: 2020
  end-page: 2615
  ident: CR56
  article-title: Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine
  publication-title: N. Engl. J. Med.
– volume: 184
  start-page: 2384
  year: 2021
  end-page: 2393.e12
  ident: CR217
  article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies
  publication-title: Cell
– volume: 29
  start-page: 1124
  year: 2021
  end-page: 1136
  ident: CR92
  article-title: SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity
  publication-title: Cell Host Microbe
– volume: 593
  start-page: 142
  year: 2021
  end-page: 146
  ident: CR124
  article-title: Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma
  publication-title: Nature
– volume: 103
  start-page: 5108
  year: 2006
  end-page: 5113
  ident: CR1
  article-title: Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 182
  start-page: 1295
  year: 2020
  end-page: 1310.e20
  ident: CR128
  article-title: Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding
  publication-title: Cell
– volume: 29
  start-page: 819
  year: 2021
  end-page: 833.e7
  ident: CR70
  article-title: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite
  publication-title: Cell Host Microbe
– volume: 27
  start-page: 1379
  year: 2021
  end-page: 1384
  ident: CR226
  article-title: Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals
  publication-title: Nat. Med.
– volume: 12
  year: 2021
  ident: CR162
  article-title: Convalescent-Phase Sera and Vaccine-Elicited Antibodies Largely Maintain Neutralizing Titer against Global SARS-CoV-2 Variant Spikes
  publication-title: mBio
– year: 2021
  ident: CR183
  article-title: SARS-CoV-2 spike P681R mutation enhances and accelerates viral fusion. Preprint at
  publication-title: bioRxiv
  doi: 10.1101/2021.06.17.448820
– year: 2021
  ident: 408_CR35
  publication-title: medRxiv
  doi: 10.1101/2021.06.05.21258365
– volume: 581
  start-page: 215
  year: 2020
  ident: 408_CR42
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 27
  start-page: 1379
  year: 2021
  ident: 408_CR226
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01413-7
– year: 2021
  ident: 408_CR165
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiab368
– volume: 2
  start-page: 100204
  year: 2021
  ident: 408_CR94
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2021.100204
– volume: 19
  year: 2021
  ident: 408_CR26
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3001115
– ident: 408_CR215
– year: 2021
  ident: 408_CR65
  publication-title: medRxiv
  doi: 10.1101/2021.05.19.21257469
– volume: 24
  start-page: 102311
  year: 2021
  ident: 408_CR93
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102311
– volume: 384
  start-page: 2187
  year: 2021
  ident: 408_CR225
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2101544
– year: 2021
  ident: 408_CR229
  publication-title: Lancet Microbe.
  doi: 10.1016/S2666-5247(21)00129-4
– volume: 29
  start-page: 44
  year: 2021
  ident: 408_CR130
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.007
– volume: 9
  start-page: 267
  year: 2008
  ident: 408_CR3
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2323
– volume: 11
  year: 2020
  ident: 408_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19818-2
– ident: 408_CR27
– year: 2021
  ident: 408_CR97
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab646
– year: 2021
  ident: 408_CR203
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab308
– volume: 12
  year: 2021
  ident: 408_CR81
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21336-8
– volume: 11
  year: 2020
  ident: 408_CR46
  publication-title: Nat. Commun.
– volume: 29
  start-page: 463
  year: 2021
  ident: 408_CR50
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.02.003
– ident: 408_CR38
– volume: 184
  start-page: 3949
  year: 2021
  ident: 408_CR109
  publication-title: Cell
  doi: 10.1016/j.cell.2021.06.002
– volume: 385
  start-page: 664
  year: 2021
  ident: 408_CR122
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2107799
– year: 2021
  ident: 408_CR246
  publication-title: bioRxiv
  doi: 10.1101/2021.04.13.439482
– volume: 93
  start-page: 1722
  year: 2021
  ident: 408_CR17
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.26545
– volume: 586
  start-page: 594
  year: 2020
  ident: 408_CR58
  publication-title: Nature
  doi: 10.1038/s41586-020-2814-7
– ident: 408_CR227
– volume: 29
  start-page: 23
  year: 2021
  ident: 408_CR144
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.012
– year: 2021
  ident: 408_CR237
  publication-title: medRxiv
  doi: 10.1101/2021.06.21.21259241
– year: 2021
  ident: 408_CR166
  publication-title: Research Square
  doi: 10.21203/rs.3.rs-492659/v1
– year: 2021
  ident: 408_CR95
  publication-title: medRxiv
  doi: 10.1101/2021.06.21.21259010
– volume: 5
  start-page: e00408
  year: 2020
  ident: 408_CR9
  publication-title: mSphere
  doi: 10.1128/mSphere.00408-20
– volume: 29
  start-page: 529
  year: 2021
  ident: 408_CR148
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.03.002
– volume: 11
  year: 2020
  ident: 408_CR141
  publication-title: Nat. Commun.
– year: 2021
  ident: 408_CR240
  publication-title: Nature
  doi: 10.1038/s41586-021-03738-2
– volume: 38
  start-page: 1777
  year: 2020
  ident: 408_CR20
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msaa314
– volume: 16
  start-page: 1761
  year: 2021
  ident: 408_CR120
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-021-00491-8
– volume: 432
  start-page: 5212
  year: 2020
  ident: 408_CR168
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2020.07.009
– year: 2021
  ident: 408_CR185
  publication-title: bioRxiv
  doi: 10.1101/2021.06.06.446826
– volume: 383
  start-page: 2439
  year: 2020
  ident: 408_CR57
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2027906
– volume: 27
  start-page: 917
  year: 2021
  ident: 408_CR204
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01318-5
– volume: 26
  start-page: 2100256
  year: 2021
  ident: 408_CR202
  publication-title: Eur. Surveill.
  doi: 10.2807/1560-7917.ES.2021.26.11.2100256
– volume: 35
  start-page: 109292
  year: 2021
  ident: 408_CR177
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109292
– year: 2021
  ident: 408_CR181
  publication-title: bioRxiv
  doi: 10.1101/2021.02.24.432576
– year: 2021
  ident: 408_CR25
  publication-title: medRxiv
  doi: 10.1101/2021.02.23.21252268
– volume: 29
  start-page: 1063
  year: 2021
  ident: 408_CR247
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.06.009
– volume: 397
  start-page: 2461
  year: 2021
  ident: 408_CR233
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)01358-1
– year: 2021
  ident: 408_CR184
  publication-title: bioRxiv
  doi: 10.1101/2021.03.20.436257
– year: 2021
  ident: 408_CR183
  publication-title: bioRxiv
  doi: 10.1101/2021.06.17.448820
– year: 2021
  ident: 408_CR126
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00527-21
– volume: 184
  start-page: 1171
  year: 2021
  ident: 408_CR169
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.037
– volume: 27
  start-page: 717
  year: 2021
  ident: 408_CR117
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01294-w
– year: 2021
  ident: 408_CR34
  publication-title: medRxiv
  doi: 10.1101/2021.06.02.21258076
– volume: 582
  start-page: 561
  year: 2020
  ident: 408_CR119
  publication-title: Nature
  doi: 10.1038/s41586-020-2294-9
– volume: 369
  start-page: 812
  year: 2020
  ident: 408_CR54
  publication-title: Science
  doi: 10.1126/science.abc4776
– year: 2021
  ident: 408_CR242
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2021-220647
– volume: 184
  start-page: 2939
  year: 2021
  ident: 408_CR103
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.055
– volume: 369
  start-page: 806
  year: 2020
  ident: 408_CR85
  publication-title: Science
  doi: 10.1126/science.abc6284
– volume: 371
  start-page: 1152
  year: 2021
  ident: 408_CR152
  publication-title: Science
  doi: 10.1126/science.abg6105
– volume: 19
  start-page: 155
  year: 2020
  ident: 408_CR44
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-00468-6
– volume: 184
  start-page: 476
  year: 2021
  ident: 408_CR63
  publication-title: Cell
  doi: 10.1016/j.cell.2020.12.015
– year: 2021
  ident: 408_CR212
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2107659
– ident: 408_CR37
– volume: 184
  start-page: 2362
  year: 2021
  ident: 408_CR220
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.042
– volume: 373
  year: 2021
  ident: 408_CR140
  publication-title: Science
– volume: 29
  start-page: 1076
  year: 2021
  ident: 408_CR89
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.05.010
– year: 2021
  ident: 408_CR199
  publication-title: bioRxiv
  doi: 10.1101/2021.01.12.20249080
– volume: 183
  start-page: 739
  year: 2020
  ident: 408_CR138
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.032
– volume: 325
  start-page: 632
  year: 2021
  ident: 408_CR64
  publication-title: JAMA
  doi: 10.1001/jama.2021.0202
– volume: 538
  start-page: 192
  year: 2021
  ident: 408_CR73
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.10.012
– volume: 592
  start-page: 616
  year: 2021
  ident: 408_CR153
  publication-title: Nature
  doi: 10.1038/s41586-021-03324-6
– volume: 2
  start-page: e283
  year: 2021
  ident: 408_CR161
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00068-9
– volume: 6
  year: 2021
  ident: 408_CR223
  publication-title: Sci. Immunol.
– volume: 93
  start-page: 5638
  year: 2021
  ident: 408_CR173
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.27062
– volume: 367
  start-page: 1260
  year: 2020
  ident: 408_CR41
  publication-title: Science
  doi: 10.1126/science.abb2507
– year: 2021
  ident: 408_CR180
  publication-title: bioRxiv
  doi: 10.1101/2021.02.12.21251658
– volume: 39
  start-page: 4423
  year: 2021
  ident: 408_CR82
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2021.05.063
– volume: 370
  start-page: 1464
  year: 2020
  ident: 408_CR136
  publication-title: Science
  doi: 10.1126/science.abe8499
– volume: 38
  start-page: 1073
  year: 2020
  ident: 408_CR133
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0631-z
– volume: 6
  start-page: e335
  year: 2021
  ident: 408_CR207
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(21)00055-4
– volume: 26
  start-page: 2002106
  year: 2021
  ident: 408_CR197
  publication-title: Eur. Surveill.
  doi: 10.2807/1560-7917.ES.2020.26.1.2002106
– volume: 103
  start-page: 5108
  year: 2006
  ident: 408_CR1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0508200103
– volume: 182
  start-page: 1284
  year: 2020
  ident: 408_CR163
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.012
– volume: 325
  start-page: 1896
  year: 2021
  ident: 408_CR205
  publication-title: JAMA
  doi: 10.1001/jama.2021.4388
– year: 2021
  ident: 408_CR249
  publication-title: medRxiv
  doi: 10.1101/2021.05.19.21257472
– volume: 385
  start-page: 472
  year: 2021
  ident: 408_CR116
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2106083
– volume: 397
  start-page: 99
  year: 2020
  ident: 408_CR248
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)32661-1
– volume: 2
  start-page: 100313
  year: 2021
  ident: 408_CR76
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2021.100313
– volume: 11
  year: 2020
  ident: 408_CR75
  publication-title: Nat. Commun.
– volume: 34
  start-page: 108890
  year: 2021
  ident: 408_CR149
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.108890
– volume: 184
  start-page: 2332
  year: 2021
  ident: 408_CR51
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.028
– volume: 1
  start-page: e99
  year: 2020
  ident: 408_CR39
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(20)30054-9
– volume: 595
  start-page: 426
  year: 2021
  ident: 408_CR239
  publication-title: Nature
  doi: 10.1038/s41586-021-03696-9
– year: 2021
  ident: 408_CR190
  publication-title: bioRxiv
  doi: 10.1101/2020.04.10.029454
– volume: 590
  start-page: 630
  year: 2020
  ident: 408_CR53
  publication-title: Nature
  doi: 10.1038/s41586-020-03041-6
– volume: 2
  start-page: 100255
  year: 2021
  ident: 408_CR131
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2021.100255
– volume: 29
  start-page: 819
  year: 2021
  ident: 408_CR70
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.03.005
– volume: 9
  start-page: 13
  year: 2021
  ident: 408_CR125
  publication-title: Vaccines
  doi: 10.3390/vaccines9010013
– volume: 27
  start-page: 622
  year: 2021
  ident: 408_CR218
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01285-x
– volume: 29
  start-page: 1124
  year: 2021
  ident: 408_CR92
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.06.006
– volume: 29
  start-page: 747
  year: 2021
  ident: 408_CR228
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.04.007
– volume: 27
  start-page: 1205
  year: 2021
  ident: 408_CR59
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01377-8
– volume: 54
  start-page: 1611
  year: 2021
  ident: 408_CR167
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.06.003
– volume: 583
  start-page: 290
  year: 2020
  ident: 408_CR69
  publication-title: Nature
  doi: 10.1038/s41586-020-2349-y
– year: 2021
  ident: 408_CR241
  publication-title: Nature
  doi: 10.1038/s41586-021-03739-1
– volume: 184
  start-page: 4220
  year: 2021
  ident: 408_CR100
  publication-title: Cell
  doi: 10.1016/j.cell.2021.06.020
– volume: 93
  start-page: 104941
  year: 2021
  ident: 408_CR157
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2021.104941
– volume: 217
  year: 2020
  ident: 408_CR107
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20201181
– volume: 117
  start-page: 23652
  year: 2020
  ident: 408_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2008281117
– volume: 6
  year: 2021
  ident: 408_CR96
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abg6461
– volume: 34
  start-page: 108630
  year: 2021
  ident: 408_CR143
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.108630
– volume: 384
  start-page: 1885
  year: 2021
  ident: 408_CR224
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2102214
– year: 2021
  ident: 408_CR156
  publication-title: bioRxiv
  doi: 10.1101/2021.03.03.21252812
– volume: 13
  start-page: 392
  year: 2021
  ident: 408_CR158
  publication-title: Viruses
  doi: 10.3390/v13030392
– volume: 184
  start-page: 3426
  year: 2021
  ident: 408_CR123
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.025
– volume: 384
  start-page: 2352
  year: 2021
  ident: 408_CR222
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2103740
– volume: 10
  year: 2021
  ident: 408_CR12
  publication-title: eLife
  doi: 10.7554/eLife.64509
– year: 2021
  ident: 408_CR192
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab283
– volume: 182
  start-page: 812
  year: 2020
  ident: 408_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.043
– volume: 593
  start-page: 266
  year: 2021
  ident: 408_CR191
  publication-title: Nature
  doi: 10.1038/s41586-021-03470-x
– volume: 372
  start-page: n579
  year: 2021
  ident: 408_CR195
  publication-title: BMJ
  doi: 10.1136/bmj.n579
– year: 2021
  ident: 408_CR244
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00157-9
– ident: 408_CR196
– volume: 593
  start-page: 136
  year: 2021
  ident: 408_CR159
  publication-title: Nature
  doi: 10.1038/s41586-021-03412-7
– volume: 296
  start-page: 100536
  year: 2021
  ident: 408_CR171
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2021.100536
– volume: 184
  start-page: 2348
  year: 2021
  ident: 408_CR104
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.037
– volume: 593
  start-page: 130
  year: 2021
  ident: 408_CR121
  publication-title: Nature
  doi: 10.1038/s41586-021-03398-2
– volume: 26
  start-page: 1691
  year: 2020
  ident: 408_CR11
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-1083-1
– volume: 84
  start-page: 3134
  year: 2010
  ident: 408_CR4
  publication-title: J. Virol.
  doi: 10.1128/JVI.01394-09
– volume: 12
  year: 2021
  ident: 408_CR77
  publication-title: Nat. Commun.
– volume: 433
  start-page: 167058
  year: 2021
  ident: 408_CR147
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2021.167058
– volume: 384
  start-page: 2161
  year: 2021
  ident: 408_CR101
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2104192
– volume: 183
  start-page: 1024
  year: 2020
  ident: 408_CR47
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.037
– year: 2021
  ident: 408_CR235
  publication-title: mBio
  doi: 10.1128/mBio.01386-21
– volume: 117
  start-page: 12522
  year: 2020
  ident: 408_CR21
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2007295117
– volume: 29
  start-page: 1137
  year: 2021
  ident: 408_CR80
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.06.001
– volume: 13
  start-page: 1211
  year: 2021
  ident: 408_CR98
  publication-title: Viruses
  doi: 10.3390/v13071211
– volume: 383
  start-page: 1920
  year: 2020
  ident: 408_CR88
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2022483
– volume: 21
  start-page: 245
  year: 2021
  ident: 408_CR45
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00522-1
– year: 2021
  ident: 408_CR236
  publication-title: medRxiv
  doi: 10.1101/2021.04.09.21255206
– volume: 20
  start-page: 100355
  year: 2021
  ident: 408_CR91
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2021.100355
– volume: 5
  year: 2020
  ident: 408_CR132
  publication-title: JCI Insight
– ident: 408_CR110
– volume: 371
  start-page: 850
  year: 2021
  ident: 408_CR129
  publication-title: Science
  doi: 10.1126/science.abf9302
– year: 2021
  ident: 408_CR187
  publication-title: bioRxiv
  doi: 10.1101/2021.03.02.433156
– volume: 596
  start-page: 273
  year: 2021
  ident: 408_CR118
  publication-title: Nature
  doi: 10.1038/s41586-021-03693-y
– volume: 384
  start-page: 1468
  year: 2021
  ident: 408_CR151
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2102179
– volume: 592
  start-page: 116
  year: 2020
  ident: 408_CR135
  publication-title: Nature
  doi: 10.1038/s41586-020-2895-3
– volume: 384
  start-page: 403
  year: 2021
  ident: 408_CR55
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035389
– volume: 369
  start-page: 650
  year: 2020
  ident: 408_CR178
  publication-title: Science
  doi: 10.1126/science.abc6952
– volume: 184
  start-page: 2201
  year: 2021
  ident: 408_CR102
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.033
– volume: 12
  year: 2021
  ident: 408_CR162
  publication-title: mBio
  doi: 10.1128/mBio.00696-21
– volume: 5
  start-page: 1408
  year: 2020
  ident: 408_CR7
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0771-4
– volume: 384
  start-page: 238
  year: 2021
  ident: 408_CR62
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035002
– volume: 397
  start-page: 1351
  year: 2021
  ident: 408_CR213
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00628-0
– volume: 369
  start-page: 1255
  year: 2020
  ident: 408_CR14
  publication-title: Science
  doi: 10.1126/science.abd2161
– volume: 27
  start-page: 1280
  year: 2021
  ident: 408_CR86
  publication-title: Nat Med.
  doi: 10.1038/s41591-021-01386-7
– volume: 30
  start-page: R849
  year: 2020
  ident: 408_CR18
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.06.031
– volume: 369
  start-page: 731
  year: 2020
  ident: 408_CR49
  publication-title: Science
  doi: 10.1126/science.abc7424
– volume: 596
  start-page: 276
  year: 2021
  ident: 408_CR214
  publication-title: Nature
  doi: 10.1038/s41586-021-03777-9
– volume: 325
  start-page: 1896
  year: 2021
  ident: 408_CR150
  publication-title: JAMA
  doi: 10.1001/jama.2021.4388
– volume: 19
  year: 2021
  ident: 408_CR146
  publication-title: PLoS Biol.
– volume: 397
  start-page: 1819
  year: 2021
  ident: 408_CR210
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00947-8
– volume: 13
  start-page: 134
  year: 2021
  ident: 408_CR72
  publication-title: Viruses
  doi: 10.3390/v13010134
– volume: 5
  start-page: 1403
  year: 2020
  ident: 408_CR22
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0770-5
– volume: 584
  start-page: 450
  year: 2020
  ident: 408_CR179
  publication-title: Nature
  doi: 10.1038/s41586-020-2571-7
– volume: 29
  start-page: 516
  year: 2021
  ident: 408_CR219
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.03.009
– volume: 53
  start-page: 524
  year: 2020
  ident: 408_CR61
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.07.020
– ident: 408_CR111
  doi: 10.21203/rs.3.rs-524959/v2
– volume: 384
  start-page: 2354
  year: 2021
  ident: 408_CR206
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2103022
– year: 2021
  ident: 408_CR66
  publication-title: medRxiv
  doi: 10.1101/2021.05.27.21257096
– year: 2021
  ident: 408_CR134
  publication-title: bioRxiv
  doi: 10.1101/2021.06.22.449355
– volume: 184
  start-page: 2183
  year: 2021
  ident: 408_CR74
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.032
– volume: 28
  start-page: 465
  year: 2020
  ident: 408_CR108
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.07.018
– volume: 385
  start-page: 187
  year: 2021
  ident: 408_CR211
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2104974
– volume: 184
  start-page: 3086
  year: 2021
  ident: 408_CR67
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.005
– volume: 592
  start-page: 438
  year: 2021
  ident: 408_CR16
  publication-title: Nature
  doi: 10.1038/s41586-021-03402-9
– volume: 371
  start-page: 288
  year: 2021
  ident: 408_CR29
  publication-title: Science
  doi: 10.1126/science.abe9728
– volume: 385
  start-page: 179
  year: 2021
  ident: 408_CR245
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsr2105280
– year: 2021
  ident: 408_CR175
  publication-title: bioRxiv
  doi: 10.1101/2021.03.09.434607
– volume: 6
  year: 2021
  ident: 408_CR90
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abf7550
– volume: 384
  start-page: 1899
  year: 2021
  ident: 408_CR216
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2103055
– volume: 184
  start-page: 861
  year: 2021
  ident: 408_CR84
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.007
– year: 2021
  ident: 408_CR127
  publication-title: bioRxiv
  doi: 10.1101/2021.03.08.434499
– year: 2021
  ident: 408_CR6
  publication-title: medRxiv
  doi: 10.1101/2021.06.18.21258689
– volume: 385
  start-page: 585
  year: 2021
  ident: 408_CR232
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2108891
– volume: 593
  start-page: 270
  year: 2021
  ident: 408_CR194
  publication-title: Nature
  doi: 10.1038/s41586-021-03426-1
– ident: 408_CR36
– volume: 17
  year: 2021
  ident: 408_CR13
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1009453
– volume: 371
  start-page: 823
  year: 2021
  ident: 408_CR68
  publication-title: Science
  doi: 10.1126/science.abf4830
– volume: 372
  start-page: 815
  year: 2021
  ident: 408_CR19
  publication-title: Science
  doi: 10.1126/science.abh2644
– year: 2021
  ident: 408_CR32
  publication-title: medRxiv
  doi: 10.1101/2021.06.17.21259103
– volume: 383
  start-page: 2603
  year: 2020
  ident: 408_CR56
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– volume: 588
  start-page: 682
  year: 2020
  ident: 408_CR71
  publication-title: Nature
  doi: 10.1038/s41586-020-2852-1
– volume: 588
  start-page: 327
  year: 2020
  ident: 408_CR139
  publication-title: Nature
  doi: 10.1038/s41586-020-2772-0
– year: 2021
  ident: 408_CR33
  publication-title: medRxiv
  doi: 10.1101/2021.06.20.21259195
– volume: 10
  year: 2021
  ident: 408_CR99
  publication-title: Elife
  doi: 10.7554/eLife.69317
– volume: 29
  start-page: 508
  year: 2021
  ident: 408_CR189
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.02.020
– volume: 13
  year: 2021
  ident: 408_CR164
  publication-title: Sci. Transl Med.
  doi: 10.1126/scitranslmed.abi9915
– volume: 581
  start-page: 221
  year: 2020
  ident: 408_CR43
  publication-title: Nature
  doi: 10.1038/s41586-020-2179-y
– volume: 12
  start-page: 513
  year: 2020
  ident: 408_CR106
  publication-title: Viruses
  doi: 10.3390/v12050513
– volume: 593
  start-page: 142
  year: 2021
  ident: 408_CR124
  publication-title: Nature
  doi: 10.1038/s41586-021-03471-w
– volume: 183
  start-page: 1901
  year: 2020
  ident: 408_CR114
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.049
– year: 2021
  ident: 408_CR154
  publication-title: bioRxiv
  doi: 10.1101/2021.02.23.21252259
– year: 2021
  ident: 408_CR155
  publication-title: bioRxiv
  doi: 10.1101/2021.03.06.434059
– ident: 408_CR23
– volume: 20
  start-page: 339
  year: 2020
  ident: 408_CR60
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0321-6
– volume: 184
  start-page: 1804
  year: 2021
  ident: 408_CR79
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.026
– volume: 54
  start-page: 1853
  year: 2021
  ident: 408_CR174
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.07.008
– volume: 397
  start-page: 2331
  year: 2021
  ident: 408_CR209
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)01290-3
– volume: 384
  start-page: 1866
  year: 2021
  ident: 408_CR28
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2100362
– volume: 383
  start-page: 2291
  year: 2020
  ident: 408_CR112
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2031364
– volume: 592
  start-page: 277
  year: 2021
  ident: 408_CR113
  publication-title: Nature
  doi: 10.1038/s41586-021-03291-y
– volume: 592
  start-page: 122
  year: 2021
  ident: 408_CR137
  publication-title: Nature
  doi: 10.1038/s41586-021-03361-1
– volume: 373
  start-page: 648
  year: 2021
  ident: 408_CR221
  publication-title: Science
  doi: 10.1126/science.abi7994
– volume: 591
  start-page: 293
  year: 2021
  ident: 408_CR182
  publication-title: Nature
  doi: 10.1038/s41586-021-03237-4
– volume: 218
  year: 2021
  ident: 408_CR78
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20201993
– volume: 223
  start-page: 1666
  year: 2021
  ident: 408_CR200
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiab082
– volume: 538
  start-page: 211
  year: 2020
  ident: 408_CR83
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.10.060
– volume: 29
  start-page: 477
  year: 2021
  ident: 408_CR160
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.01.014
– volume: 26
  start-page: 2100131
  year: 2021
  ident: 408_CR201
  publication-title: Eur. Surveill.
  doi: 10.2807/1560-7917.ES.2021.26.10.2100130
– volume: 33
  start-page: 108234
  year: 2020
  ident: 408_CR188
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.108234
– volume: 184
  start-page: 2384
  year: 2021
  ident: 408_CR217
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.036
– volume: 9
  year: 2020
  ident: 408_CR48
  publication-title: eLife
  doi: 10.7554/eLife.61312
– ident: 408_CR193
  doi: 10.1016/j.lanepe.2021.100252
– volume: 17
  year: 2021
  ident: 408_CR5
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1009226
– volume: 371
  start-page: 172
  year: 2021
  ident: 408_CR170
  publication-title: Science
  doi: 10.1126/science.abe5901
– volume: 6
  year: 2010
  ident: 408_CR2
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000896
– volume: 538
  start-page: 108
  year: 2020
  ident: 408_CR142
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.11.026
– volume: 371
  start-page: 1139
  year: 2021
  ident: 408_CR176
  publication-title: Science
  doi: 10.1126/science.abf6950
– year: 2021
  ident: 408_CR231
  publication-title: J. Travel. Med.
  doi: 10.1093/jtm/taab104
– year: 2021
  ident: 408_CR243
  publication-title: medRxiv
  doi: 10.1101/2021.06.28.21259576
– volume: 27
  start-page: 620
  year: 2021
  ident: 408_CR115
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01270-4
– volume: 17
  start-page: 998
  year: 2020
  ident: 408_CR186
  publication-title: Cell Mol. Immunol.
  doi: 10.1038/s41423-020-0514-8
– year: 2021
  ident: 408_CR31
  publication-title: medRxiv
  doi: 10.1101/2021.06.23.21259405
– volume: 372
  year: 2021
  ident: 408_CR198
  publication-title: Science
  doi: 10.1126/science.abg3055
– volume: 36
  start-page: 109415
  year: 2021
  ident: 408_CR234
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109415
– volume: 587
  start-page: 270
  year: 2020
  ident: 408_CR87
  publication-title: Nature
  doi: 10.1038/s41586-020-2598-9
– volume: 6
  start-page: 1
  year: 2021
  ident: 408_CR145
  publication-title: NPJ Vaccines
  doi: 10.1038/s41541-020-00265-5
– volume: 27
  start-page: 440
  year: 2021
  ident: 408_CR15
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01255-3
– volume: 19
  start-page: 409
  year: 2021
  ident: 408_CR52
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-021-00573-0
– year: 2021
  ident: 408_CR230
  publication-title: Science
  doi: 10.1126/science.abj4176
– volume: 595
  start-page: 707
  year: 2021
  ident: 408_CR172
  publication-title: Nature
  doi: 10.1038/s41586-021-03677-y
– year: 2021
  ident: 408_CR238
  publication-title: medRxiv
  doi: 10.1101/2021.06.28.21259673
– volume: 184
  start-page: 2372
  year: 2021
  ident: 408_CR208
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.013
– volume: 182
  start-page: 1295
  year: 2020
  ident: 408_CR128
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.012
– volume: 181
  start-page: 281
  year: 2020
  ident: 408_CR40
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.058
– volume: 369
  start-page: 1014
  year: 2020
  ident: 408_CR105
  publication-title: Science
  doi: 10.1126/science.abd0831
– volume: 397
  start-page: 452
  year: 2021
  ident: 408_CR30
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00183-5
SSID ssj0016173
Score 2.7459922
SecondaryResourceType review_article
Snippet The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 757
SubjectTerms 631/250/255
631/326/596/4130
Agriculture
Animal Genetics and Genomics
Biological Evolution
Biomedical and Life Sciences
Biomedicine
Cancer Research
Clinical aspects
Clinical significance
Coronaviruses
COVID-19
COVID-19 - epidemiology
COVID-19 - virology
Disease transmission
Dosage and administration
Epidemiology
Epitopes - immunology
Gene Function
Genetic diversity
Herd immunity
Human Genetics
Humans
Medical research
Monoclonal antibodies
Mutation
Pandemics
Review
Review Article
SARS-CoV-2 - pathogenicity
SARS-CoV-2 - physiology
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - immunology
Spike protein
Vaccination
Vaccine efficacy
Viruses
Title The biological and clinical significance of emerging SARS-CoV-2 variants
URI https://link.springer.com/article/10.1038/s41576-021-00408-x
https://www.ncbi.nlm.nih.gov/pubmed/34535792
https://www.proquest.com/docview/2597612825
https://www.proquest.com/docview/2574406164
https://pubmed.ncbi.nlm.nih.gov/PMC8447121
Volume 22
WOSCitedRecordID wos000696747600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1471-0064
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016173
  issn: 1471-0056
  databaseCode: 7RV
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFqReeD8CZQkIiQONmjgPOye0rFoVCa1Wu7Dam-VHApWqpDS7Vfn3zORVshK9cPHFE8nOPOzxzHwD8J5pZmOlIy_XvvKi3EeVYlp41he5r_Mgbx70l1_5dCpWq3TWPrhVbVplZxNrQ21LQ2_kR3hNR4-bKi0_XfzyqGsURVfbFho7sEcoCaxO3Zv1UYSkiTAHaIA9wrxsi2b8UBxVeHBxSr-lmQhXeD04mLbN81_n03bu5FYAtT6XTh78744ewv32RuqOGxF6BHey4jHca3pU_n4CpyhIbgPVRPx0VWHdrpzSpewPyjUi0XHL3KVqY-p65C7G84U3KZcec6_QG6dkm6fw_eT42-TUa9sveCbhbO1ZrmOOrFJJyjO8KWil8pg6c9ggNUmqbRAbG4exVQmzGXpCwsRhpDnyWHDDTfgMdouyyF6Aq4zRWZaHlvlZFPhWZSKNFKcqbhskMXcg6P69NC02ObXIOJd1jDwUsuGXRH7Jml_y2oGP_TcXDTLHrdRviKWyqS7t1VqOE_SveBjSGt7VFASKUVDWzQ-1qSr5ZTEfEH1oifISF2hUW8SA2yQcrQHlwYAStdYMpzuhkK3VqOSNRDjwtp-mLykTrsjKDdEQpGOCXq4DzxtR7LcfRsgOnjIH-EBIewLCEh_OFGc_a0xxEaGSsMCBw06cb5b177_68vZdvIJ9RhpWZ_8cwO76cpO9hrvman1WXY5gh8-XNK54PQocxSQYwd7n4-lsPqp1-Q9JfUeu
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70KgUINAHGjUxHk4OSC0Wqh21WWFum3Vm3HsBCqhpDS7pf1T_EZm8ipZid564OxJNLbnm7GTb2YAXvOEm0Alvp0ljrL9zEFI8SSyjRNlTpK5Wf1B_2AiptPo8DD-sgK_21wYolW2PrFy1KbQ9I18C4_peOOmTMsPxz9t6hpFf1fbFhq1Weyk57_wyla-H3_E_X3D-fanveHIbroK2DoUfG4bkQQCNVBhLFIMgIlSWUANJ4wb6zBOjBtoE3iBUSE3KR7wIx14fiJQ9UhooT187zW4TpXsCFHRsKOU0FWhIvSjw7epxmaTpON40VaJgVIQ3ZdGfFyRs14gXA4Hf8XDZa7m0g_bKg5u3_3fVvAe3GlO3GxQQ-Q-rKT5A7hZ9-A8fwgjBAqrS1GRvTKVG9amizJitxCXiqDBioxRNjV1dWKzwe7MHhYHNmenCjGcz8tHsH8l01iD1bzI0yfAlNZJmmae4U7qu45RaRT7SlCWunHDQFjgtnstdVN7nVqA_JAVB8CLZG0fEu1DVvYhzyx41z1zXFceuVR6g0xI1tmznduSgxDvj8LzSIdXlQQV_ciJVfRNLcpSjme7PaG3jVBWoIJaNUkaOE2qE9aTXO9JolfS_eHWCGXjFUt5YYEWvOyG6Uli-uVpsSAZKlkZ4i3egse16XfT93zcDhFzC0QPFJ0A1Urvj-RH36ua6ZGPoOSuBZstfC7U-veqPr18Fhtwa7T3eSIn4-nOM7jNCd0V02kdVucni_Q53NCn86Py5EXlJxh8vWpY_QGNx575
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BQg0CcYBoE-fh5IDQ0nbVVavVaheq3oxjJ1AJJaXZLe1f49cxk8eWrERvPXD2JPLY883YnhfAa55wE6jEt7PEUbafOQgpnkS2caLMSTI3qx_0D_bFeBwdHsaTNfjd5sJQWGWrEytFbQpNb-R9PKbjjZsyLftZExYx2R5-PP5pUwcp8rS27TRqEdlLz3_h9a38MNrGvX7D-XDn89au3XQYsHUo-Nw2IgkEzkaFsUjRGCZKZQE1nzBurMM4MW6gTeAFRoXcpHjYj3Tg-YlANiKhhfbwv9dgXeAhw-_B-qed8WS69GGEtX_bRfVvU8XNJmXH8aJ-iWZTUPAvjfi4Pmcds7hqHP6yjquRmyvu28oqDu_8z-t5F243Z3E2qMFzD9bS_D7cqLtznj-AXYQQq4tUkSQzlRvWJpIyinuhKCsCDSsyRnnW1O-JzQbTmb1VHNicnSpEdz4vH8KXK2HjEfTyIk-fAFNaJ2maeYY7qe86RqVR7CtB-evGDQNhgdvuu9RNVXZqDvJDVtEBXiRrWZEoK7KSFXlmwbvlN8d1TZJLqTdJnGSdV7tUaHIQ4s1SeB7N4VVFQeVAchKEb2pRlnI0m3aI3jZEWYET1KpJ30A2qYJYh3KjQ4n6SneHW4GUjb4s5YU0WvByOUxfUgxgnhYLoqFiliHe7y14XMNgyb7n43aImFsgOgBZElAV9e5IfvS9qqYe-QhQ7lrwvoXSxbT-vapPL-diE24imuT-aLz3DG5xAnoVArUBvfnJIn0O1_Xp_Kg8edEoDQZfrxpXfwCj5qlX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+biological+and+clinical+significance+of+emerging+SARS-CoV-2+variants&rft.jtitle=Nature+reviews.+Genetics&rft.au=Tao%2C+Kaiming&rft.au=Tzou%2C+Philip+L.&rft.au=Nouhin%2C+Janin&rft.au=Gupta%2C+Ravindra+K.&rft.date=2021-12-01&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=22&rft.issue=12&rft.spage=757&rft.epage=773&rft_id=info:doi/10.1038%2Fs41576-021-00408-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41576_021_00408_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon