The biological and clinical significance of emerging SARS-CoV-2 variants
The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and r...
Uložené v:
| Vydané v: | Nature reviews. Genetics Ročník 22; číslo 12; s. 757 - 773 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
01.12.2021
Nature Publishing Group |
| Predmet: | |
| ISSN: | 1471-0056, 1471-0064, 1471-0064 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.
In this Review, the authors describe our latest understanding of the emergence and properties of SARS-CoV-2 genetic variants, particularly those designated as WHO (World Health Organization) ‘variants of concern’. They focus on the consequences of these variants for antibody-mediated virus neutralization, with important implications for reinfection risk and for vaccine effectiveness.
Key points
The past several months have witnessed the emergence of four SARS-CoV-2 variants of concern (Alpha, Beta, Gamma and Delta) associated with increased transmissibility, increased risk of reinfection and/or reduced vaccine efficacy.
Many additional SARS-CoV-2 variants sharing mutations and biological features with these variants are also increasingly being identified.
The increasing number of SARS-CoV-2 variants share a repertoire of mutations that is enabling the virus to spread despite rising population immunity while maintaining or increasing its replication fitness.
Whereas most emerging mutations reduce the protective effects of neutralizing antibodies generated by infection and vaccination, several recently identified mutations appear to antagonize the innate immune response to initial infection.
The emergence of SARS-CoV-2 variants requires an expanded research agenda to improve our understanding of emerging SARS-CoV-2 mutations and the correlates of protective immunity against variants with these mutations. |
|---|---|
| AbstractList | The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research. In this Review, the authors describe our latest understanding of the emergence and properties of SARS-CoV-2 genetic variants, particularly those designated as WHO (World Health Organization) ‘variants of concern’. They focus on the consequences of these variants for antibody-mediated virus neutralization, with important implications for reinfection risk and for vaccine effectiveness.
The past several months have witnessed the emergence of four SARS-CoV-2 variants of concern (Alpha, Beta, Gamma and Delta) associated with increased transmissibility, increased risk of reinfection and/or reduced vaccine efficacy.Many additional SARS-CoV-2 variants sharing mutations and biological features with these variants are also increasingly being identified.The increasing number of SARS-CoV-2 variants share a repertoire of mutations that is enabling the virus to spread despite rising population immunity while maintaining or increasing its replication fitness.Whereas most emerging mutations reduce the protective effects of neutralizing antibodies generated by infection and vaccination, several recently identified mutations appear to antagonize the innate immune response to initial infection.The emergence of SARS-CoV-2 variants requires an expanded research agenda to improve our understanding of emerging SARS-CoV-2 mutations and the correlates of protective immunity against variants with these mutations. The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research. The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research. In this Review, the authors describe our latest understanding of the emergence and properties of SARS-CoV-2 genetic variants, particularly those designated as WHO (World Health Organization) 'variants of concern'. They focus on the consequences of these variants for antibody-mediated virus neutralization, with important implications for reinfection risk and for vaccine effectiveness. Key points The past several months have witnessed the emergence of four SARS-CoV-2 variants of concern (Alpha, Beta, Gamma and Delta) associated with increased transmissibility, increased risk of reinfection and/or reduced vaccine efficacy. Many additional SARS-CoV-2 variants sharing mutations and biological features with these variants are also increasingly being identified. The increasing number of SARS-CoV-2 variants share a repertoire of mutations that is enabling the virus to spread despite rising population immunity while maintaining or increasing its replication fitness. Whereas most emerging mutations reduce the protective effects of neutralizing antibodies generated by infection and vaccination, several recently identified mutations appear to antagonize the innate immune response to initial infection. The emergence of SARS-CoV-2 variants requires an expanded research agenda to improve our understanding of emerging SARS-CoV-2 mutations and the correlates of protective immunity against variants with these mutations. The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research. The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.In this Review, the authors describe our latest understanding of the emergence and properties of SARS-CoV-2 genetic variants, particularly those designated as WHO (World Health Organization) ‘variants of concern’. They focus on the consequences of these variants for antibody-mediated virus neutralization, with important implications for reinfection risk and for vaccine effectiveness. The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research. In this Review, the authors describe our latest understanding of the emergence and properties of SARS-CoV-2 genetic variants, particularly those designated as WHO (World Health Organization) ‘variants of concern’. They focus on the consequences of these variants for antibody-mediated virus neutralization, with important implications for reinfection risk and for vaccine effectiveness. Key points The past several months have witnessed the emergence of four SARS-CoV-2 variants of concern (Alpha, Beta, Gamma and Delta) associated with increased transmissibility, increased risk of reinfection and/or reduced vaccine efficacy. Many additional SARS-CoV-2 variants sharing mutations and biological features with these variants are also increasingly being identified. The increasing number of SARS-CoV-2 variants share a repertoire of mutations that is enabling the virus to spread despite rising population immunity while maintaining or increasing its replication fitness. Whereas most emerging mutations reduce the protective effects of neutralizing antibodies generated by infection and vaccination, several recently identified mutations appear to antagonize the innate immune response to initial infection. The emergence of SARS-CoV-2 variants requires an expanded research agenda to improve our understanding of emerging SARS-CoV-2 mutations and the correlates of protective immunity against variants with these mutations. |
| Audience | Academic |
| Author | Gupta, Ravindra K. Nouhin, Janin Kosakovsky Pond, Sergei L. Tao, Kaiming Fera, Daniela Shafer, Robert W. de Oliveira, Tulio Tzou, Philip L. |
| Author_xml | – sequence: 1 givenname: Kaiming surname: Tao fullname: Tao, Kaiming organization: Division of Infectious Diseases, Department of Medicine, Stanford University – sequence: 2 givenname: Philip L. surname: Tzou fullname: Tzou, Philip L. organization: Division of Infectious Diseases, Department of Medicine, Stanford University – sequence: 3 givenname: Janin orcidid: 0000-0003-4985-8377 surname: Nouhin fullname: Nouhin, Janin organization: Division of Infectious Diseases, Department of Medicine, Stanford University – sequence: 4 givenname: Ravindra K. surname: Gupta fullname: Gupta, Ravindra K. organization: Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge – sequence: 5 givenname: Tulio surname: de Oliveira fullname: de Oliveira, Tulio organization: KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal – sequence: 6 givenname: Sergei L. surname: Kosakovsky Pond fullname: Kosakovsky Pond, Sergei L. organization: Institute for Genomics and Evolutionary Medicine, Temple University – sequence: 7 givenname: Daniela orcidid: 0000-0002-1706-9288 surname: Fera fullname: Fera, Daniela organization: Department of Chemistry and Biochemistry, Swarthmore College – sequence: 8 givenname: Robert W. orcidid: 0000-0003-2513-2643 surname: Shafer fullname: Shafer, Robert W. email: rshafer@stanford.edu organization: Division of Infectious Diseases, Department of Medicine, Stanford University, Department of Pathology, Stanford University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34535792$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktr3DAUhU1JaR7tH-iiGAqlXTiVZFmSN4VhaJtAoJBJuxWyLHsUZCmV7DD9972TSSdxKMELvb5zr3R8jrMDH7zJsrcYnWJUis-J4oqzAhFcIESRKDYvsiNM-XbJ6MF-XrHD7Dila4Qww7x8lR2WtCorXpOj7OxqbfLGBhd6q5XLlW9z7ay_WyTbe9vB1GuThy43g4m99X2-WlyuimX4VZD8VkWr_JheZy875ZJ5cz-eZD-_fb1anhUXP76fLxcXhWacjEXLm4pTRBSruUGCNEp1FSVctLjWrG5aXOkWLtcqRlpTMyR0VdKGd6gRXHNdnmRfdnVvpmYwrTZ-jMrJm2gHFf_IoKycn3i7ln24lYKCGwRDgY_3BWL4PZk0ysEmbZxT3oQpSQL3o4hhRgF9_wS9DlP08Dygas4wEaR6oHrljLS-C9BXb4vKBROE8RK8Bur0PxR8rRmshh_bWdifCT7NBMCMZjP2akpJnq8u5-yHR-zaKDeuU3DTaINPc_DdY_f2tv0LBABkB-gYUoqm2yMYyW3q5C51ElIn71InNyAST0TajmrbHN5o3fPScidN0Mf3Jj5Y_IzqL5SN6AE |
| CitedBy_id | crossref_primary_10_1038_s41392_023_01309_7 crossref_primary_10_1093_molbev_msac046 crossref_primary_10_1111_eci_14004 crossref_primary_10_1136_bmjopen_2022_066763 crossref_primary_10_1038_s41591_022_01882_4 crossref_primary_10_1371_journal_ppat_1010465 crossref_primary_10_1007_s10238_023_01163_5 crossref_primary_10_1016_j_molstruc_2023_135409 crossref_primary_10_3390_life14070814 crossref_primary_10_3389_fmed_2023_1294699 crossref_primary_10_1186_s12874_022_01755_x crossref_primary_10_1371_journal_pbio_3001652 crossref_primary_10_1002_hsr2_1377 crossref_primary_10_1186_s13256_025_05431_8 crossref_primary_10_3390_ijms222212412 crossref_primary_10_1016_j_csbj_2024_05_037 crossref_primary_10_1038_s41421_023_00536_0 crossref_primary_10_3390_v15040855 crossref_primary_10_1002_hsr2_1373 crossref_primary_10_1177_11779322231182050 crossref_primary_10_3390_v15010070 crossref_primary_10_1002_jmv_29275 crossref_primary_10_1016_j_heliyon_2023_e17701 crossref_primary_10_1128_jvi_00955_23 crossref_primary_10_1002_jmv_70604 crossref_primary_10_3389_fpubh_2022_966847 crossref_primary_10_1038_s43856_024_00600_0 crossref_primary_10_1093_glycob_cwad097 crossref_primary_10_1155_2022_9594931 crossref_primary_10_7554_eLife_82069 crossref_primary_10_1016_j_ebiom_2022_103934 crossref_primary_10_3390_vaccines10050696 crossref_primary_10_3390_vaccines13030224 crossref_primary_10_1016_j_eclinm_2025_103194 crossref_primary_10_3389_fmed_2022_877391 crossref_primary_10_1002_cbic_202200327 crossref_primary_10_1016_j_heliyon_2023_e23039 crossref_primary_10_1128_mmbr_00026_21 crossref_primary_10_1007_s12519_022_00659_6 crossref_primary_10_3389_fcimb_2025_1548787 crossref_primary_10_3389_fphar_2022_936925 crossref_primary_10_7759_cureus_75438 crossref_primary_10_1007_s11684_023_1043_5 crossref_primary_10_1016_j_nmd_2022_04_001 crossref_primary_10_3390_microorganisms12091745 crossref_primary_10_1371_journal_pone_0278294 crossref_primary_10_3390_microorganisms12091863 crossref_primary_10_1128_jvi_01571_23 crossref_primary_10_3390_vaccines9121435 crossref_primary_10_1016_j_jiph_2022_06_007 crossref_primary_10_1080_14787210_2024_2345881 crossref_primary_10_3390_jcm11113187 crossref_primary_10_3390_v14112556 crossref_primary_10_1016_j_sjbs_2022_103372 crossref_primary_10_3390_ijms241914965 crossref_primary_10_12688_f1000research_122019_2 crossref_primary_10_1371_journal_pone_0285722 crossref_primary_10_1093_ehjqcco_qcae016 crossref_primary_10_3390_v15040999 crossref_primary_10_3390_v16030430 crossref_primary_10_1016_j_bbrc_2023_04_002 crossref_primary_10_1016_j_imu_2022_100873 crossref_primary_10_1002_adsr_202400188 crossref_primary_10_3389_fphar_2025_1570206 crossref_primary_10_1093_ve_veac109 crossref_primary_10_3389_fpubh_2023_1244662 crossref_primary_10_1371_journal_pcbi_1013261 crossref_primary_10_1209_0295_5075_ad7a9e crossref_primary_10_1016_j_heliyon_2024_e25618 crossref_primary_10_3390_biology11081136 crossref_primary_10_3390_microorganisms12061185 crossref_primary_10_1038_s41598_023_41928_2 crossref_primary_10_1016_j_biopha_2022_113368 crossref_primary_10_3389_fmicb_2022_945133 crossref_primary_10_3390_vaccines11020314 crossref_primary_10_1038_s41467_022_31259_7 crossref_primary_10_1038_s41598_024_72842_w crossref_primary_10_1007_s00705_022_05530_7 crossref_primary_10_3389_fchem_2022_933102 crossref_primary_10_1016_j_ejmech_2023_115376 crossref_primary_10_1016_j_omtm_2022_03_013 crossref_primary_10_1016_j_cell_2022_07_002 crossref_primary_10_1016_j_bios_2023_115238 crossref_primary_10_1186_s42269_024_01207_0 crossref_primary_10_1007_s10930_022_10073_6 crossref_primary_10_1038_s41592_022_01444_z crossref_primary_10_1016_j_xcrp_2025_102756 crossref_primary_10_1371_journal_pone_0293416 crossref_primary_10_4014_jmb_2308_08020 crossref_primary_10_1016_j_bmcl_2022_128629 crossref_primary_10_1172_JCI168080 crossref_primary_10_1016_j_virs_2022_11_007 crossref_primary_10_1038_s41467_023_36295_5 crossref_primary_10_3389_fpubh_2024_1325474 crossref_primary_10_1016_j_virs_2022_11_005 crossref_primary_10_1016_S1473_3099_22_00069_X crossref_primary_10_1126_science_abm0811 crossref_primary_10_1002_prot_26422 crossref_primary_10_1007_s41030_023_00231_1 crossref_primary_10_3390_v15071555 crossref_primary_10_1016_j_virusres_2022_198882 crossref_primary_10_3390_microorganisms10020280 crossref_primary_10_1007_s00277_022_04884_x crossref_primary_10_1016_j_imlet_2024_106887 crossref_primary_10_1128_msystems_00035_22 crossref_primary_10_3390_v14030465 crossref_primary_10_1016_j_scitotenv_2024_170961 crossref_primary_10_3390_v17050625 crossref_primary_10_2196_40958 crossref_primary_10_1017_S095026882200084X crossref_primary_10_1038_s41392_022_00937_9 crossref_primary_10_3389_fbioe_2022_1090281 crossref_primary_10_3389_fsci_2024_1298248 crossref_primary_10_1016_j_ijheh_2023_114224 crossref_primary_10_1016_j_biopha_2022_113538 crossref_primary_10_1016_j_jviromet_2023_114759 crossref_primary_10_1016_j_ijbiomac_2023_129051 crossref_primary_10_1038_s42003_022_03739_5 crossref_primary_10_3390_app12115546 crossref_primary_10_1016_j_cmi_2022_04_015 crossref_primary_10_1111_ped_15740 crossref_primary_10_1016_j_sjbs_2022_103315 crossref_primary_10_3390_ijerph182312680 crossref_primary_10_1016_j_isci_2024_110208 crossref_primary_10_1128_jvi_00383_22 crossref_primary_10_3389_fmolb_2025_1575747 crossref_primary_10_1007_s40259_022_00529_7 crossref_primary_10_1016_j_celrep_2023_112842 crossref_primary_10_1093_femsre_fuac042 crossref_primary_10_1016_j_jtemb_2025_127625 crossref_primary_10_2478_jtim_2023_0118 crossref_primary_10_3390_ijms26031263 crossref_primary_10_1128_spectrum_05258_22 crossref_primary_10_3390_jcm12134337 crossref_primary_10_1136_bmjopen_2022_062187 crossref_primary_10_3390_v15081699 crossref_primary_10_1515_dx_2021_0149 crossref_primary_10_1128_jcm_00178_22 crossref_primary_10_3390_v15081690 crossref_primary_10_3390_v16030472 crossref_primary_10_1038_s41467_024_54505_6 crossref_primary_10_3389_fimmu_2022_1053437 crossref_primary_10_3390_v14051037 crossref_primary_10_3390_vaccines13050481 crossref_primary_10_3390_ijms242216151 crossref_primary_10_1128_spectrum_03120_22 crossref_primary_10_4081_mrm_2023_906 crossref_primary_10_3390_vetsci10010006 crossref_primary_10_1038_s41598_024_54920_1 crossref_primary_10_1016_j_compbiomed_2024_109101 crossref_primary_10_3389_fmed_2022_1015620 crossref_primary_10_3390_ijms24021147 crossref_primary_10_3390_v17050722 crossref_primary_10_1016_j_jinf_2024_106310 crossref_primary_10_2147_IDR_S480086 crossref_primary_10_3390_v14020443 crossref_primary_10_1038_s41467_023_38251_9 crossref_primary_10_1101_gr_276407_121 crossref_primary_10_3389_fmicb_2024_1386271 crossref_primary_10_1080_21645515_2022_2045857 crossref_primary_10_3390_vaccines10030432 crossref_primary_10_1038_s41579_022_00722_z crossref_primary_10_1038_s41598_022_18517_w crossref_primary_10_1073_pnas_2219523120 crossref_primary_10_1016_j_jmb_2023_168170 crossref_primary_10_1371_journal_pone_0317104 crossref_primary_10_1016_j_jim_2023_113523 crossref_primary_10_1073_pnas_2203760119 crossref_primary_10_1007_s00477_021_02166_y crossref_primary_10_15252_embr_202255900 crossref_primary_10_1016_j_virs_2022_10_006 crossref_primary_10_3390_biology11121786 crossref_primary_10_1016_j_jinf_2022_01_004 crossref_primary_10_1038_s41598_025_00280_3 crossref_primary_10_1016_j_chom_2022_07_016 crossref_primary_10_1038_s41598_023_30252_4 crossref_primary_10_1016_j_scitotenv_2022_155599 crossref_primary_10_1016_j_aca_2023_341531 crossref_primary_10_3389_fchem_2023_1083399 crossref_primary_10_1038_s41598_022_21481_0 crossref_primary_10_1128_msystems_00095_21 crossref_primary_10_3389_fmicb_2025_1639187 crossref_primary_10_3390_ijms25168839 crossref_primary_10_1186_s40246_023_00515_2 crossref_primary_10_1016_j_scitotenv_2022_157546 crossref_primary_10_1073_pnas_2221652120 crossref_primary_10_1016_j_genrep_2022_101549 crossref_primary_10_1080_07391102_2024_2327537 crossref_primary_10_1186_s12941_024_00750_y crossref_primary_10_1016_j_envres_2022_112816 crossref_primary_10_1016_j_ebiom_2024_105385 crossref_primary_10_3201_eid2802_212422 crossref_primary_10_3389_fimmu_2024_1444620 crossref_primary_10_1016_j_chom_2022_07_006 crossref_primary_10_1007_s12274_021_3949_z crossref_primary_10_1016_j_isci_2025_113498 crossref_primary_10_1093_nargab_lqad002 crossref_primary_10_3390_v15010108 crossref_primary_10_1016_j_chom_2023_09_012 crossref_primary_10_1093_ve_veac040 crossref_primary_10_1016_j_jmb_2023_167973 crossref_primary_10_1016_j_jphotobiol_2022_112538 crossref_primary_10_1038_s41598_023_48647_8 crossref_primary_10_1186_s12879_023_08525_0 crossref_primary_10_1016_j_idm_2025_04_003 crossref_primary_10_1186_s12911_022_01931_5 crossref_primary_10_3389_fcimb_2022_1009372 crossref_primary_10_3390_v15010222 crossref_primary_10_3389_fimmu_2023_1160283 crossref_primary_10_3390_pathogens13121051 crossref_primary_10_1007_s11427_022_2166_y crossref_primary_10_12688_gatesopenres_13654_1 crossref_primary_10_3390_ijerph19094930 crossref_primary_10_3390_v14050854 crossref_primary_10_3390_v15122291 crossref_primary_10_1093_procel_pwac027 crossref_primary_10_3389_fcimb_2023_1180297 crossref_primary_10_1016_j_csbj_2025_05_021 crossref_primary_10_1038_s41401_022_01043_w crossref_primary_10_3389_fmicb_2023_1228128 crossref_primary_10_3390_jpm12122001 crossref_primary_10_3390_tropicalmed8070340 crossref_primary_10_1007_s00521_024_10278_z crossref_primary_10_1093_nargab_lqad037 crossref_primary_10_1002_admi_202400005 crossref_primary_10_1371_journal_pcbi_1012215 crossref_primary_10_1080_14789450_2022_2085564 crossref_primary_10_1016_j_bbrc_2023_04_088 crossref_primary_10_1016_j_scitotenv_2023_167844 crossref_primary_10_3390_ijms222212114 crossref_primary_10_1093_bib_bbac513 crossref_primary_10_12688_f1000research_72896_3 crossref_primary_10_12688_f1000research_72896_4 crossref_primary_10_2217_imt_2021_0168 crossref_primary_10_12688_f1000research_72896_2 crossref_primary_10_3389_fimmu_2022_957407 crossref_primary_10_1016_j_virusres_2022_198786 crossref_primary_10_3389_fimmu_2023_1223730 crossref_primary_10_1166_jbn_2024_3933 crossref_primary_10_3390_bios14100465 crossref_primary_10_3390_ph15060741 crossref_primary_10_1016_j_isci_2024_109716 crossref_primary_10_1093_ve_veac064 crossref_primary_10_3390_v15112153 crossref_primary_10_1038_s41467_023_43189_z crossref_primary_10_1007_s00604_023_05671_9 crossref_primary_10_3390_v17030362 crossref_primary_10_1016_j_biopha_2022_113522 crossref_primary_10_1016_j_ygeno_2022_110466 crossref_primary_10_3390_vetsci9070363 crossref_primary_10_1016_j_ijsu_2022_106656 crossref_primary_10_1016_j_jmoldx_2022_04_003 crossref_primary_10_1126_sciimmunol_abp9312 crossref_primary_10_1007_s10238_023_01264_1 crossref_primary_10_3390_v14091989 crossref_primary_10_3390_v14010055 crossref_primary_10_1080_07391102_2023_2260484 crossref_primary_10_3390_v16020177 crossref_primary_10_1007_s10528_024_10962_8 crossref_primary_10_1097_MD_0000000000036417 crossref_primary_10_1093_cid_ciac498 crossref_primary_10_3390_microorganisms11030580 crossref_primary_10_1016_j_eehl_2025_100135 crossref_primary_10_1038_s41576_023_00610_z crossref_primary_10_3390_atmos12121640 crossref_primary_10_3389_fnano_2022_1060756 crossref_primary_10_3390_v14020399 crossref_primary_10_1016_j_mran_2022_100227 crossref_primary_10_2215_CJN_10300721 crossref_primary_10_3389_fimmu_2022_898520 crossref_primary_10_1016_j_cgh_2024_07_028 crossref_primary_10_3390_v14091878 crossref_primary_10_3390_ijms231710091 crossref_primary_10_3390_v14010104 crossref_primary_10_3390_ph16040608 crossref_primary_10_1016_j_phytol_2025_102991 crossref_primary_10_1016_j_artmed_2023_102722 crossref_primary_10_3390_cryst12070990 crossref_primary_10_1016_j_talanta_2023_124937 crossref_primary_10_1016_j_biopha_2022_113810 crossref_primary_10_1038_s41598_024_75658_w crossref_primary_10_1016_j_drudis_2022_103468 crossref_primary_10_1093_infdis_jiad496 crossref_primary_10_1155_2022_7336309 crossref_primary_10_1515_cclm_2021_1287 crossref_primary_10_1002_anse_202300001 crossref_primary_10_1016_j_bioorg_2022_106264 crossref_primary_10_1093_qjmed_hcac014 crossref_primary_10_1038_s41586_021_04342_0 crossref_primary_10_1186_s12879_022_07555_4 crossref_primary_10_1016_j_compbiomed_2022_105574 crossref_primary_10_2147_IDR_S360103 crossref_primary_10_1002_jmv_28032 crossref_primary_10_3389_fimmu_2022_993754 crossref_primary_10_1038_s41421_024_00733_5 crossref_primary_10_18621_eurj_1211808 crossref_primary_10_1111_odi_14319 crossref_primary_10_1038_s12276_024_01197_z crossref_primary_10_3390_molecules27010295 crossref_primary_10_1371_journal_pone_0265489 crossref_primary_10_3389_fpubh_2022_966756 crossref_primary_10_1038_s41541_022_00481_1 crossref_primary_10_3390_ijms231911497 crossref_primary_10_1093_ve_veac034 crossref_primary_10_1002_smll_202200836 crossref_primary_10_3390_microorganisms10020306 crossref_primary_10_1016_j_ijid_2021_11_040 crossref_primary_10_1039_D2RA00277A crossref_primary_10_3390_vaccines10101728 crossref_primary_10_1093_ve_veac024 crossref_primary_10_1016_j_jiph_2022_11_028 crossref_primary_10_3390_bios12121129 crossref_primary_10_3390_healthcare11182539 crossref_primary_10_3389_fmed_2021_755463 crossref_primary_10_1016_j_jiph_2023_06_004 crossref_primary_10_3389_fmolb_2024_1403635 crossref_primary_10_3390_biom12111680 crossref_primary_10_1016_S1473_3099_21_00688_5 crossref_primary_10_1016_j_ebiom_2023_104700 crossref_primary_10_3390_microorganisms11020529 crossref_primary_10_3389_fpubh_2022_990832 crossref_primary_10_3390_ijms23116189 crossref_primary_10_1016_j_antiviral_2022_105507 crossref_primary_10_1038_s41598_021_02489_4 crossref_primary_10_1038_s41598_022_22552_y crossref_primary_10_1128_jvi_02059_21 crossref_primary_10_1186_s12985_024_02506_8 crossref_primary_10_1016_j_omtn_2023_01_008 crossref_primary_10_1016_j_ccm_2024_10_015 crossref_primary_10_1016_j_scitotenv_2023_166300 crossref_primary_10_1002_minf_202300055 crossref_primary_10_1038_s41586_021_04387_1 crossref_primary_10_3390_ph18060861 crossref_primary_10_1016_j_micpath_2022_105400 crossref_primary_10_1371_journal_pone_0289990 crossref_primary_10_1186_s12916_022_02312_5 crossref_primary_10_3390_ijms24076369 crossref_primary_10_3390_diagnostics12112609 crossref_primary_10_1016_j_heliyon_2023_e15083 crossref_primary_10_1016_j_snb_2023_133382 crossref_primary_10_1038_s41598_023_48594_4 crossref_primary_10_1016_j_cell_2023_06_001 crossref_primary_10_1002_jmv_28615 crossref_primary_10_3390_v14040752 crossref_primary_10_19127_bshealthscience_1296114 crossref_primary_10_1128_jcm_00342_22 crossref_primary_10_1016_j_ijid_2022_06_032 crossref_primary_10_1016_j_jiph_2022_10_007 crossref_primary_10_1007_s13206_024_00174_y crossref_primary_10_1080_22221751_2022_2098060 crossref_primary_10_1002_admt_202200965 crossref_primary_10_1016_j_bios_2024_116375 crossref_primary_10_1016_j_ejps_2023_106564 crossref_primary_10_1016_j_ebiom_2023_104960 crossref_primary_10_1007_s11695_023_06506_5 crossref_primary_10_1016_j_ijid_2025_107912 crossref_primary_10_3390_ani13193094 crossref_primary_10_1080_21645515_2025_2485840 crossref_primary_10_1038_s41598_024_57982_3 crossref_primary_10_3390_v14071374 crossref_primary_10_3390_environments11120279 crossref_primary_10_1016_j_biopha_2022_112802 crossref_primary_10_1002_ptr_7442 crossref_primary_10_1016_j_bjid_2024_103735 crossref_primary_10_3390_v15041017 crossref_primary_10_1016_j_heliyon_2024_e27452 crossref_primary_10_1038_s41598_024_76013_9 crossref_primary_10_1016_j_sasc_2025_200195 crossref_primary_10_3390_diagnostics11112092 crossref_primary_10_1002_jmv_28996 crossref_primary_10_1038_s41587_022_01604_8 crossref_primary_10_3390_ijerph19148377 crossref_primary_10_1002_jmv_28990 crossref_primary_10_1007_s00705_022_05385_y crossref_primary_10_1371_journal_pone_0265680 crossref_primary_10_3389_fmed_2022_795889 crossref_primary_10_1002_slct_202304776 crossref_primary_10_1002_jmv_70377 crossref_primary_10_3390_v14061318 crossref_primary_10_1007_s42977_023_00159_2 crossref_primary_10_1128_spectrum_01736_22 crossref_primary_10_3389_fcimb_2022_933100 crossref_primary_10_3390_vaccines12111236 crossref_primary_10_1371_journal_pone_0274043 crossref_primary_10_1080_07391102_2022_2095305 crossref_primary_10_1016_j_virol_2024_110319 crossref_primary_10_5993_AJHB_47_6_20 crossref_primary_10_1016_j_advnut_2023_06_003 crossref_primary_10_1016_j_csbj_2022_05_053 crossref_primary_10_3390_v15091862 crossref_primary_10_1016_j_diabres_2022_109984 crossref_primary_10_1007_s00705_022_05395_w crossref_primary_10_3390_ijms23052870 crossref_primary_10_1186_s43162_022_00121_z crossref_primary_10_1016_j_nmni_2022_100967 crossref_primary_10_1038_s41598_024_77405_7 crossref_primary_10_1016_j_tibtech_2022_07_012 crossref_primary_10_1097_MCP_0000000000000868 crossref_primary_10_3390_pathogens11010045 crossref_primary_10_1007_s11356_022_19979_1 crossref_primary_10_1371_journal_pone_0279956 crossref_primary_10_3389_fimmu_2024_1363572 crossref_primary_10_1177_13596535221082773 crossref_primary_10_1016_j_virs_2025_05_008 crossref_primary_10_3389_fimmu_2022_977064 crossref_primary_10_1016_j_jmii_2023_03_008 crossref_primary_10_1016_j_compbiomed_2022_106129 crossref_primary_10_3390_vaccines10091538 crossref_primary_10_3389_fimmu_2023_1130398 crossref_primary_10_1128_jcm_02283_21 crossref_primary_10_3389_fcimb_2022_919346 crossref_primary_10_1134_S1070363222060123 crossref_primary_10_3389_fimmu_2022_879792 crossref_primary_10_1038_s41421_024_00734_4 crossref_primary_10_1038_s41598_023_37866_8 crossref_primary_10_3390_vaccines10050703 crossref_primary_10_3389_fimmu_2022_869809 crossref_primary_10_1089_vim_2022_0121 crossref_primary_10_1089_vim_2022_0122 crossref_primary_10_3389_fmed_2022_825245 crossref_primary_10_1080_07391102_2023_2252069 crossref_primary_10_2147_NDT_S491046 crossref_primary_10_3389_fmed_2022_849217 crossref_primary_10_1007_s00284_023_03366_1 crossref_primary_10_3390_v14071349 crossref_primary_10_1093_bfgp_elad051 crossref_primary_10_1016_j_heliyon_2024_e30208 crossref_primary_10_1186_s12967_023_04553_1 crossref_primary_10_1038_s41467_022_29135_5 crossref_primary_10_1007_s40620_022_01245_9 crossref_primary_10_1016_j_cell_2021_12_032 crossref_primary_10_1016_j_cellsig_2023_110798 crossref_primary_10_3390_v14122734 crossref_primary_10_1002_emp2_13115 crossref_primary_10_1021_jacs_2c03420 crossref_primary_10_1186_s12985_024_02607_4 crossref_primary_10_1002_mco2_143 crossref_primary_10_2217_fvl_2021_0277 crossref_primary_10_3389_fimmu_2022_863039 crossref_primary_10_1016_j_ijantimicag_2022_106606 crossref_primary_10_1007_s13721_024_00462_5 crossref_primary_10_1016_j_csbj_2022_04_022 crossref_primary_10_1038_s41598_022_21321_1 crossref_primary_10_1021_acsestwater_5c00142 crossref_primary_10_3389_fimmu_2022_908010 crossref_primary_10_1016_j_antiviral_2022_105445 crossref_primary_10_1093_ve_veae020 crossref_primary_10_1016_j_vaccine_2022_12_019 crossref_primary_10_3201_eid2907_230198 crossref_primary_10_1016_j_vaccine_2022_06_026 crossref_primary_10_1002_jmv_28437 crossref_primary_10_1038_s41598_022_19567_w crossref_primary_10_1371_journal_pone_0325858 crossref_primary_10_1017_S0950268824000360 crossref_primary_10_1093_eurpub_ckad005 crossref_primary_10_3390_vaccines11010058 crossref_primary_10_1016_j_meegid_2022_105360 crossref_primary_10_3390_life13020304 crossref_primary_10_1016_j_jbc_2023_104960 crossref_primary_10_2144_fsoa_2023_0112 crossref_primary_10_1007_s13205_024_04184_3 crossref_primary_10_3389_fbioe_2022_1052436 crossref_primary_10_3390_v15030692 crossref_primary_10_1002_smtd_202401611 crossref_primary_10_1038_s41598_022_16914_9 crossref_primary_10_1016_j_prp_2022_154128 crossref_primary_10_3390_v14122714 crossref_primary_10_1016_j_ejor_2023_08_011 crossref_primary_10_1089_jamp_2022_0043 crossref_primary_10_1038_s41586_022_04661_w crossref_primary_10_1093_ofid_ofac006 crossref_primary_10_1039_D2SC04775F crossref_primary_10_3389_fmolb_2023_1288686 crossref_primary_10_1002_jmv_28442 crossref_primary_10_1016_j_jconrel_2025_01_044 crossref_primary_10_1038_s41586_022_04464_z crossref_primary_10_1186_s12865_024_00625_z crossref_primary_10_3389_fphar_2022_996005 crossref_primary_10_1136_bmjopen_2021_058074 crossref_primary_10_1177_13596535231208831 crossref_primary_10_3390_vaccines11030655 crossref_primary_10_3389_fmicb_2023_1136386 crossref_primary_10_3390_jpm13020279 crossref_primary_10_3389_fimmu_2022_966098 crossref_primary_10_3390_cells12020262 crossref_primary_10_3390_v14122728 crossref_primary_10_1038_s41598_023_30052_w crossref_primary_10_3389_fphar_2022_1036208 crossref_primary_10_1007_s10096_023_04590_0 crossref_primary_10_3390_vaccines10060864 crossref_primary_10_1080_2162402X_2022_2120275 crossref_primary_10_1186_s12863_023_01133_6 crossref_primary_10_3390_ijms25158032 crossref_primary_10_7189_jogh_13_06027 crossref_primary_10_3390_biom13101467 crossref_primary_10_3389_fmed_2022_816314 crossref_primary_10_1128_spectrum_02468_22 crossref_primary_10_1111_irv_13083 crossref_primary_10_1186_s40580_023_00410_5 crossref_primary_10_3390_molecules28010208 crossref_primary_10_1128_spectrum_04632_22 crossref_primary_10_3389_bjbs_2022_10426 crossref_primary_10_1007_s13205_022_03430_w crossref_primary_10_1016_j_diagmicrobio_2022_115789 crossref_primary_10_1148_radiol_220676 crossref_primary_10_1016_j_antiviral_2024_105879 crossref_primary_10_1126_science_abo7896 crossref_primary_10_1016_j_virol_2022_05_001 crossref_primary_10_3389_fimmu_2024_1377126 crossref_primary_10_1016_j_antiviral_2024_105992 crossref_primary_10_3389_fimmu_2023_1271353 crossref_primary_10_1038_s41467_024_47599_5 crossref_primary_10_1186_s43094_023_00510_3 crossref_primary_10_3390_v14122775 crossref_primary_10_3390_math13182908 crossref_primary_10_1182_bloodadvances_2023010371 crossref_primary_10_1007_s43538_023_00176_8 crossref_primary_10_1093_bib_bbad140 crossref_primary_10_1016_j_virusres_2023_199131 crossref_primary_10_1038_s41467_024_55024_0 crossref_primary_10_1016_j_vaccine_2025_126988 crossref_primary_10_3390_biom12091233 crossref_primary_10_1016_j_buildenv_2025_113333 crossref_primary_10_3389_fphar_2022_840727 crossref_primary_10_1148_radiol_222600 crossref_primary_10_1016_j_ymthe_2023_03_018 crossref_primary_10_1093_ofid_ofad147 crossref_primary_10_1093_pnasnexus_pgac049 crossref_primary_10_1002_jmv_27936 crossref_primary_10_1038_s41467_024_45180_8 crossref_primary_10_3390_v14092017 crossref_primary_10_5812_jjm_138090 crossref_primary_10_1097_MPG_0000000000003416 crossref_primary_10_1016_j_compbiomed_2023_107576 crossref_primary_10_1002_cti2_70019 crossref_primary_10_1111_imm_13764 crossref_primary_10_3390_v14030549 crossref_primary_10_1093_cid_ciac712 crossref_primary_10_3389_fimmu_2022_950666 crossref_primary_10_1016_j_snb_2023_133433 crossref_primary_10_1038_s41423_022_00924_8 crossref_primary_10_1111_febs_70163 crossref_primary_10_1016_j_isci_2025_112974 crossref_primary_10_1371_journal_ppat_1011131 crossref_primary_10_1007_s12010_023_04466_1 crossref_primary_10_3390_v15051129 crossref_primary_10_1016_j_cej_2024_148756 crossref_primary_10_3390_v16081192 crossref_primary_10_1371_journal_pone_0284483 crossref_primary_10_3389_fimmu_2022_833355 crossref_primary_10_3390_microorganisms11020397 crossref_primary_10_3390_v15122401 crossref_primary_10_1038_s41423_023_01104_y crossref_primary_10_1016_j_antiviral_2024_105970 crossref_primary_10_1016_j_jgeb_2023_100347 crossref_primary_10_3389_fmolb_2022_976490 crossref_primary_10_1186_s11658_022_00352_6 crossref_primary_10_1016_j_clinbiochem_2022_08_004 crossref_primary_10_3389_fimmu_2024_1357731 crossref_primary_10_3389_fmicb_2022_934993 crossref_primary_10_3390_pathogens14080758 crossref_primary_10_1002_jcb_30243 crossref_primary_10_4103_aja202250 crossref_primary_10_1016_j_heliyon_2024_e36568 crossref_primary_10_1038_s41421_022_00449_4 crossref_primary_10_3390_biomedicines12040821 crossref_primary_10_1016_j_virusres_2024_199319 crossref_primary_10_1007_s10544_023_00649_z crossref_primary_10_1126_sciimmunol_abo3425 crossref_primary_10_3390_v14092039 crossref_primary_10_1016_j_kint_2022_01_022 crossref_primary_10_3389_fmed_2022_995960 crossref_primary_10_1007_s11030_022_10440_6 crossref_primary_10_1038_s41598_023_40008_9 crossref_primary_10_17816_MAJ108725 crossref_primary_10_3389_fimmu_2023_1204543 crossref_primary_10_3390_covid5070100 crossref_primary_10_1016_j_virs_2022_09_007 crossref_primary_10_3389_fmolb_2024_1451280 crossref_primary_10_1016_j_watres_2024_121338 crossref_primary_10_1002_hsr2_70166 crossref_primary_10_3390_v14112416 crossref_primary_10_1016_j_annepidem_2022_08_051 crossref_primary_10_1016_j_compbiomed_2022_105903 crossref_primary_10_1038_s41564_022_01092_1 crossref_primary_10_3390_vaccines10060909 crossref_primary_10_1016_j_immuno_2025_100055 crossref_primary_10_3390_vaccines11030598 crossref_primary_10_5812_jjm_156608 crossref_primary_10_1002_jmv_27611 crossref_primary_10_1038_s41422_022_00700_3 crossref_primary_10_1038_s41422_022_00746_3 crossref_primary_10_7759_cureus_44755 crossref_primary_10_1186_s12879_023_08771_2 crossref_primary_10_3389_fimmu_2022_1016108 crossref_primary_10_1016_j_bj_2024_100766 crossref_primary_10_1002_mco2_666 crossref_primary_10_1186_s12951_023_01981_5 crossref_primary_10_3389_fmicb_2024_1459644 crossref_primary_10_1021_acs_jpcb_5c01718 crossref_primary_10_1016_j_jprot_2025_105397 crossref_primary_10_3389_fcimb_2022_894613 crossref_primary_10_1055_a_1956_9641 crossref_primary_10_1002_jmv_27735 crossref_primary_10_1038_s41392_023_01420_9 crossref_primary_10_1128_msphere_00659_22 crossref_primary_10_1038_s41467_022_30219_5 crossref_primary_10_1096_fj_202202099RR crossref_primary_10_2174_1574893618666230809121509 crossref_primary_10_3390_biom13091421 crossref_primary_10_3390_ijms24032517 crossref_primary_10_1089_cmb_2022_0469 crossref_primary_10_1016_j_compbiomed_2023_107258 crossref_primary_10_3390_vaccines12080927 crossref_primary_10_3389_fmicb_2022_1022006 crossref_primary_10_3389_fmicb_2022_901848 crossref_primary_10_1016_j_virol_2023_06_005 crossref_primary_10_1016_j_pediatrneurol_2022_12_003 crossref_primary_10_1007_s11262_023_01984_2 crossref_primary_10_1038_s41598_024_70697_9 crossref_primary_10_1051_e3sconf_202455305047 crossref_primary_10_3390_vaccines10122063 crossref_primary_10_1016_j_biopha_2024_116900 crossref_primary_10_1093_pnasnexus_pgae558 crossref_primary_10_3390_ijerph192012997 crossref_primary_10_3390_bios13080784 crossref_primary_10_12688_f1000research_143633_3 crossref_primary_10_12688_f1000research_143633_2 crossref_primary_10_3390_v14040695 crossref_primary_10_12688_f1000research_143633_1 crossref_primary_10_3389_fmed_2022_888631 crossref_primary_10_1080_24694452_2024_2346728 crossref_primary_10_3390_life12020194 crossref_primary_10_1016_j_vaccine_2022_10_017 crossref_primary_10_1146_annurev_immunol_083122_043054 crossref_primary_10_1128_jvi_01301_22 crossref_primary_10_1371_journal_pone_0311993 crossref_primary_10_1109_TCBB_2024_3368046 crossref_primary_10_3390_ijms24109072 crossref_primary_10_1038_s41579_023_00878_2 crossref_primary_10_1002_anse_202200012 crossref_primary_10_1084_jem_20220367 crossref_primary_10_1371_journal_pone_0270024 crossref_primary_10_3390_v16050697 crossref_primary_10_1016_j_watres_2024_121463 crossref_primary_10_3389_fpubh_2023_1273443 crossref_primary_10_1002_jmv_27517 crossref_primary_10_1002_jmv_27759 crossref_primary_10_3389_fimmu_2022_871874 crossref_primary_10_3389_fimmu_2022_906687 crossref_primary_10_3389_fmats_2022_1039247 crossref_primary_10_1016_j_vaccine_2023_07_065 crossref_primary_10_1371_journal_pone_0281281 crossref_primary_10_3390_v15061355 crossref_primary_10_1080_0886022X_2023_2266227 crossref_primary_10_3389_fmed_2022_896352 crossref_primary_10_1002_jmv_27524 crossref_primary_10_1038_s42256_024_00966_9 crossref_primary_10_1371_journal_pone_0281399 crossref_primary_10_1038_s41598_025_92104_7 crossref_primary_10_1093_abt_tbac015 crossref_primary_10_1038_s41392_022_00920_4 |
| Cites_doi | 10.1101/2021.06.02.21258076 10.1101/2021.06.17.21259103 10.1101/2021.06.23.21259405 10.1128/JCM.00527-21 10.1093/infdis/jiab368 10.1101/2021.02.24.432576 10.1101/2021.02.12.21251658 10.1101/2021.06.28.21259673 10.1101/2021.05.27.21257096 10.1101/2021.03.09.434607 10.1101/2021.03.20.436257 10.1101/2021.01.12.20249080 10.1101/2021.06.22.449355 10.1038/s41586-021-03738-2 10.1101/2020.04.10.029454 10.21203/rs.3.rs-492659/v1 10.1101/2021.04.13.439482 10.1126/science.abj4176 10.1101/2021.06.05.21258365 10.1056/NEJMoa2107659 10.1128/mBio.01386-21 10.1101/2021.06.06.446826 10.1101/2021.06.21.21259241 10.1093/cid/ciab308 10.1101/2021.03.02.433156 10.1101/2021.03.03.21252812 10.1101/2021.05.19.21257469 10.1101/2021.02.23.21252268 10.1038/s41586-021-03739-1 10.1101/2021.06.18.21258689 10.1101/2021.03.06.434059 10.1101/2021.04.09.21255206 10.1101/2021.02.23.21252259 10.1101/2021.06.28.21259576 10.1093/cid/ciab646 10.1101/2021.03.08.434499 10.1136/annrheumdis-2021-220647 10.1101/2021.06.20.21259195 10.1101/2021.05.19.21257472 10.1016/S2666-5247(21)00129-4 10.1093/jtm/taab104 10.1093/cid/ciab283 10.1016/S2666-5247(21)00157-9 10.1101/2021.06.21.21259010 10.1101/2021.06.17.448820 10.1038/s41586-020-2180-5 10.1038/s41591-021-01413-7 10.1016/j.xcrm.2021.100204 10.1371/journal.pbio.3001115 10.1016/j.isci.2021.102311 10.1056/NEJMoa2101544 10.1016/j.chom.2020.11.007 10.1038/nrg2323 10.1038/s41467-020-19818-2 10.1038/s41467-021-21336-8 10.1016/j.chom.2021.02.003 10.1016/j.cell.2021.06.002 10.1056/NEJMc2107799 10.1002/jmv.26545 10.1038/s41586-020-2814-7 10.1016/j.chom.2020.11.012 10.1128/mSphere.00408-20 10.1016/j.chom.2021.03.002 10.1093/molbev/msaa314 10.1038/s41596-021-00491-8 10.1016/j.jmb.2020.07.009 10.1056/NEJMoa2027906 10.1038/s41591-021-01318-5 10.2807/1560-7917.ES.2021.26.11.2100256 10.1016/j.celrep.2021.109292 10.1016/j.chom.2021.06.009 10.1016/S0140-6736(21)01358-1 10.1016/j.cell.2021.01.037 10.1038/s41591-021-01294-w 10.1038/s41586-020-2294-9 10.1126/science.abc4776 10.1016/j.cell.2021.03.055 10.1126/science.abc6284 10.1126/science.abg6105 10.1038/s41579-020-00468-6 10.1016/j.cell.2020.12.015 10.1016/j.cell.2021.02.042 10.1016/j.chom.2021.05.010 10.1016/j.cell.2020.09.032 10.1001/jama.2021.0202 10.1016/j.bbrc.2020.10.012 10.1038/s41586-021-03324-6 10.1016/S2666-5247(21)00068-9 10.1002/jmv.27062 10.1126/science.abb2507 10.1016/j.vaccine.2021.05.063 10.1126/science.abe8499 10.1038/s41587-020-0631-z 10.1016/S2468-2667(21)00055-4 10.2807/1560-7917.ES.2020.26.1.2002106 10.1073/pnas.0508200103 10.1016/j.cell.2020.07.012 10.1001/jama.2021.4388 10.1056/NEJMc2106083 10.1016/S0140-6736(20)32661-1 10.1016/j.xcrm.2021.100313 10.1016/j.celrep.2021.108890 10.1016/j.cell.2021.03.028 10.1016/S2666-5247(20)30054-9 10.1038/s41586-021-03696-9 10.1038/s41586-020-03041-6 10.1016/j.xcrm.2021.100255 10.1016/j.chom.2021.03.005 10.3390/vaccines9010013 10.1038/s41591-021-01285-x 10.1016/j.chom.2021.06.006 10.1016/j.chom.2021.04.007 10.1038/s41591-021-01377-8 10.1016/j.immuni.2021.06.003 10.1038/s41586-020-2349-y 10.1016/j.cell.2021.06.020 10.1016/j.meegid.2021.104941 10.1084/jem.20201181 10.1073/pnas.2008281117 10.1126/sciimmunol.abg6461 10.1016/j.celrep.2020.108630 10.1056/NEJMoa2102214 10.3390/v13030392 10.1016/j.cell.2021.04.025 10.1056/NEJMc2103740 10.7554/eLife.64509 10.1016/j.cell.2020.06.043 10.1038/s41586-021-03470-x 10.1136/bmj.n579 10.1038/s41586-021-03412-7 10.1016/j.jbc.2021.100536 10.1016/j.cell.2021.02.037 10.1038/s41586-021-03398-2 10.1038/s41591-020-1083-1 10.1128/JVI.01394-09 10.1016/j.jmb.2021.167058 10.1056/NEJMc2104192 10.1016/j.cell.2020.09.037 10.1073/pnas.2007295117 10.1016/j.chom.2021.06.001 10.3390/v13071211 10.1056/NEJMoa2022483 10.1038/s41577-021-00522-1 10.1016/j.xcrm.2021.100355 10.1126/science.abf9302 10.1038/s41586-021-03693-y 10.1056/NEJMc2102179 10.1038/s41586-020-2895-3 10.1056/NEJMoa2035389 10.1126/science.abc6952 10.1016/j.cell.2021.02.033 10.1128/mBio.00696-21 10.1038/s41564-020-0771-4 10.1056/NEJMoa2035002 10.1016/S0140-6736(21)00628-0 10.1126/science.abd2161 10.1038/s41591-021-01386-7 10.1016/j.cub.2020.06.031 10.1126/science.abc7424 10.1038/s41586-021-03777-9 10.1016/S0140-6736(21)00947-8 10.3390/v13010134 10.1038/s41564-020-0770-5 10.1038/s41586-020-2571-7 10.1016/j.chom.2021.03.009 10.1016/j.immuni.2020.07.020 10.21203/rs.3.rs-524959/v2 10.1056/NEJMc2103022 10.1016/j.cell.2021.02.032 10.1016/j.chom.2020.07.018 10.1056/NEJMc2104974 10.1016/j.cell.2021.05.005 10.1038/s41586-021-03402-9 10.1126/science.abe9728 10.1056/NEJMsr2105280 10.1126/sciimmunol.abf7550 10.1056/NEJMoa2103055 10.1016/j.cell.2021.01.007 10.1056/NEJMoa2108891 10.1038/s41586-021-03426-1 10.1371/journal.ppat.1009453 10.1126/science.abf4830 10.1126/science.abh2644 10.1056/NEJMoa2034577 10.1038/s41586-020-2852-1 10.1038/s41586-020-2772-0 10.7554/eLife.69317 10.1016/j.chom.2021.02.020 10.1126/scitranslmed.abi9915 10.1038/s41586-020-2179-y 10.3390/v12050513 10.1038/s41586-021-03471-w 10.1016/j.cell.2020.10.049 10.1038/s41577-020-0321-6 10.1016/j.cell.2021.02.026 10.1016/j.immuni.2021.07.008 10.1016/S0140-6736(21)01290-3 10.1056/NEJMc2100362 10.1056/NEJMc2031364 10.1038/s41586-021-03291-y 10.1038/s41586-021-03361-1 10.1126/science.abi7994 10.1038/s41586-021-03237-4 10.1084/jem.20201993 10.1093/infdis/jiab082 10.1016/j.bbrc.2020.10.060 10.1016/j.chom.2021.01.014 10.2807/1560-7917.ES.2021.26.10.2100130 10.1016/j.celrep.2020.108234 10.1016/j.cell.2021.03.036 10.7554/eLife.61312 10.1016/j.lanepe.2021.100252 10.1371/journal.ppat.1009226 10.1126/science.abe5901 10.1371/journal.ppat.1000896 10.1016/j.bbrc.2020.11.026 10.1126/science.abf6950 10.1038/s41591-021-01270-4 10.1038/s41423-020-0514-8 10.1126/science.abg3055 10.1016/j.celrep.2021.109415 10.1038/s41586-020-2598-9 10.1038/s41541-020-00265-5 10.1038/s41591-021-01255-3 10.1038/s41579-021-00573-0 10.1038/s41586-021-03677-y 10.1016/j.cell.2021.03.013 10.1016/j.cell.2020.08.012 10.1016/j.cell.2020.02.058 10.1126/science.abd0831 10.1016/S0140-6736(21)00183-5 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2021 2021. Springer Nature Limited. COPYRIGHT 2021 Nature Publishing Group Springer Nature Limited 2021. |
| Copyright_xml | – notice: Springer Nature Limited 2021 – notice: 2021. Springer Nature Limited. – notice: COPYRIGHT 2021 Nature Publishing Group – notice: Springer Nature Limited 2021. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
| DOI | 10.1038/s41576-021-00408-x |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology |
| EISSN | 1471-0064 |
| EndPage | 773 |
| ExternalDocumentID | PMC8447121 A682673357 34535792 10_1038_s41576_021_00408_x |
| Genre | Journal Article Review |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R24 AI136618 |
| GroupedDBID | --- -DZ .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AFBBN AFFNX AFKRA AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EBS EE. EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR IHW INH INR ISR ITC LK8 M0L M1P M7P N9A NAPCQ NNMJJ O9- ODYON PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION CGR CUY CVF ECM EIF NFIDA NPM PHGZT PHGZM 7QP 7QR 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c672t-d7b57402a697e082baaf54278d19c69bd15cd535da62de9608c534b7f0b87c7c3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 765 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696747600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-0056 1471-0064 |
| IngestDate | Tue Nov 04 01:55:20 EST 2025 Thu Sep 04 20:28:12 EDT 2025 Mon Oct 06 18:40:02 EDT 2025 Sat Nov 29 13:00:33 EST 2025 Sat Nov 29 10:18:24 EST 2025 Wed Nov 26 10:11:42 EST 2025 Thu May 22 21:21:56 EDT 2025 Thu Apr 03 07:09:03 EDT 2025 Tue Nov 18 20:07:19 EST 2025 Sat Nov 29 02:34:59 EST 2025 Fri Feb 21 02:36:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | 2021. Springer Nature Limited. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c672t-d7b57402a697e082baaf54278d19c69bd15cd535da62de9608c534b7f0b87c7c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-2513-2643 0000-0003-4985-8377 0000-0002-1706-9288 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8447121 |
| PMID | 34535792 |
| PQID | 2597612825 |
| PQPubID | 44267 |
| PageCount | 17 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8447121 proquest_miscellaneous_2574406164 proquest_journals_2597612825 gale_infotracmisc_A682673357 gale_infotracacademiconefile_A682673357 gale_incontextgauss_ISR_A682673357 gale_healthsolutions_A682673357 pubmed_primary_34535792 crossref_primary_10_1038_s41576_021_00408_x crossref_citationtrail_10_1038_s41576_021_00408_x springer_journals_10_1038_s41576_021_00408_x |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature reviews. Genetics |
| PublicationTitleAbbrev | Nat Rev Genet |
| PublicationTitleAlternate | Nat Rev Genet |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Braun (CR87) 2020; 587 Korber (CR8) 2020; 182 Jackson (CR6) 2021 Wu (CR151) 2021; 384 Day, Gandon, Lion, Otto (CR18) 2020; 30 Chen (CR117) 2021; 27 Rappazzo (CR68) 2021; 371 Wang (CR121) 2021; 593 Duffy, Shackelton, Holmes (CR3) 2008; 9 Wec (CR49) 2020; 369 McMahan (CR53) 2020; 590 Chen, Wang, Wang, Wei (CR168) 2020; 432 Gottlieb (CR64) 2021; 325 Plante (CR189) 2021; 29 Corti, Purcell, Snell, Veesler (CR67) 2021; 184 Wu (CR246) 2021 Boni (CR7) 2020; 5 Hoffmann (CR217) 2021; 184 Collier (CR159) 2021; 593 Copin (CR109) 2021; 184 Focosi, Tuccori, Baj, Maggi (CR98) 2021; 13 Motozono (CR92) 2021; 29 Zhang (CR166) 2021 Harvey (CR52) 2021; 19 Grifoni (CR89) 2021; 29 Yurkovetskiy (CR138) 2020; 183 Supasa (CR102) 2021; 184 Ozer (CR236) 2021 Deng (CR123) 2021; 184 Xie (CR115) 2021; 27 Earle (CR82) 2021; 39 Yu (CR85) 2020; 369 Chandrashekar (CR54) 2020; 369 Gao (CR93) 2021; 24 Tegally (CR16) 2021; 592 Khoury (CR59) 2021; 27 Voysey (CR248) 2020; 397 Candido (CR14) 2020; 369 Finkelstein (CR72) 2021; 13 Shiakolas (CR76) 2021; 2 Faulkner (CR99) 2021; 10 Tarke (CR91) 2021; 20 Ferrareze (CR157) 2021; 93 Thorne (CR185) 2021 Kemp (CR113) 2021; 592 MacLean (CR26) 2021; 19 Wang (CR228) 2021; 29 Riepler (CR125) 2021; 9 Wang (CR167) 2021; 54 Xia (CR188) 2020; 33 Abe (CR132) 2020; 5 Johnson (CR182) 2021; 591 Sahin (CR58) 2020; 586 Zhou (CR235) 2021 Jangra (CR161) 2021; 2 Tarke (CR94) 2021; 2 Plante (CR135) 2020; 592 Liu (CR179) 2020; 584 Thomson (CR169) 2021; 184 Wibmer (CR218) 2021; 27 Walsh (CR57) 2020; 383 Watanabe (CR46) 2020; 11 Sheikh, McMenamin, Taylor, Robertson (CR233) 2021; 397 Wang (CR206) 2021; 384 Kistler, Bedford (CR12) 2021; 10 Nadesalingam (CR244) 2021 Simmonds (CR9) 2020; 5 Muecksch (CR174) 2021; 54 Saito (CR183) 2021 CR111 Mavian (CR21) 2020; 117 CR110 Baum (CR105) 2020; 369 Challen (CR35) 2021 Shinde (CR216) 2021; 384 Choi (CR112) 2020; 383 Liu (CR118) 2021; 596 Zhang (CR134) 2021 Schmidt (CR107) 2020; 217 Muik (CR152) 2021; 371 Pinto (CR69) 2020; 583 Borges (CR201) 2021; 26 Dearlove (CR24) 2020; 117 Liu (CR127) 2021 Li (CR220) 2021; 184 Rees-Spear (CR149) 2021; 34 Kustin (CR226) 2021; 27 Hoffmann (CR234) 2021; 36 Gupta (CR66) 2021 Acevedo (CR238) 2021 Eguia (CR13) 2021; 17 Wang (CR153) 2021; 592 Hodcroft (CR180) 2021 Carvalho, Krammer, Iwasaki (CR45) 2021; 21 Winkler (CR79) 2021; 184 Dhar (CR34) 2021 Madhi (CR224) 2021; 384 CR215 Planas (CR204) 2021; 27 Abu-Raddad, Chemaitelly, Butt (CR211) 2021; 385 Minskaia (CR1) 2006; 103 Kidd (CR200) 2021; 223 Moyo-Gwete (CR101) 2021; 384 Wang (CR239) 2021; 595 Pegu (CR230) 2021 CR27 Bolze (CR33) 2021 Furer (CR242) 2021 CR23 Crawford (CR106) 2020; 12 Leung, Shum, Leung, Lam, Wu (CR197) 2021; 26 Graham (CR207) 2021; 6 Shen (CR222) 2021; 384 McCarthy (CR176) 2021; 371 Starr (CR128) 2020; 182 Liu (CR116) 2021; 385 Garcia-Beltran (CR208) 2021; 184 CR227 Souza (CR229) 2021 Walls (CR40) 2020; 181 Gobeil (CR143) 2021; 34 Buss (CR29) 2021; 371 Jackson, Zhang, Farzan, Choe (CR142) 2020; 538 Piccoli (CR47) 2020; 183 Cele (CR124) 2021; 593 Chen (CR97) 2021 CR38 CR37 Cerutti (CR70) 2021; 29 CR36 Wrapp (CR41) 2020; 367 Faria (CR19) 2021; 372 Sette, Crotty (CR84) 2021; 184 Gobeil (CR140) 2021; 373 Liu (CR100) 2021; 184 Zhu (CR146) 2021; 19 Barnes (CR71) 2020; 588 Peng (CR192) 2021 Meng (CR177) 2021; 35 Grabowski, Preibisch, Giziński, Kochańczyk, Lipniacki (CR158) 2021; 13 Liu (CR160) 2021; 29 Weisblum (CR48) 2020; 9 Tada (CR162) 2021; 12 Morel (CR20) 2020; 38 Bayarri-Olmos (CR171) 2021; 296 Chi (CR178) 2020; 369 Salvatore (CR31) 2021 Krause (CR245) 2021; 385 Schäfer (CR78) 2021; 218 Avanzato (CR114) 2020; 183 Munnink (CR170) 2021; 371 Yadav (CR231) 2021 Betton (CR203) 2021 Turner (CR240) 2021 Weissman (CR144) 2021; 29 Edara (CR122) 2021; 385 Garcia-Beltran (CR63) 2021; 184 Dolton (CR95) 2021 Sholukh (CR126) 2021 V’kovski, Kratzel, Steiner, Stalder, Thiel (CR44) 2020; 19 Martin (CR25) 2021 Jiang (CR186) 2020; 17 Golubchik (CR199) 2021 Graham, Baric (CR4) 2010; 84 Wink (CR237) 2021 Cathcart (CR175) 2021 Davies (CR194) 2021; 593 Bernal (CR232) 2021; 385 Case (CR108) 2020; 28 Agerer (CR96) 2021; 6 Volz (CR191) 2021; 593 Tablizo (CR156) 2021 Rambaut (CR22) 2020; 5 Atyeo (CR61) 2020; 53 Zhou (CR137) 2021; 592 Shen (CR148) 2021; 29 Haidar (CR243) 2021 Yuan, Liu, Wu, Wilson (CR73) 2021; 538 McCallum (CR221) 2021; 373 Benton (CR139) 2020; 588 Starr, Greaney, Dingens, Bloom (CR131) 2021; 2 Tan (CR133) 2020; 38 Edara, Hudson, Xie, Ahmed, Suthar (CR205) 2021; 325 Grint (CR202) 2021; 26 Saini (CR90) 2021; 6 Laffeber, de Koning, Kanaar, Lebbink (CR147) 2021; 433 Lan (CR42) 2020; 581 Bange (CR86) 2021; 27 Edridge (CR11) 2020; 26 Ferreira (CR165) 2021 Parker (CR187) 2021 McCallum (CR51) 2021; 184 Baden (CR55) 2021; 384 Giacomo, Mercatelli, Rakhimov, Giorgi (CR173) 2021; 93 Haas (CR210) 2021; 397 Greaney (CR164) 2021; 13 Dejnirattisai (CR103) 2021; 184 Gribble (CR5) 2021; 17 Eckerle (CR2) 2010; 6 Wall (CR209) 2021; 397 Zhou (CR104) 2021; 184 Zhang (CR141) 2020; 11 Brown (CR181) 2021 Pereson (CR17) 2021; 93 Bartsch (CR81) 2021; 12 Polack (CR56) 2020; 383 Poh (CR75) 2020; 11 DiPiazza, Graham, Ruckwardt (CR83) 2020; 538 Heath (CR212) 2021 Starr (CR129) 2021; 371 Hou (CR136) 2020; 370 van Dorp (CR10) 2020; 11 Karim, de Oliveira (CR28) 2021; 384 Emary (CR213) 2021; 397 Dejnirattisai (CR74) 2021; 184 Wang (CR77) 2021; 12 Challen (CR195) 2021; 372 Weinreich (CR62) 2021; 384 Sadoff (CR225) 2021; 384 Davies (CR198) 2021; 372 Edara (CR150) 2021; 325 Annavajhala (CR154) 2021 Li (CR163) 2020; 182 Greaney (CR50) 2021; 29 Goel (CR223) 2021; 6 Röltgen, Boyd (CR247) 2021; 29 Tauzin (CR80) 2021; 29 Zou (CR145) 2021; 6 Ranzani (CR249) 2021 Edara (CR219) 2021; 29 Hodcroft (CR172) 2021; 595 Jackson (CR88) 2020; 383 Sabino (CR30) 2021; 397 Riley (CR32) 2021 Leary (CR190) 2021 (CR39) 2020; 1 CR196 CR193 Xie (CR120) 2021; 16 Iwasaki, Yang (CR60) 2020; 20 Tegally (CR15) 2021; 27 Guo (CR184) 2021 Shang (CR43) 2020; 581 Weinreich (CR65) 2021 Collier (CR241) 2021 Bascos, Mirano-Bascos, Saloma (CR155) 2021 Planas (CR214) 2021; 596 Greaney (CR130) 2021; 29 Thi Nhu Thao (CR119) 2020; 582 A Nadesalingam (408_CR244) 2021 BA Johnson (408_CR182) 2021; 591 MT Finkelstein (408_CR72) 2021; 13 A Iwasaki (408_CR60) 2020; 20 N Faulkner (408_CR99) 2021; 10 MS Graham (408_CR207) 2021; 6 W Dejnirattisai (408_CR103) 2021; 184 RR Goel (408_CR223) 2021; 6 408_CR227 P Wang (408_CR228) 2021; 29 RL Gottlieb (408_CR64) 2021; 325 408_CR110 AJ Greaney (408_CR130) 2021; 29 408_CR111 A Rambaut (408_CR22) 2020; 5 H Zhou (408_CR235) 2021 JZ Zhang (408_CR134) 2021 CM Poh (408_CR75) 2020; 11 T Thi Nhu Thao (408_CR119) 2020; 582 R Wang (408_CR167) 2021; 54 TN Starr (408_CR131) 2021; 2 A Sette (408_CR84) 2021; 184 F Muecksch (408_CR174) 2021; 54 V Furer (408_CR242) 2021 H Xia (408_CR188) 2020; 33 DS Khoury (408_CR59) 2021; 27 X Chi (408_CR178) 2020; 369 D Planas (408_CR214) 2021; 596 WF Garcia-Beltran (408_CR63) 2021; 184 CO Barnes (408_CR71) 2020; 588 B Meng (408_CR177) 2021; 35 408_CR215 R Challen (408_CR195) 2021; 372 B Jackson (408_CR6) 2021 J Gribble (408_CR5) 2021; 17 X Zhu (408_CR146) 2021; 19 K McMahan (408_CR53) 2020; 590 K Guo (408_CR184) 2021 AJ Greaney (408_CR50) 2021; 29 B Morel (408_CR20) 2020; 38 T Kustin (408_CR226) 2021; 27 L Piccoli (408_CR47) 2020; 183 G Dolton (408_CR95) 2021 A Sheikh (408_CR233) 2021; 397 LG Thorne (408_CR185) 2021 SD Giacomo (408_CR173) 2021; 93 A Chandrashekar (408_CR54) 2020; 369 S Duffy (408_CR3) 2008; 9 A Muik (408_CR152) 2021; 371 NG Davies (408_CR198) 2021; 372 S Jangra (408_CR161) 2021; 2 C Motozono (408_CR92) 2021; 29 M McCallum (408_CR51) 2021; 184 SSA Karim (408_CR28) 2021; 384 B Zhou (408_CR137) 2021; 592 Y Liu (408_CR116) 2021; 385 G-L Wang (408_CR206) 2021; 384 EC Sabino (408_CR30) 2021; 397 PAG Ferrareze (408_CR157) 2021; 93 OA MacLean (408_CR26) 2021; 19 PL Wink (408_CR237) 2021 MF Boni (408_CR7) 2020; 5 A Gupta (408_CR66) 2021 T Carvalho (408_CR45) 2021; 21 Q Li (408_CR163) 2020; 182 L Zhang (408_CR141) 2020; 11 EJ Haas (408_CR210) 2021; 397 DA Collier (408_CR159) 2021; 593 D Weinreich (408_CR65) 2021 P Wang (408_CR121) 2021; 593 TN Starr (408_CR129) 2021; 371 PT Heath (408_CR212) 2021 JS Turner (408_CR240) 2021 E Minskaia (408_CR1) 2006; 103 C Mavian (408_CR21) 2020; 117 DJ Grint (408_CR202) 2021; 26 D Focosi (408_CR98) 2021; 13 BBO Munnink (408_CR170) 2021; 371 A Gao (408_CR93) 2021; 24 Y Weisblum (408_CR48) 2020; 9 L Riepler (408_CR125) 2021; 9 J Braun (408_CR87) 2020; 587 Z Liu (408_CR160) 2021; 29 CK Wibmer (408_CR218) 2021; 27 J Liu (408_CR118) 2021; 596 F Grabowski (408_CR158) 2021; 13 KE Kistler (408_CR12) 2021; 10 MK Annavajhala (408_CR154) 2021 SM-C Gobeil (408_CR143) 2021; 34 EB Hodcroft (408_CR180) 2021 M Yuan (408_CR73) 2021; 538 LF Buss (408_CR29) 2021; 371 EE Walsh (408_CR57) 2020; 383 A Tarke (408_CR94) 2021; 2 Q Li (408_CR220) 2021; 184 VV Edara (408_CR219) 2021; 29 AL Cathcart (408_CR175) 2021 S Riley (408_CR32) 2021 S Leary (408_CR190) 2021 AJ Greaney (408_CR164) 2021; 13 AZ Wec (408_CR49) 2020; 369 NG Davies (408_CR194) 2021; 593 DA Collier (408_CR241) 2021 A Baum (408_CR105) 2020; 369 VA Avanzato (408_CR114) 2020; 183 T Golubchik (408_CR199) 2021 MJ Pereson (408_CR17) 2021; 93 C Laffeber (408_CR147) 2021; 433 NAD Bascos (408_CR155) 2021 DJ Benton (408_CR139) 2020; 588 C Wang (408_CR77) 2021; 12 KA Earle (408_CR82) 2021; 39 D Weissman (408_CR144) 2021; 29 The COVID-19 Genomics UK (COG-UK) Consortium. (408_CR39) 2020; 1 D Zhou (408_CR104) 2021; 184 ML Acevedo (408_CR238) 2021 WT Harvey (408_CR52) 2021; 19 KR McCarthy (408_CR176) 2021; 371 PR Krause (408_CR245) 2021; 385 EM Bange (408_CR86) 2021; 27 JB Case (408_CR108) 2020; 28 AM Sholukh (408_CR126) 2021 E Volz (408_CR191) 2021; 593 408_CR196 G Haidar (408_CR243) 2021 A Schäfer (408_CR78) 2021; 218 408_CR193 D Wrapp (408_CR41) 2020; 367 WM Souza (408_CR229) 2021 SM-C Gobeil (408_CR140) 2021; 373 Y Watanabe (408_CR46) 2020; 11 V Borges (408_CR201) 2021; 26 JA Plante (408_CR135) 2020; 592 DS Candido (408_CR14) 2020; 369 K Wu (408_CR246) 2021 J Peng (408_CR192) 2021 X Xie (408_CR120) 2021; 16 DM Weinreich (408_CR62) 2021; 384 J Zou (408_CR145) 2021; 6 T Moyo-Gwete (408_CR101) 2021; 384 M Hoffmann (408_CR234) 2021; 36 J Lan (408_CR42) 2020; 581 EC Wall (408_CR209) 2021; 397 CW Tan (408_CR133) 2020; 38 K Leung (408_CR197) 2021; 26 RL Graham (408_CR4) 2010; 84 B Korber (408_CR8) 2020; 182 P V’kovski (408_CR44) 2020; 19 YJ Hou (408_CR136) 2020; 370 EC Thomson (408_CR169) 2021; 184 A Grifoni (408_CR89) 2021; 29 J Shang (408_CR43) 2020; 581 Z Wang (408_CR239) 2021; 595 A Tauzin (408_CR80) 2021; 29 C Atyeo (408_CR61) 2020; 53 KHD Crawford (408_CR106) 2020; 12 K Wu (408_CR151) 2021; 384 H Tegally (408_CR15) 2021; 27 M Voysey (408_CR248) 2020; 397 LJ Abu-Raddad (408_CR211) 2021; 385 M Salvatore (408_CR31) 2021 B Dearlove (408_CR24) 2020; 117 ES Winkler (408_CR79) 2021; 184 A Tarke (408_CR91) 2021; 20 SA Kemp (408_CR113) 2021; 592 X Shen (408_CR148) 2021; 29 R Bayarri-Olmos (408_CR171) 2021; 296 L Zhang (408_CR166) 2021 VV Edara (408_CR205) 2021; 325 AWD Edridge (408_CR11) 2020; 26 A Bolze (408_CR33) 2021 R Challen (408_CR35) 2021 YC Bartsch (408_CR81) 2021; 12 J Sadoff (408_CR225) 2021; 384 P Simmonds (408_CR9) 2020; 5 NR Faria (408_CR19) 2021; 372 AR Shiakolas (408_CR76) 2021; 2 MS Dhar (408_CR34) 2021 G Cerutti (408_CR70) 2021; 29 B Choi (408_CR112) 2020; 383 KRW Emary (408_CR213) 2021; 397 D Corti (408_CR67) 2021; 184 CG Rappazzo (408_CR68) 2021; 371 L van Dorp (408_CR10) 2020; 11 RE Chen (408_CR117) 2021; 27 P Supasa (408_CR102) 2021; 184 I Ferreira (408_CR165) 2021 M Betton (408_CR203) 2021 H Tegally (408_CR16) 2021; 592 X Shen (408_CR222) 2021; 384 OT Ranzani (408_CR249) 2021 A Saito (408_CR183) 2021 B Agerer (408_CR96) 2021; 6 F Schmidt (408_CR107) 2020; 217 M Hoffmann (408_CR217) 2021; 184 RT Eguia (408_CR13) 2021; 17 U Sahin (408_CR58) 2020; 586 LA Jackson (408_CR88) 2020; 383 D Planas (408_CR204) 2021; 27 T Day (408_CR18) 2020; 30 PD Yadav (408_CR231) 2021 JA Plante (408_CR189) 2021; 29 L Yurkovetskiy (408_CR138) 2020; 183 Z Wang (408_CR153) 2021; 592 VV Edara (408_CR150) 2021; 325 T Tada (408_CR162) 2021; 12 LR Baden (408_CR55) 2021; 384 J Chen (408_CR168) 2020; 432 D Pinto (408_CR69) 2020; 583 K Röltgen (408_CR247) 2021; 29 Y Liu (408_CR127) 2021 CB Jackson (408_CR142) 2020; 538 EA Ozer (408_CR236) 2021 WF Garcia-Beltran (408_CR208) 2021; 184 FA Tablizo (408_CR156) 2021 JL Bernal (408_CR232) 2021; 385 408_CR23 AC Walls (408_CR40) 2020; 181 MD Parker (408_CR187) 2021 408_CR27 X Deng (408_CR123) 2021; 184 JC Brown (408_CR181) 2021 SK Saini (408_CR90) 2021; 6 A Pegu (408_CR230) 2021 L Liu (408_CR179) 2020; 584 S Cele (408_CR124) 2021; 593 M McCallum (408_CR221) 2021; 373 M Kidd (408_CR200) 2021; 223 EB Hodcroft (408_CR172) 2021; 595 FP Polack (408_CR56) 2020; 383 C Rees-Spear (408_CR149) 2021; 34 DP Martin (408_CR25) 2021 X Chen (408_CR97) 2021 C Liu (408_CR100) 2021; 184 408_CR37 V. V Edara (408_CR122) 2021; 385 408_CR38 408_CR36 H Jiang (408_CR186) 2020; 17 X Xie (408_CR115) 2021; 27 SA Madhi (408_CR224) 2021; 384 LD Eckerle (408_CR2) 2010; 6 KT Abe (408_CR132) 2020; 5 TN Starr (408_CR128) 2020; 182 V Shinde (408_CR216) 2021; 384 W Dejnirattisai (408_CR74) 2021; 184 AT DiPiazza (408_CR83) 2020; 538 J Yu (408_CR85) 2020; 369 R Copin (408_CR109) 2021; 184 |
| References_xml | – year: 2021 ident: CR34 article-title: Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Preprint at publication-title: medRxiv doi: 10.1101/2021.06.02.21258076 – ident: CR196 – volume: 6 start-page: 1 year: 2021 end-page: 4 ident: CR145 article-title: The effect of SARS-CoV-2 D614G mutation on BNT162b2 vaccine-elicited neutralization publication-title: NPJ Vaccines – volume: 117 start-page: 12522 year: 2020 end-page: 12523 ident: CR21 article-title: Sampling bias and incorrect rooting make phylogenetic network tracing of SARS-COV-2 infections unreliable publication-title: Proc. Natl Acad. Sci. USA – year: 2021 ident: CR32 article-title: REACT-1 round 12 report: resurgence of SARS-CoV-2 infections in England associated with increased frequency of the Delta variant. Preprint at publication-title: medRxiv doi: 10.1101/2021.06.17.21259103 – year: 2021 ident: CR31 article-title: Resurgence of SARS-CoV-2 in India: potential role of the B.1.617.2 (delta) variant and delayed interventions. Preprint at publication-title: medRxiv doi: 10.1101/2021.06.23.21259405 – year: 2021 ident: CR126 article-title: Evaluation of cell-based and surrogate SARS-CoV-2 neutralization assays publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00527-21 – year: 2021 ident: CR165 article-title: SARS-CoV-2 B.1.617 mutations L452 and E484Q are not synergistic for antibody evasion publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiab368 – year: 2021 ident: CR181 article-title: Increased transmission of SARS-CoV-2 lineage B.1.1.7 (VOC 2020212/01) is not accounted for by a replicative advantage in primary airway cells or antibody escape. Preprint at publication-title: bioRxiv doi: 10.1101/2021.02.24.432576 – year: 2021 ident: CR180 article-title: Emergence in late 2020 of multiple lineages of SARS-CoV-2 spike protein variants affecting amino acid position 677. Preprint at publication-title: bioRxiv doi: 10.1101/2021.02.12.21251658 – volume: 592 start-page: 616 year: 2021 end-page: 622 ident: CR153 article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants publication-title: Nature – volume: 592 start-page: 277 year: 2021 end-page: 282 ident: CR113 article-title: SARS-CoV-2 evolution during treatment of chronic infection publication-title: Nature – year: 2021 ident: CR238 article-title: Infectivity and immune escape of the new SARS-CoV-2 variant of interest Lambda. Preprint at publication-title: medRxiv doi: 10.1101/2021.06.28.21259673 – volume: 218 year: 2021 ident: CR78 article-title: Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo publication-title: J. Exp. Med. – volume: 17 start-page: 998 year: 2020 end-page: 1000 ident: CR186 article-title: SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70 publication-title: Cell Mol. Immunol. – year: 2021 ident: CR66 article-title: Early COVID-19 treatment with SARS-CoV-2 neutralizing antibody sotrovimab. Preprint at publication-title: medRxiv doi: 10.1101/2021.05.27.21257096 – volume: 184 start-page: 1804 year: 2021 end-page: 1820.e16 ident: CR79 article-title: Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection publication-title: Cell – volume: 29 start-page: 508 year: 2021 end-page: 515 ident: CR189 article-title: The variant gambit: COVID-19’s next move publication-title: Cell Host Microbe – year: 2021 ident: CR175 article-title: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2. Preprint at publication-title: bioRxiv doi: 10.1101/2021.03.09.434607 – year: 2021 ident: CR184 article-title: Interferon resistance of emerging SARS-CoV-2 variants. Preprint at publication-title: bioRxiv doi: 10.1101/2021.03.20.436257 – year: 2021 ident: CR199 article-title: Early analysis of a potential link between viral load and the N501Y mutation in the SARS-COV-2 spike protein. Preprint at publication-title: bioRxiv doi: 10.1101/2021.01.12.20249080 – volume: 223 start-page: 1666 year: 2021 end-page: 1670 ident: CR200 article-title: S-variant SARS-CoV-2 lineage B1.1.7 is associated with significantly higher viral loads in samples tested by ThermoFisher TaqPath RT-qPCR publication-title: J. Infect. Dis. – volume: 27 start-page: 1205 year: 2021 end-page: 1211 ident: CR59 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection publication-title: Nat. Med. – volume: 385 start-page: 664 year: 2021 end-page: 666 ident: CR122 article-title: Infection and Vaccine-Induced Neutralizing-Antibody Responses to the SARS-CoV-2 B.1.617 Variants publication-title: N. Engl. J. Med. – volume: 9 start-page: 267 year: 2008 end-page: 276 ident: CR3 article-title: Rates of evolutionary change in viruses: patterns and determinants publication-title: Nat. Rev. Genet. – volume: 19 year: 2021 ident: CR26 article-title: Natural selection in the evolution of SARS-CoV-2 in bats created a generalist virus and highly capable human pathogen publication-title: PLoS Biol. – volume: 538 start-page: 108 year: 2020 end-page: 115 ident: CR142 article-title: Functional importance of the D614G mutation in the SARS-CoV-2 spike protein publication-title: Biochem. Biophys. Res. Commun. – volume: 325 start-page: 1896 year: 2021 end-page: 1898 ident: CR150 article-title: Neutralizing Antibodies Against SARS-CoV-2 Variants After Infection and Vaccination publication-title: JAMA – volume: 384 start-page: 1468 year: 2021 end-page: 1470 ident: CR151 article-title: Serum neutralizing activity elicited by mRNA-1273 vaccine — preliminary report publication-title: N. Engl. J. Med. – volume: 183 start-page: 1024 year: 2020 end-page: 1042.e21 ident: CR47 article-title: Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology publication-title: Cell – year: 2021 ident: CR134 article-title: Detection of antibodies neutralizing historical and emerging SARS-CoV-2 strains using a thermodynamically coupled de novo biosensor system. Preprint at publication-title: bioRxiv doi: 10.1101/2021.06.22.449355 – volume: 5 year: 2020 ident: CR132 article-title: A simple protein-based surrogate neutralization assay for SARS-CoV-2 publication-title: JCI Insight – volume: 588 start-page: 327 year: 2020 end-page: 330 ident: CR139 article-title: Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion publication-title: Nature – volume: 11 year: 2020 ident: CR46 article-title: Vulnerabilities in coronavirus glycan shields despite extensive glycosylation publication-title: Nat. Commun. – volume: 385 start-page: 472 year: 2021 end-page: 474 ident: CR116 article-title: BNT162b2-Elicited Neutralization against New SARS-CoV-2 Spike Variants publication-title: N. Engl. J. Med. – ident: CR27 – year: 2021 ident: CR240 article-title: SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses publication-title: Nature doi: 10.1038/s41586-021-03738-2 – volume: 35 start-page: 109292 year: 2021 ident: CR177 article-title: Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the alpha variant B.1.1.7 publication-title: Cell Rep. – volume: 184 start-page: 2362 year: 2021 end-page: 2371.e9 ident: CR220 article-title: SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape publication-title: Cell – volume: 184 start-page: 2348 year: 2021 end-page: 2361 ident: CR104 article-title: Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine induced sera publication-title: Cell – year: 2021 ident: CR190 article-title: Generation of a novel SARS-CoV-2 sub-genomic RNA due to the R203K/G204R variant in nucleocapsid. Preprint at publication-title: bioRxiv doi: 10.1101/2020.04.10.029454 – volume: 184 start-page: 2201 year: 2021 end-page: 2211 ident: CR102 article-title: Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera publication-title: Cell – volume: 19 year: 2021 ident: CR146 article-title: Cryo-electron microscopy structures of the N501Y SARS-CoV-2 spike protein in complex with ACE2 and 2 potent neutralizing antibodies publication-title: PLoS Biol. – volume: 371 start-page: 288 year: 2021 end-page: 292 ident: CR29 article-title: Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic publication-title: Science – volume: 538 start-page: 211 year: 2020 end-page: 217 ident: CR83 article-title: T cell immunity to SARS-CoV-2 following natural infection and vaccination publication-title: Biochem. Biophys. Res. Commun. – volume: 17 year: 2021 ident: CR5 article-title: The coronavirus proofreading exoribonuclease mediates extensive viral recombination publication-title: PLoS Pathog. – ident: CR38 – volume: 582 start-page: 561 year: 2020 end-page: 565 ident: CR119 article-title: Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform publication-title: Nature – volume: 29 start-page: 529 year: 2021 end-page: 539.e3 ident: CR148 article-title: SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines publication-title: Cell Host Microbe – volume: 84 start-page: 3134 year: 2010 end-page: 3146 ident: CR4 article-title: Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission publication-title: J. Virol. – volume: 5 start-page: 1408 year: 2020 end-page: 1417 ident: CR7 article-title: Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic publication-title: Nat. Microbiol. – volume: 26 start-page: 2100131 year: 2021 ident: CR201 article-title: Tracking SARS-CoV-2 lineage B.1.1.7 dissemination: insights from nationwide spike gene target failure (SGTF) and spike gene late detection (SGTL) data, Portugal, week 49 2020 to week 3 2021 publication-title: Eur. Surveill. – volume: 27 start-page: 440 year: 2021 end-page: 446 ident: CR15 article-title: Sixteen novel lineages of SARS-CoV-2 in South Africa publication-title: Nat. Med. – volume: 371 start-page: 172 year: 2021 end-page: 177 ident: CR170 article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans publication-title: Science – volume: 9 year: 2020 ident: CR48 article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants publication-title: eLife – volume: 12 year: 2021 ident: CR77 article-title: A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies publication-title: Nat. Commun. – volume: 2 start-page: e283 year: 2021 end-page: e284 ident: CR161 article-title: SARS-CoV-2 spike E484K mutation reduces antibody neutralisation publication-title: Lancet Microbe – year: 2021 ident: CR166 article-title: Comparison of 10 emerging SARS-CoV-2 variants: infectivity, animal tropism, and antibody neutralization. Preprint at publication-title: Research Square doi: 10.21203/rs.3.rs-492659/v1 – volume: 325 start-page: 632 year: 2021 end-page: 644 ident: CR64 article-title: Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial publication-title: JAMA – year: 2021 ident: CR246 article-title: Variant SARS-CoV-2 mRNA vaccines confer broad neutralization as primary or booster series in mice. Preprint at publication-title: bioRxiv doi: 10.1101/2021.04.13.439482 – volume: 384 start-page: 1866 year: 2021 end-page: 1868 ident: CR28 article-title: New SARS-CoV-2 variants — clinical, public health, and vaccine implications publication-title: N. Engl. J. Med. – volume: 182 start-page: 812 year: 2020 end-page: 827.e19 ident: CR8 article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus publication-title: Cell – volume: 325 start-page: 1896 year: 2021 end-page: 1898 ident: CR205 article-title: Neutralizing antibodies against SARS-CoV-2 variants after infection and vaccination publication-title: JAMA – volume: 587 start-page: 270 year: 2020 end-page: 274 ident: CR87 article-title: SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19 publication-title: Nature – year: 2021 ident: CR230 article-title: Durability of mRNA-1273 vaccine-induced antibodies against SARS-CoV-2 variants publication-title: Science doi: 10.1126/science.abj4176 – volume: 372 start-page: 815 year: 2021 end-page: 821 ident: CR19 article-title: Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil publication-title: Science – ident: CR111 – volume: 384 start-page: 2187 year: 2021 end-page: 2201 ident: CR225 article-title: Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19 publication-title: N. Engl. J. Med. – volume: 384 start-page: 2352 year: 2021 end-page: 2354 ident: CR222 article-title: Neutralization of SARS-CoV-2 variants B.1.429 and B.1.351 publication-title: N. Engl. J. Med. – year: 2021 ident: CR35 article-title: Early epidemiological signatures of novel SARS-CoV-2 variants: establishment of B.1.617.2 in England. Preprint at publication-title: medRxiv doi: 10.1101/2021.06.05.21258365 – volume: 593 start-page: 270 year: 2021 end-page: 274 ident: CR194 article-title: Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7 publication-title: Nature – year: 2021 ident: CR212 article-title: Safety and efficacy of NVX-CoV2373 Covid-19 vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2107659 – volume: 29 start-page: 747 year: 2021 end-page: 751.e4 ident: CR228 article-title: Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization publication-title: Cell Host Microbe – year: 2021 ident: CR235 article-title: B.1.526 SARS-CoV-2 variants identified in new york city are neutralized by vaccine-elicited and therapeutic monoclonal antibodies publication-title: mBio doi: 10.1128/mBio.01386-21 – volume: 6 year: 2021 ident: CR90 article-title: SARS-CoV-2 genome-wide T cell epitope mapping reveals immunodominance and substantial CD8 T cell activation in COVID-19 patients publication-title: Sci. Immunol. – volume: 6 start-page: e335 year: 2021 end-page: e345 ident: CR207 article-title: Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study publication-title: Lancet Public Health – volume: 385 start-page: 187 year: 2021 end-page: 189 ident: CR211 article-title: Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants publication-title: N. Engl. J. Med. – year: 2021 ident: CR185 article-title: Evolution of enhanced innate immune evasion by the SARS-CoV-2 B.1.1.7 UK variant. Preprint at publication-title: bioRxiv doi: 10.1101/2021.06.06.446826 – volume: 596 start-page: 273 year: 2021 end-page: 275 ident: CR118 article-title: BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants publication-title: Nature – volume: 29 start-page: 1063 year: 2021 end-page: 1075 ident: CR247 article-title: Antibody and B cell responses to SARS-CoV-2 infection and vaccination publication-title: Cell Host Microbe – volume: 369 start-page: 812 year: 2020 end-page: 817 ident: CR54 article-title: SARS-CoV-2 infection protects against rechallenge in rhesus macaques publication-title: Science – volume: 383 start-page: 2439 year: 2020 end-page: 2450 ident: CR57 article-title: Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates publication-title: N. Engl. J. Med. – volume: 584 start-page: 450 year: 2020 end-page: 456 ident: CR179 article-title: Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike publication-title: Nature – volume: 13 year: 2021 ident: CR164 article-title: Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection publication-title: Sci. Transl Med. – volume: 5 start-page: 1403 year: 2020 end-page: 1407 ident: CR22 article-title: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology publication-title: Nat. Microbiol. – year: 2021 ident: CR237 article-title: First identification of SARS-CoV-2 Lambda (C.37) variant in southern Brazil. Preprint at publication-title: medRxiv doi: 10.1101/2021.06.21.21259241 – volume: 6 year: 2010 ident: CR2 article-title: Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing publication-title: PLoS Pathog. – volume: 11 year: 2020 ident: CR75 article-title: Two linear epitopes on the SARS-CoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients publication-title: Nat. Commun. – volume: 432 start-page: 5212 year: 2020 end-page: 5226 ident: CR168 article-title: Mutations strengthened SARS-CoV-2 infectivity publication-title: J. Mol. Biol. – volume: 593 start-page: 130 year: 2021 end-page: 135 ident: CR121 article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 publication-title: Nature – volume: 590 start-page: 630 year: 2020 end-page: 634 ident: CR53 article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques publication-title: Nature – volume: 93 start-page: 104941 year: 2021 ident: CR157 article-title: E484K as an innovative phylogenetic event for viral evolution: genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil publication-title: Infect. Genet. Evol. – volume: 29 start-page: 23 year: 2021 end-page: 31.e4 ident: CR144 article-title: D614G spike mutation Increases SARS CoV-2 susceptibility to neutralization publication-title: Cell Host Microbe – ident: CR37 – volume: 27 start-page: 917 year: 2021 end-page: 924 ident: CR204 article-title: Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies publication-title: Nat. Med. – volume: 12 start-page: 513 year: 2020 ident: CR106 article-title: Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays publication-title: Viruses – year: 2021 ident: CR203 article-title: Sera neutralizing activities against SARS-CoV-2 and multiple variants six month after hospitalization for COVID-19 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab308 – volume: 592 start-page: 116 year: 2020 end-page: 121 ident: CR135 article-title: Spike mutation D614G alters SARS-CoV-2 fitness publication-title: Nature – volume: 384 start-page: 2354 year: 2021 end-page: 2356 ident: CR206 article-title: Susceptibility of circulating SARS-CoV-2 variants to neutralization publication-title: N. Engl. J. Med. – volume: 397 start-page: 452 year: 2021 end-page: 455 ident: CR30 article-title: Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence publication-title: Lancet – volume: 5 start-page: e00408 year: 2020 end-page: e00420 ident: CR9 article-title: Rampant C→U hypermutation in the genomes of SARS-CoV-2 and other coronaviruses: causes and consequences for their short- and long-term evolutionary trajectories publication-title: mSphere – volume: 34 start-page: 108890 year: 2021 ident: CR149 article-title: The effect of spike mutations on SARS-CoV-2 neutralization publication-title: Cell Rep. – volume: 6 year: 2021 ident: CR96 article-title: SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8 T cell responses publication-title: Sci. Immunol. – volume: 183 start-page: 1901 year: 2020 end-page: 1912.e9 ident: CR114 article-title: Case study: prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised individual with cancer publication-title: Cell – volume: 29 start-page: 1137 year: 2021 end-page: 1150 ident: CR80 article-title: A single dose of the SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector functions and T cell responses publication-title: Cell Host Microbe – year: 2021 ident: CR187 article-title: Altered sub-genomic RNA expression in SARS-CoV-2 B.1.1.7 infections. Preprint at publication-title: bioRxiv doi: 10.1101/2021.03.02.433156 – year: 2021 ident: CR156 article-title: Genome sequencing and analysis of an emergent SARS-CoV-2 variant characterized by multiple spike protein mutations detected from the Central Visayas Region of the Philippines. Preprint at publication-title: bioRxiv doi: 10.1101/2021.03.03.21252812 – volume: 36 start-page: 109415 year: 2021 ident: CR234 article-title: SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination publication-title: Cell Rep. – year: 2021 ident: CR65 article-title: REGEN-COV antibody cocktail clinical outcomes study in COVID-19 outpatients. Preprint at publication-title: medRxiv doi: 10.1101/2021.05.19.21257469 – volume: 383 start-page: 1920 year: 2020 end-page: 1931 ident: CR88 article-title: An mRNA vaccine against SARS-CoV-2 — preliminary report publication-title: N. Engl. J. Med. – year: 2021 ident: CR25 article-title: The emergence and ongoing convergent evolution of the N501Y lineages coincides with a major global shift in the SARS-CoV-2 selective landscape. Preprint at publication-title: medRxiv doi: 10.1101/2021.02.23.21252268 – volume: 38 start-page: 1777 year: 2020 end-page: 1791 ident: CR20 article-title: Phylogenetic analysis of SARS-CoV-2 data is difficult publication-title: Mol. Biol. Evol. – volume: 27 start-page: 1280 year: 2021 end-page: 1289 ident: CR86 article-title: CD8 T cells contribute to survival in patients with COVID-19 and hematologic cancer publication-title: Nat Med. – ident: CR110 – volume: 10 year: 2021 ident: CR12 article-title: Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229E publication-title: eLife – volume: 369 start-page: 806 year: 2020 end-page: 811 ident: CR85 article-title: DNA vaccine protection against SARS-CoV-2 in rhesus macaques publication-title: Science – year: 2021 ident: CR241 article-title: Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2 publication-title: Nature doi: 10.1038/s41586-021-03739-1 – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: CR41 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 19 start-page: 409 year: 2021 end-page: 424 ident: CR52 article-title: SARS-CoV-2 variants, spike mutations and immune escape publication-title: Nat. Rev. Microbiol. – volume: 397 start-page: 2461 year: 2021 end-page: 2462 ident: CR233 article-title: SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness publication-title: Lancet – volume: 29 start-page: 44 year: 2021 end-page: 57.e9 ident: CR130 article-title: Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition publication-title: Cell Host Microbe – volume: 385 start-page: 585 year: 2021 end-page: 594 ident: CR232 article-title: Effectiveness of COVID-19 vaccines against the B.1.617.2 variant publication-title: N. Engl. J. Med. – year: 2021 ident: CR6 article-title: Generation and transmission of inter-lineage recombinants in the SARS-CoV-2 pandemic. Preprint at publication-title: medRxiv doi: 10.1101/2021.06.18.21258689 – volume: 373 start-page: 648 year: 2021 end-page: 654 ident: CR221 article-title: SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern publication-title: Science – volume: 26 start-page: 2002106 year: 2021 ident: CR197 article-title: Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020 publication-title: Eur. Surveill. – volume: 29 start-page: 516 year: 2021 end-page: 521.e3 ident: CR219 article-title: Infection- and vaccine-induced antibody binding and neutralization of the B.1.351 SARS-CoV-2 variant publication-title: Cell Host Microbe – volume: 26 start-page: 2100256 year: 2021 ident: CR202 article-title: Case fatality risk of the SARS-CoV-2 variant of concern B.1.1.7 in England, 16 November to 5 February publication-title: Eur. Surveill. – volume: 371 start-page: 1152 year: 2021 end-page: 1153 ident: CR152 article-title: Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera publication-title: Science – volume: 591 start-page: 293 year: 2021 end-page: 299 ident: CR182 article-title: Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis publication-title: Nature – volume: 184 start-page: 2183 year: 2021 end-page: 2200.e22 ident: CR74 article-title: The antigenic anatomy of SARS-CoV-2 receptor binding domain publication-title: Cell – year: 2021 ident: CR155 article-title: Structural analysis of spike protein mutations in an emergent SARS-CoV-2 variant from the Philippines. Preprint at publication-title: bioRxiv doi: 10.1101/2021.03.06.434059 – volume: 184 start-page: 4220 year: 2021 end-page: 4336 ident: CR100 article-title: Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum publication-title: Cell – volume: 384 start-page: 1899 year: 2021 end-page: 1909 ident: CR216 article-title: Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant publication-title: N. Engl. J. Med. – volume: 586 start-page: 594 year: 2020 end-page: 599 ident: CR58 article-title: COVID-19 vaccine BNT162b1 elicits human antibody and T 1 T cell responses publication-title: Nature – year: 2021 ident: CR236 article-title: High prevalence of SARS-CoV-2 B.1.1.7 (UK variant) and the novel B.1.525 lineage in Oyo State, Nigeria. Preprint at publication-title: medRxiv doi: 10.1101/2021.04.09.21255206 – ident: CR215 – volume: 28 start-page: 465 year: 2020 end-page: 474.e4 ident: CR108 article-title: Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice publication-title: Cell Host Microbe – volume: 29 start-page: 1076 year: 2021 end-page: 1092 ident: CR89 article-title: SARS-CoV-2 Human T cell Epitopes: adaptive immune response against COVID-19 publication-title: Cell Host Microbe – year: 2021 ident: CR154 article-title: A novel SARS-CoV-2 variant of concern, B.1.526, identified in New York. Preprint at publication-title: bioRxiv doi: 10.1101/2021.02.23.21252259 – volume: 385 start-page: 179 year: 2021 end-page: 186 ident: CR245 article-title: SARS-CoV-2 variants and vaccines publication-title: N. Engl. J. Med. – volume: 593 start-page: 136 year: 2021 end-page: 141 ident: CR159 article-title: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies publication-title: Nature – volume: 397 start-page: 1819 year: 2021 end-page: 1829 ident: CR210 article-title: Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data publication-title: Lancet – volume: 54 start-page: 1853 year: 2021 end-page: 1868.e7 ident: CR174 article-title: Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations publication-title: Immunity – ident: CR36 – volume: 372 year: 2021 ident: CR198 article-title: Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England publication-title: Science – year: 2021 ident: CR243 article-title: Immunogenicity of COVID-19 vaccination in immunocompromised patients: an observational, prospective cohort study interim analysis. Preprint at publication-title: medRxiv doi: 10.1101/2021.06.28.21259576 – volume: 12 year: 2021 ident: CR81 article-title: Discrete SARS-CoV-2 antibody titers track with functional humoral stability publication-title: Nat. Commun. – year: 2021 ident: CR97 article-title: Neutralizing antibodies against SARS-CoV-2 variants induced by natural infection or vaccination: a systematic review and pooled meta-analysis publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab646 – volume: 1 start-page: e99 year: 2020 end-page: e100 ident: CR39 article-title: An integrated national scale SARS-CoV-2 genomic surveillance network publication-title: Lancet Microbe – volume: 13 start-page: 1211 year: 2021 ident: CR98 article-title: SARS-CoV-2 variants: a synopsis of in vitro efficacy data of convalescent plasma, currently marketed vaccines, and monoclonal antibodies publication-title: Viruses – volume: 93 start-page: 1722 year: 2021 end-page: 1731 ident: CR17 article-title: Phylogenetic analysis of SARS-CoV-2 in the first few months since its emergence publication-title: J. Med. Virol. – volume: 596 start-page: 276 year: 2021 end-page: 280 ident: CR214 article-title: Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization publication-title: Nature – volume: 13 start-page: 392 year: 2021 ident: CR158 article-title: SARS-CoV-2 variant of concern 202012/01 has about twofold replicative advantage and acquires concerning mutations publication-title: Viruses – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: CR42 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature – volume: 433 start-page: 167058 year: 2021 ident: CR147 article-title: Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants publication-title: J. Mol. Biol. – volume: 373 year: 2021 ident: CR140 article-title: Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity publication-title: Science – volume: 9 start-page: 13 year: 2021 ident: CR125 article-title: Comparison of four SARS-CoV-2 neutralization assays publication-title: Vaccines – volume: 538 start-page: 192 year: 2021 end-page: 203 ident: CR73 article-title: Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies publication-title: Biochem. Biophys. Res. Commun. – volume: 21 start-page: 245 year: 2021 end-page: 256 ident: CR45 article-title: The first 12 months of COVID-19: a timeline of immunological insights publication-title: Nat. Rev. Immunol. – volume: 33 start-page: 108234 year: 2020 ident: CR188 article-title: Evasion of type I interferon by SARS-CoV-2 publication-title: Cell Rep. – volume: 11 year: 2020 ident: CR10 article-title: No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2 publication-title: Nat. Commun. – volume: 54 start-page: 1611 year: 2021 end-page: 1621.e5 ident: CR167 article-title: Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species publication-title: Immunity – volume: 29 start-page: 463 year: 2021 end-page: 476.e6 ident: CR50 article-title: Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies publication-title: Cell Host Microbe – volume: 397 start-page: 1351 year: 2021 end-page: 1362 ident: CR213 article-title: Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial publication-title: Lancet – volume: 369 start-page: 1255 year: 2020 end-page: 1260 ident: CR14 article-title: Evolution and epidemic spread of SARS-CoV-2 in Brazil publication-title: Science – volume: 370 start-page: 1464 year: 2020 end-page: 1468 ident: CR136 article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo publication-title: Science – volume: 181 start-page: 281 year: 2020 end-page: 292.e6 ident: CR40 article-title: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein publication-title: Cell – volume: 27 start-page: 622 year: 2021 end-page: 625 ident: CR218 article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma publication-title: Nat. Med. – volume: 53 start-page: 524 year: 2020 end-page: 532.e4 ident: CR61 article-title: Distinct early serological signatures track with SARS-CoV-2 survival publication-title: Immunity – year: 2021 ident: CR127 article-title: The N501Y spike substitution enhances SARS-CoV-2 transmission. Preprint at publication-title: bioRxiv doi: 10.1101/2021.03.08.434499 – year: 2021 ident: CR242 article-title: Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2021-220647 – volume: 184 start-page: 3086 year: 2021 end-page: 3108 ident: CR67 article-title: Tackling COVID-19 with neutralizing monoclonal antibodies publication-title: Cell – volume: 184 start-page: 2332 year: 2021 end-page: 2347.e16 ident: CR51 article-title: N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 publication-title: Cell – ident: CR193 – ident: CR227 – volume: 93 start-page: 5638 year: 2021 end-page: 5643 ident: CR173 article-title: Preliminary report on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike mutation T478K publication-title: J. Med. Virol. – volume: 26 start-page: 1691 year: 2020 end-page: 1693 ident: CR11 article-title: Seasonal coronavirus protective immunity is short-lasting publication-title: Nat. Med. – volume: 592 start-page: 438 year: 2021 end-page: 443 ident: CR16 article-title: Detection of a SARS-CoV-2 variant of concern in South Africa publication-title: Nature – volume: 11 year: 2020 ident: CR141 article-title: SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity publication-title: Nat. Commun. – year: 2021 ident: CR33 article-title: Rapid displacement of SARS-CoV-2 variant B.1.1.7 by B.1.617.2 and P.1 in the United States. Preprint at publication-title: medRxiv doi: 10.1101/2021.06.20.21259195 – volume: 39 start-page: 4423 year: 2021 end-page: 4428 ident: CR82 article-title: Evidence for antibody as a protective correlate for COVID-19 vaccine publication-title: Vaccine – volume: 371 start-page: 1139 year: 2021 end-page: 1142 ident: CR176 article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape publication-title: Science – volume: 20 start-page: 100355 year: 2021 ident: CR91 article-title: Impact of SARS-CoV-2 variants on the total CD4 and CD8 T cell reactivity in infected or vaccinated individuals publication-title: Cell Rep. Med. – volume: 588 start-page: 682 year: 2020 end-page: 687 ident: CR71 article-title: SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies publication-title: Nature – volume: 184 start-page: 3949 year: 2021 end-page: 3961 ident: CR109 article-title: The monoclonal antibody combination REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical and human studies publication-title: Cell – volume: 397 start-page: 99 year: 2020 end-page: 111 ident: CR248 article-title: Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK publication-title: Lancet – volume: 369 start-page: 731 year: 2020 end-page: 736 ident: CR49 article-title: Broad neutralization of SARS-related viruses by human monoclonal antibodies publication-title: Science – volume: 592 start-page: 122 year: 2021 end-page: 127 ident: CR137 article-title: SARS-CoV-2 spike D614G change enhances replication and transmission publication-title: Nature – volume: 183 start-page: 739 year: 2020 end-page: 751.e8 ident: CR138 article-title: Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant publication-title: Cell – volume: 384 start-page: 2161 year: 2021 end-page: 2163 ident: CR101 article-title: Cross-reactive neutralizing antibody responses elicited by SARS-CoV-2 501Y.V2 (B.1.351) publication-title: N. Engl. J. Med. – volume: 184 start-page: 1171 year: 2021 end-page: 1187.e20 ident: CR169 article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity publication-title: Cell – volume: 16 start-page: 1761 year: 2021 end-page: 1784 ident: CR120 article-title: Engineering SARS-CoV-2 using a reverse genetic system publication-title: Nat. Protoc. – volume: 593 start-page: 266 year: 2021 end-page: 269 ident: CR191 article-title: Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England publication-title: Nature – volume: 217 year: 2020 ident: CR107 article-title: Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses publication-title: J. Exp. Med. – volume: 29 start-page: 477 year: 2021 end-page: 488.e4 ident: CR160 article-title: Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization publication-title: Cell Host Microbe – volume: 184 start-page: 3426 year: 2021 end-page: 3437.e8 ident: CR123 article-title: Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant publication-title: Cell – volume: 184 start-page: 861 year: 2021 end-page: 880 ident: CR84 article-title: Adaptive immunity to SARS-CoV-2 and COVID-19 publication-title: Cell – volume: 6 year: 2021 ident: CR223 article-title: Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination publication-title: Sci. Immunol. – volume: 27 start-page: 620 year: 2021 end-page: 621 ident: CR115 article-title: Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera publication-title: Nat. Med. – volume: 34 start-page: 108630 year: 2021 ident: CR143 article-title: D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction publication-title: Cell Rep. – year: 2021 ident: CR249 article-title: Effectiveness of the CoronaVac vaccine in the elderly population during a P.1 variant-associated epidemic of COVID-19 in Brazil: a test-negative case–control study. Preprint at publication-title: medRxiv doi: 10.1101/2021.05.19.21257472 – volume: 184 start-page: 2939 year: 2021 end-page: 2954 ident: CR103 article-title: Antibody evasion by the P.1 strain of SARS-CoV-2 publication-title: Cell – volume: 182 start-page: 1284 year: 2020 end-page: 1294.e9 ident: CR163 article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity publication-title: Cell – year: 2021 ident: CR229 article-title: Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study publication-title: Lancet Microbe. doi: 10.1016/S2666-5247(21)00129-4 – volume: 371 start-page: 850 year: 2021 end-page: 854 ident: CR129 article-title: Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 publication-title: Science – volume: 117 start-page: 23652 year: 2020 end-page: 23662 ident: CR24 article-title: A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants publication-title: Proc. Natl Acad. Sci. USA – volume: 2 start-page: 100204 year: 2021 ident: CR94 article-title: Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases publication-title: Cell Rep. Med. – volume: 369 start-page: 1014 year: 2020 end-page: 1018 ident: CR105 article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies publication-title: Science – volume: 595 start-page: 426 year: 2021 end-page: 431 ident: CR239 article-title: Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection publication-title: Nature – volume: 30 start-page: R849 year: 2020 end-page: R857 ident: CR18 article-title: On the evolutionary epidemiology of SARS-CoV-2 publication-title: Curr. Biol. – volume: 383 start-page: 2291 year: 2020 end-page: 2293 ident: CR112 article-title: Persistence and evolution of SARS-CoV-2 in an immunocompromised host publication-title: N. Engl. J. Med. – year: 2021 ident: CR231 article-title: Neutralization of Beta and Delta variant with sera of COVID-19 recovered cases and vaccinees of inactivated COVID-19 vaccine BBV152/Covaxin2 publication-title: J. Travel. Med. doi: 10.1093/jtm/taab104 – volume: 10 year: 2021 ident: CR99 article-title: Reduced antibody cross-reactivity following infection with B.1.1.7 than with parental SARS-CoV-2 strains publication-title: Elife – year: 2021 ident: CR192 article-title: Estimation of secondary household attack rates for emergent spike L452R SARS-CoV-2 variants detected by genomic surveillance at a community-based testing site in San Francisco publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab283 – volume: 595 start-page: 707 year: 2021 end-page: 712 ident: CR172 article-title: Spread of a SARS-CoV-2 variant through Europe in the summer of 2020 publication-title: Nature – volume: 19 start-page: 155 year: 2020 end-page: 170 ident: CR44 article-title: Coronavirus biology and replication: implications for SARS-CoV-2 publication-title: Nat. Rev. Microbiol. – volume: 24 start-page: 102311 year: 2021 ident: CR93 article-title: Learning from HIV-1 to predict the immunogenicity of T cell epitopes in SARS-COV-2 publication-title: iScience – volume: 13 start-page: 134 year: 2021 ident: CR72 article-title: Structural analysis of neutralizing epitopes of the SARS-CoV-2 spike to guide therapy and vaccine design strategies publication-title: Viruses – volume: 27 start-page: 717 year: 2021 end-page: 726 ident: CR117 article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies publication-title: Nat. Med. – volume: 372 start-page: n579 year: 2021 ident: CR195 article-title: Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study publication-title: BMJ – year: 2021 ident: CR244 article-title: Paucity and discordance of neutralising antibody responses to SARS-CoV-2 VOCs in vaccinated immunodeficient patients and health-care workers in the UK publication-title: Lancet Microbe doi: 10.1016/S2666-5247(21)00157-9 – volume: 17 year: 2021 ident: CR13 article-title: A human coronavirus evolves antigenically to escape antibody immunity publication-title: PLoS Pathog. – volume: 184 start-page: 476 year: 2021 end-page: 488.e11 ident: CR63 article-title: COVID-19-neutralizing antibodies predict disease severity and survival publication-title: Cell – volume: 397 start-page: 2331 year: 2021 end-page: 2333 ident: CR209 article-title: Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination publication-title: Lancet – volume: 2 start-page: 100313 year: 2021 ident: CR76 article-title: Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions publication-title: Cell Rep. Med. – ident: CR23 – volume: 296 start-page: 100536 year: 2021 ident: CR171 article-title: The SARS-CoV-2 Y453F mink variant displays a pronounced increase in ACE-2 affinity but does not challenge antibody neutralization publication-title: J. Biol. Chem. – volume: 384 start-page: 1885 year: 2021 end-page: 1898 ident: CR224 article-title: Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant publication-title: N. Engl. J. Med. – volume: 2 start-page: 100255 year: 2021 ident: CR131 article-title: Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016 publication-title: Cell Rep. Med. – volume: 581 start-page: 221 year: 2020 end-page: 224 ident: CR43 article-title: Structural basis of receptor recognition by SARS-CoV-2 publication-title: Nature – volume: 371 start-page: 823 year: 2021 end-page: 829 ident: CR68 article-title: Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody publication-title: Science – volume: 20 start-page: 339 year: 2020 end-page: 341 ident: CR60 article-title: The potential danger of suboptimal antibody responses in COVID-19 publication-title: Nat. Rev. Immunol. – volume: 38 start-page: 1073 year: 2020 end-page: 1078 ident: CR133 article-title: A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction publication-title: Nat. Biotechnol. – volume: 384 start-page: 238 year: 2021 end-page: 251 ident: CR62 article-title: REGN-COV2, a neutralizing antibody cocktail, in outpatients with COVID-19 publication-title: N. Engl. J. Med. – volume: 384 start-page: 403 year: 2021 end-page: 416 ident: CR55 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N. Engl. J. Med. – year: 2021 ident: CR95 article-title: Emergence of immune escape at dominant SARS-CoV-2 killer T-cell epitope. Preprint at publication-title: medRxiv doi: 10.1101/2021.06.21.21259010 – volume: 184 start-page: 2372 year: 2021 end-page: 2383.e9 ident: CR208 article-title: Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity publication-title: Cell – volume: 369 start-page: 650 year: 2020 end-page: 655 ident: CR178 article-title: A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2 publication-title: Science – volume: 583 start-page: 290 year: 2020 end-page: 295 ident: CR69 article-title: Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody publication-title: Nature – volume: 383 start-page: 2603 year: 2020 end-page: 2615 ident: CR56 article-title: Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine publication-title: N. Engl. J. Med. – volume: 184 start-page: 2384 year: 2021 end-page: 2393.e12 ident: CR217 article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies publication-title: Cell – volume: 29 start-page: 1124 year: 2021 end-page: 1136 ident: CR92 article-title: SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity publication-title: Cell Host Microbe – volume: 593 start-page: 142 year: 2021 end-page: 146 ident: CR124 article-title: Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma publication-title: Nature – volume: 103 start-page: 5108 year: 2006 end-page: 5113 ident: CR1 article-title: Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis publication-title: Proc. Natl Acad. Sci. USA – volume: 182 start-page: 1295 year: 2020 end-page: 1310.e20 ident: CR128 article-title: Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding publication-title: Cell – volume: 29 start-page: 819 year: 2021 end-page: 833.e7 ident: CR70 article-title: Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite publication-title: Cell Host Microbe – volume: 27 start-page: 1379 year: 2021 end-page: 1384 ident: CR226 article-title: Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals publication-title: Nat. Med. – volume: 12 year: 2021 ident: CR162 article-title: Convalescent-Phase Sera and Vaccine-Elicited Antibodies Largely Maintain Neutralizing Titer against Global SARS-CoV-2 Variant Spikes publication-title: mBio – year: 2021 ident: CR183 article-title: SARS-CoV-2 spike P681R mutation enhances and accelerates viral fusion. Preprint at publication-title: bioRxiv doi: 10.1101/2021.06.17.448820 – year: 2021 ident: 408_CR35 publication-title: medRxiv doi: 10.1101/2021.06.05.21258365 – volume: 581 start-page: 215 year: 2020 ident: 408_CR42 publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 27 start-page: 1379 year: 2021 ident: 408_CR226 publication-title: Nat. Med. doi: 10.1038/s41591-021-01413-7 – year: 2021 ident: 408_CR165 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiab368 – volume: 2 start-page: 100204 year: 2021 ident: 408_CR94 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2021.100204 – volume: 19 year: 2021 ident: 408_CR26 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3001115 – ident: 408_CR215 – year: 2021 ident: 408_CR65 publication-title: medRxiv doi: 10.1101/2021.05.19.21257469 – volume: 24 start-page: 102311 year: 2021 ident: 408_CR93 publication-title: iScience doi: 10.1016/j.isci.2021.102311 – volume: 384 start-page: 2187 year: 2021 ident: 408_CR225 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2101544 – year: 2021 ident: 408_CR229 publication-title: Lancet Microbe. doi: 10.1016/S2666-5247(21)00129-4 – volume: 29 start-page: 44 year: 2021 ident: 408_CR130 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.11.007 – volume: 9 start-page: 267 year: 2008 ident: 408_CR3 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2323 – volume: 11 year: 2020 ident: 408_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19818-2 – ident: 408_CR27 – year: 2021 ident: 408_CR97 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab646 – year: 2021 ident: 408_CR203 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab308 – volume: 12 year: 2021 ident: 408_CR81 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21336-8 – volume: 11 year: 2020 ident: 408_CR46 publication-title: Nat. Commun. – volume: 29 start-page: 463 year: 2021 ident: 408_CR50 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.02.003 – ident: 408_CR38 – volume: 184 start-page: 3949 year: 2021 ident: 408_CR109 publication-title: Cell doi: 10.1016/j.cell.2021.06.002 – volume: 385 start-page: 664 year: 2021 ident: 408_CR122 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2107799 – year: 2021 ident: 408_CR246 publication-title: bioRxiv doi: 10.1101/2021.04.13.439482 – volume: 93 start-page: 1722 year: 2021 ident: 408_CR17 publication-title: J. Med. Virol. doi: 10.1002/jmv.26545 – volume: 586 start-page: 594 year: 2020 ident: 408_CR58 publication-title: Nature doi: 10.1038/s41586-020-2814-7 – ident: 408_CR227 – volume: 29 start-page: 23 year: 2021 ident: 408_CR144 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.11.012 – year: 2021 ident: 408_CR237 publication-title: medRxiv doi: 10.1101/2021.06.21.21259241 – year: 2021 ident: 408_CR166 publication-title: Research Square doi: 10.21203/rs.3.rs-492659/v1 – year: 2021 ident: 408_CR95 publication-title: medRxiv doi: 10.1101/2021.06.21.21259010 – volume: 5 start-page: e00408 year: 2020 ident: 408_CR9 publication-title: mSphere doi: 10.1128/mSphere.00408-20 – volume: 29 start-page: 529 year: 2021 ident: 408_CR148 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.03.002 – volume: 11 year: 2020 ident: 408_CR141 publication-title: Nat. Commun. – year: 2021 ident: 408_CR240 publication-title: Nature doi: 10.1038/s41586-021-03738-2 – volume: 38 start-page: 1777 year: 2020 ident: 408_CR20 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msaa314 – volume: 16 start-page: 1761 year: 2021 ident: 408_CR120 publication-title: Nat. Protoc. doi: 10.1038/s41596-021-00491-8 – volume: 432 start-page: 5212 year: 2020 ident: 408_CR168 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2020.07.009 – year: 2021 ident: 408_CR185 publication-title: bioRxiv doi: 10.1101/2021.06.06.446826 – volume: 383 start-page: 2439 year: 2020 ident: 408_CR57 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2027906 – volume: 27 start-page: 917 year: 2021 ident: 408_CR204 publication-title: Nat. Med. doi: 10.1038/s41591-021-01318-5 – volume: 26 start-page: 2100256 year: 2021 ident: 408_CR202 publication-title: Eur. Surveill. doi: 10.2807/1560-7917.ES.2021.26.11.2100256 – volume: 35 start-page: 109292 year: 2021 ident: 408_CR177 publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109292 – year: 2021 ident: 408_CR181 publication-title: bioRxiv doi: 10.1101/2021.02.24.432576 – year: 2021 ident: 408_CR25 publication-title: medRxiv doi: 10.1101/2021.02.23.21252268 – volume: 29 start-page: 1063 year: 2021 ident: 408_CR247 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.06.009 – volume: 397 start-page: 2461 year: 2021 ident: 408_CR233 publication-title: Lancet doi: 10.1016/S0140-6736(21)01358-1 – year: 2021 ident: 408_CR184 publication-title: bioRxiv doi: 10.1101/2021.03.20.436257 – year: 2021 ident: 408_CR183 publication-title: bioRxiv doi: 10.1101/2021.06.17.448820 – year: 2021 ident: 408_CR126 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00527-21 – volume: 184 start-page: 1171 year: 2021 ident: 408_CR169 publication-title: Cell doi: 10.1016/j.cell.2021.01.037 – volume: 27 start-page: 717 year: 2021 ident: 408_CR117 publication-title: Nat. Med. doi: 10.1038/s41591-021-01294-w – year: 2021 ident: 408_CR34 publication-title: medRxiv doi: 10.1101/2021.06.02.21258076 – volume: 582 start-page: 561 year: 2020 ident: 408_CR119 publication-title: Nature doi: 10.1038/s41586-020-2294-9 – volume: 369 start-page: 812 year: 2020 ident: 408_CR54 publication-title: Science doi: 10.1126/science.abc4776 – year: 2021 ident: 408_CR242 publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2021-220647 – volume: 184 start-page: 2939 year: 2021 ident: 408_CR103 publication-title: Cell doi: 10.1016/j.cell.2021.03.055 – volume: 369 start-page: 806 year: 2020 ident: 408_CR85 publication-title: Science doi: 10.1126/science.abc6284 – volume: 371 start-page: 1152 year: 2021 ident: 408_CR152 publication-title: Science doi: 10.1126/science.abg6105 – volume: 19 start-page: 155 year: 2020 ident: 408_CR44 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-00468-6 – volume: 184 start-page: 476 year: 2021 ident: 408_CR63 publication-title: Cell doi: 10.1016/j.cell.2020.12.015 – year: 2021 ident: 408_CR212 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2107659 – ident: 408_CR37 – volume: 184 start-page: 2362 year: 2021 ident: 408_CR220 publication-title: Cell doi: 10.1016/j.cell.2021.02.042 – volume: 373 year: 2021 ident: 408_CR140 publication-title: Science – volume: 29 start-page: 1076 year: 2021 ident: 408_CR89 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.05.010 – year: 2021 ident: 408_CR199 publication-title: bioRxiv doi: 10.1101/2021.01.12.20249080 – volume: 183 start-page: 739 year: 2020 ident: 408_CR138 publication-title: Cell doi: 10.1016/j.cell.2020.09.032 – volume: 325 start-page: 632 year: 2021 ident: 408_CR64 publication-title: JAMA doi: 10.1001/jama.2021.0202 – volume: 538 start-page: 192 year: 2021 ident: 408_CR73 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.10.012 – volume: 592 start-page: 616 year: 2021 ident: 408_CR153 publication-title: Nature doi: 10.1038/s41586-021-03324-6 – volume: 2 start-page: e283 year: 2021 ident: 408_CR161 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(21)00068-9 – volume: 6 year: 2021 ident: 408_CR223 publication-title: Sci. Immunol. – volume: 93 start-page: 5638 year: 2021 ident: 408_CR173 publication-title: J. Med. Virol. doi: 10.1002/jmv.27062 – volume: 367 start-page: 1260 year: 2020 ident: 408_CR41 publication-title: Science doi: 10.1126/science.abb2507 – year: 2021 ident: 408_CR180 publication-title: bioRxiv doi: 10.1101/2021.02.12.21251658 – volume: 39 start-page: 4423 year: 2021 ident: 408_CR82 publication-title: Vaccine doi: 10.1016/j.vaccine.2021.05.063 – volume: 370 start-page: 1464 year: 2020 ident: 408_CR136 publication-title: Science doi: 10.1126/science.abe8499 – volume: 38 start-page: 1073 year: 2020 ident: 408_CR133 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0631-z – volume: 6 start-page: e335 year: 2021 ident: 408_CR207 publication-title: Lancet Public Health doi: 10.1016/S2468-2667(21)00055-4 – volume: 26 start-page: 2002106 year: 2021 ident: 408_CR197 publication-title: Eur. Surveill. doi: 10.2807/1560-7917.ES.2020.26.1.2002106 – volume: 103 start-page: 5108 year: 2006 ident: 408_CR1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0508200103 – volume: 182 start-page: 1284 year: 2020 ident: 408_CR163 publication-title: Cell doi: 10.1016/j.cell.2020.07.012 – volume: 325 start-page: 1896 year: 2021 ident: 408_CR205 publication-title: JAMA doi: 10.1001/jama.2021.4388 – year: 2021 ident: 408_CR249 publication-title: medRxiv doi: 10.1101/2021.05.19.21257472 – volume: 385 start-page: 472 year: 2021 ident: 408_CR116 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2106083 – volume: 397 start-page: 99 year: 2020 ident: 408_CR248 publication-title: Lancet doi: 10.1016/S0140-6736(20)32661-1 – volume: 2 start-page: 100313 year: 2021 ident: 408_CR76 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2021.100313 – volume: 11 year: 2020 ident: 408_CR75 publication-title: Nat. Commun. – volume: 34 start-page: 108890 year: 2021 ident: 408_CR149 publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.108890 – volume: 184 start-page: 2332 year: 2021 ident: 408_CR51 publication-title: Cell doi: 10.1016/j.cell.2021.03.028 – volume: 1 start-page: e99 year: 2020 ident: 408_CR39 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(20)30054-9 – volume: 595 start-page: 426 year: 2021 ident: 408_CR239 publication-title: Nature doi: 10.1038/s41586-021-03696-9 – year: 2021 ident: 408_CR190 publication-title: bioRxiv doi: 10.1101/2020.04.10.029454 – volume: 590 start-page: 630 year: 2020 ident: 408_CR53 publication-title: Nature doi: 10.1038/s41586-020-03041-6 – volume: 2 start-page: 100255 year: 2021 ident: 408_CR131 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2021.100255 – volume: 29 start-page: 819 year: 2021 ident: 408_CR70 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.03.005 – volume: 9 start-page: 13 year: 2021 ident: 408_CR125 publication-title: Vaccines doi: 10.3390/vaccines9010013 – volume: 27 start-page: 622 year: 2021 ident: 408_CR218 publication-title: Nat. Med. doi: 10.1038/s41591-021-01285-x – volume: 29 start-page: 1124 year: 2021 ident: 408_CR92 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.06.006 – volume: 29 start-page: 747 year: 2021 ident: 408_CR228 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.04.007 – volume: 27 start-page: 1205 year: 2021 ident: 408_CR59 publication-title: Nat. Med. doi: 10.1038/s41591-021-01377-8 – volume: 54 start-page: 1611 year: 2021 ident: 408_CR167 publication-title: Immunity doi: 10.1016/j.immuni.2021.06.003 – volume: 583 start-page: 290 year: 2020 ident: 408_CR69 publication-title: Nature doi: 10.1038/s41586-020-2349-y – year: 2021 ident: 408_CR241 publication-title: Nature doi: 10.1038/s41586-021-03739-1 – volume: 184 start-page: 4220 year: 2021 ident: 408_CR100 publication-title: Cell doi: 10.1016/j.cell.2021.06.020 – volume: 93 start-page: 104941 year: 2021 ident: 408_CR157 publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2021.104941 – volume: 217 year: 2020 ident: 408_CR107 publication-title: J. Exp. Med. doi: 10.1084/jem.20201181 – volume: 117 start-page: 23652 year: 2020 ident: 408_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2008281117 – volume: 6 year: 2021 ident: 408_CR96 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abg6461 – volume: 34 start-page: 108630 year: 2021 ident: 408_CR143 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108630 – volume: 384 start-page: 1885 year: 2021 ident: 408_CR224 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2102214 – year: 2021 ident: 408_CR156 publication-title: bioRxiv doi: 10.1101/2021.03.03.21252812 – volume: 13 start-page: 392 year: 2021 ident: 408_CR158 publication-title: Viruses doi: 10.3390/v13030392 – volume: 184 start-page: 3426 year: 2021 ident: 408_CR123 publication-title: Cell doi: 10.1016/j.cell.2021.04.025 – volume: 384 start-page: 2352 year: 2021 ident: 408_CR222 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2103740 – volume: 10 year: 2021 ident: 408_CR12 publication-title: eLife doi: 10.7554/eLife.64509 – year: 2021 ident: 408_CR192 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab283 – volume: 182 start-page: 812 year: 2020 ident: 408_CR8 publication-title: Cell doi: 10.1016/j.cell.2020.06.043 – volume: 593 start-page: 266 year: 2021 ident: 408_CR191 publication-title: Nature doi: 10.1038/s41586-021-03470-x – volume: 372 start-page: n579 year: 2021 ident: 408_CR195 publication-title: BMJ doi: 10.1136/bmj.n579 – year: 2021 ident: 408_CR244 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(21)00157-9 – ident: 408_CR196 – volume: 593 start-page: 136 year: 2021 ident: 408_CR159 publication-title: Nature doi: 10.1038/s41586-021-03412-7 – volume: 296 start-page: 100536 year: 2021 ident: 408_CR171 publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.100536 – volume: 184 start-page: 2348 year: 2021 ident: 408_CR104 publication-title: Cell doi: 10.1016/j.cell.2021.02.037 – volume: 593 start-page: 130 year: 2021 ident: 408_CR121 publication-title: Nature doi: 10.1038/s41586-021-03398-2 – volume: 26 start-page: 1691 year: 2020 ident: 408_CR11 publication-title: Nat. Med. doi: 10.1038/s41591-020-1083-1 – volume: 84 start-page: 3134 year: 2010 ident: 408_CR4 publication-title: J. Virol. doi: 10.1128/JVI.01394-09 – volume: 12 year: 2021 ident: 408_CR77 publication-title: Nat. Commun. – volume: 433 start-page: 167058 year: 2021 ident: 408_CR147 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2021.167058 – volume: 384 start-page: 2161 year: 2021 ident: 408_CR101 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2104192 – volume: 183 start-page: 1024 year: 2020 ident: 408_CR47 publication-title: Cell doi: 10.1016/j.cell.2020.09.037 – year: 2021 ident: 408_CR235 publication-title: mBio doi: 10.1128/mBio.01386-21 – volume: 117 start-page: 12522 year: 2020 ident: 408_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2007295117 – volume: 29 start-page: 1137 year: 2021 ident: 408_CR80 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.06.001 – volume: 13 start-page: 1211 year: 2021 ident: 408_CR98 publication-title: Viruses doi: 10.3390/v13071211 – volume: 383 start-page: 1920 year: 2020 ident: 408_CR88 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2022483 – volume: 21 start-page: 245 year: 2021 ident: 408_CR45 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00522-1 – year: 2021 ident: 408_CR236 publication-title: medRxiv doi: 10.1101/2021.04.09.21255206 – volume: 20 start-page: 100355 year: 2021 ident: 408_CR91 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2021.100355 – volume: 5 year: 2020 ident: 408_CR132 publication-title: JCI Insight – ident: 408_CR110 – volume: 371 start-page: 850 year: 2021 ident: 408_CR129 publication-title: Science doi: 10.1126/science.abf9302 – year: 2021 ident: 408_CR187 publication-title: bioRxiv doi: 10.1101/2021.03.02.433156 – volume: 596 start-page: 273 year: 2021 ident: 408_CR118 publication-title: Nature doi: 10.1038/s41586-021-03693-y – volume: 384 start-page: 1468 year: 2021 ident: 408_CR151 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2102179 – volume: 592 start-page: 116 year: 2020 ident: 408_CR135 publication-title: Nature doi: 10.1038/s41586-020-2895-3 – volume: 384 start-page: 403 year: 2021 ident: 408_CR55 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 – volume: 369 start-page: 650 year: 2020 ident: 408_CR178 publication-title: Science doi: 10.1126/science.abc6952 – volume: 184 start-page: 2201 year: 2021 ident: 408_CR102 publication-title: Cell doi: 10.1016/j.cell.2021.02.033 – volume: 12 year: 2021 ident: 408_CR162 publication-title: mBio doi: 10.1128/mBio.00696-21 – volume: 5 start-page: 1408 year: 2020 ident: 408_CR7 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0771-4 – volume: 384 start-page: 238 year: 2021 ident: 408_CR62 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035002 – volume: 397 start-page: 1351 year: 2021 ident: 408_CR213 publication-title: Lancet doi: 10.1016/S0140-6736(21)00628-0 – volume: 369 start-page: 1255 year: 2020 ident: 408_CR14 publication-title: Science doi: 10.1126/science.abd2161 – volume: 27 start-page: 1280 year: 2021 ident: 408_CR86 publication-title: Nat Med. doi: 10.1038/s41591-021-01386-7 – volume: 30 start-page: R849 year: 2020 ident: 408_CR18 publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.06.031 – volume: 369 start-page: 731 year: 2020 ident: 408_CR49 publication-title: Science doi: 10.1126/science.abc7424 – volume: 596 start-page: 276 year: 2021 ident: 408_CR214 publication-title: Nature doi: 10.1038/s41586-021-03777-9 – volume: 325 start-page: 1896 year: 2021 ident: 408_CR150 publication-title: JAMA doi: 10.1001/jama.2021.4388 – volume: 19 year: 2021 ident: 408_CR146 publication-title: PLoS Biol. – volume: 397 start-page: 1819 year: 2021 ident: 408_CR210 publication-title: Lancet doi: 10.1016/S0140-6736(21)00947-8 – volume: 13 start-page: 134 year: 2021 ident: 408_CR72 publication-title: Viruses doi: 10.3390/v13010134 – volume: 5 start-page: 1403 year: 2020 ident: 408_CR22 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0770-5 – volume: 584 start-page: 450 year: 2020 ident: 408_CR179 publication-title: Nature doi: 10.1038/s41586-020-2571-7 – volume: 29 start-page: 516 year: 2021 ident: 408_CR219 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.03.009 – volume: 53 start-page: 524 year: 2020 ident: 408_CR61 publication-title: Immunity doi: 10.1016/j.immuni.2020.07.020 – ident: 408_CR111 doi: 10.21203/rs.3.rs-524959/v2 – volume: 384 start-page: 2354 year: 2021 ident: 408_CR206 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2103022 – year: 2021 ident: 408_CR66 publication-title: medRxiv doi: 10.1101/2021.05.27.21257096 – year: 2021 ident: 408_CR134 publication-title: bioRxiv doi: 10.1101/2021.06.22.449355 – volume: 184 start-page: 2183 year: 2021 ident: 408_CR74 publication-title: Cell doi: 10.1016/j.cell.2021.02.032 – volume: 28 start-page: 465 year: 2020 ident: 408_CR108 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.07.018 – volume: 385 start-page: 187 year: 2021 ident: 408_CR211 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2104974 – volume: 184 start-page: 3086 year: 2021 ident: 408_CR67 publication-title: Cell doi: 10.1016/j.cell.2021.05.005 – volume: 592 start-page: 438 year: 2021 ident: 408_CR16 publication-title: Nature doi: 10.1038/s41586-021-03402-9 – volume: 371 start-page: 288 year: 2021 ident: 408_CR29 publication-title: Science doi: 10.1126/science.abe9728 – volume: 385 start-page: 179 year: 2021 ident: 408_CR245 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsr2105280 – year: 2021 ident: 408_CR175 publication-title: bioRxiv doi: 10.1101/2021.03.09.434607 – volume: 6 year: 2021 ident: 408_CR90 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abf7550 – volume: 384 start-page: 1899 year: 2021 ident: 408_CR216 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2103055 – volume: 184 start-page: 861 year: 2021 ident: 408_CR84 publication-title: Cell doi: 10.1016/j.cell.2021.01.007 – year: 2021 ident: 408_CR127 publication-title: bioRxiv doi: 10.1101/2021.03.08.434499 – year: 2021 ident: 408_CR6 publication-title: medRxiv doi: 10.1101/2021.06.18.21258689 – volume: 385 start-page: 585 year: 2021 ident: 408_CR232 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2108891 – volume: 593 start-page: 270 year: 2021 ident: 408_CR194 publication-title: Nature doi: 10.1038/s41586-021-03426-1 – ident: 408_CR36 – volume: 17 year: 2021 ident: 408_CR13 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1009453 – volume: 371 start-page: 823 year: 2021 ident: 408_CR68 publication-title: Science doi: 10.1126/science.abf4830 – volume: 372 start-page: 815 year: 2021 ident: 408_CR19 publication-title: Science doi: 10.1126/science.abh2644 – year: 2021 ident: 408_CR32 publication-title: medRxiv doi: 10.1101/2021.06.17.21259103 – volume: 383 start-page: 2603 year: 2020 ident: 408_CR56 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – volume: 588 start-page: 682 year: 2020 ident: 408_CR71 publication-title: Nature doi: 10.1038/s41586-020-2852-1 – volume: 588 start-page: 327 year: 2020 ident: 408_CR139 publication-title: Nature doi: 10.1038/s41586-020-2772-0 – year: 2021 ident: 408_CR33 publication-title: medRxiv doi: 10.1101/2021.06.20.21259195 – volume: 10 year: 2021 ident: 408_CR99 publication-title: Elife doi: 10.7554/eLife.69317 – volume: 29 start-page: 508 year: 2021 ident: 408_CR189 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.02.020 – volume: 13 year: 2021 ident: 408_CR164 publication-title: Sci. Transl Med. doi: 10.1126/scitranslmed.abi9915 – volume: 581 start-page: 221 year: 2020 ident: 408_CR43 publication-title: Nature doi: 10.1038/s41586-020-2179-y – volume: 12 start-page: 513 year: 2020 ident: 408_CR106 publication-title: Viruses doi: 10.3390/v12050513 – volume: 593 start-page: 142 year: 2021 ident: 408_CR124 publication-title: Nature doi: 10.1038/s41586-021-03471-w – volume: 183 start-page: 1901 year: 2020 ident: 408_CR114 publication-title: Cell doi: 10.1016/j.cell.2020.10.049 – year: 2021 ident: 408_CR154 publication-title: bioRxiv doi: 10.1101/2021.02.23.21252259 – year: 2021 ident: 408_CR155 publication-title: bioRxiv doi: 10.1101/2021.03.06.434059 – ident: 408_CR23 – volume: 20 start-page: 339 year: 2020 ident: 408_CR60 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0321-6 – volume: 184 start-page: 1804 year: 2021 ident: 408_CR79 publication-title: Cell doi: 10.1016/j.cell.2021.02.026 – volume: 54 start-page: 1853 year: 2021 ident: 408_CR174 publication-title: Immunity doi: 10.1016/j.immuni.2021.07.008 – volume: 397 start-page: 2331 year: 2021 ident: 408_CR209 publication-title: Lancet doi: 10.1016/S0140-6736(21)01290-3 – volume: 384 start-page: 1866 year: 2021 ident: 408_CR28 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2100362 – volume: 383 start-page: 2291 year: 2020 ident: 408_CR112 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2031364 – volume: 592 start-page: 277 year: 2021 ident: 408_CR113 publication-title: Nature doi: 10.1038/s41586-021-03291-y – volume: 592 start-page: 122 year: 2021 ident: 408_CR137 publication-title: Nature doi: 10.1038/s41586-021-03361-1 – volume: 373 start-page: 648 year: 2021 ident: 408_CR221 publication-title: Science doi: 10.1126/science.abi7994 – volume: 591 start-page: 293 year: 2021 ident: 408_CR182 publication-title: Nature doi: 10.1038/s41586-021-03237-4 – volume: 218 year: 2021 ident: 408_CR78 publication-title: J. Exp. Med. doi: 10.1084/jem.20201993 – volume: 223 start-page: 1666 year: 2021 ident: 408_CR200 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiab082 – volume: 538 start-page: 211 year: 2020 ident: 408_CR83 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.10.060 – volume: 29 start-page: 477 year: 2021 ident: 408_CR160 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.01.014 – volume: 26 start-page: 2100131 year: 2021 ident: 408_CR201 publication-title: Eur. Surveill. doi: 10.2807/1560-7917.ES.2021.26.10.2100130 – volume: 33 start-page: 108234 year: 2020 ident: 408_CR188 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108234 – volume: 184 start-page: 2384 year: 2021 ident: 408_CR217 publication-title: Cell doi: 10.1016/j.cell.2021.03.036 – volume: 9 year: 2020 ident: 408_CR48 publication-title: eLife doi: 10.7554/eLife.61312 – ident: 408_CR193 doi: 10.1016/j.lanepe.2021.100252 – volume: 17 year: 2021 ident: 408_CR5 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1009226 – volume: 371 start-page: 172 year: 2021 ident: 408_CR170 publication-title: Science doi: 10.1126/science.abe5901 – volume: 6 year: 2010 ident: 408_CR2 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000896 – volume: 538 start-page: 108 year: 2020 ident: 408_CR142 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.11.026 – volume: 371 start-page: 1139 year: 2021 ident: 408_CR176 publication-title: Science doi: 10.1126/science.abf6950 – year: 2021 ident: 408_CR231 publication-title: J. Travel. Med. doi: 10.1093/jtm/taab104 – year: 2021 ident: 408_CR243 publication-title: medRxiv doi: 10.1101/2021.06.28.21259576 – volume: 27 start-page: 620 year: 2021 ident: 408_CR115 publication-title: Nat. Med. doi: 10.1038/s41591-021-01270-4 – volume: 17 start-page: 998 year: 2020 ident: 408_CR186 publication-title: Cell Mol. Immunol. doi: 10.1038/s41423-020-0514-8 – year: 2021 ident: 408_CR31 publication-title: medRxiv doi: 10.1101/2021.06.23.21259405 – volume: 372 year: 2021 ident: 408_CR198 publication-title: Science doi: 10.1126/science.abg3055 – volume: 36 start-page: 109415 year: 2021 ident: 408_CR234 publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109415 – volume: 587 start-page: 270 year: 2020 ident: 408_CR87 publication-title: Nature doi: 10.1038/s41586-020-2598-9 – volume: 6 start-page: 1 year: 2021 ident: 408_CR145 publication-title: NPJ Vaccines doi: 10.1038/s41541-020-00265-5 – volume: 27 start-page: 440 year: 2021 ident: 408_CR15 publication-title: Nat. Med. doi: 10.1038/s41591-021-01255-3 – volume: 19 start-page: 409 year: 2021 ident: 408_CR52 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-021-00573-0 – year: 2021 ident: 408_CR230 publication-title: Science doi: 10.1126/science.abj4176 – volume: 595 start-page: 707 year: 2021 ident: 408_CR172 publication-title: Nature doi: 10.1038/s41586-021-03677-y – year: 2021 ident: 408_CR238 publication-title: medRxiv doi: 10.1101/2021.06.28.21259673 – volume: 184 start-page: 2372 year: 2021 ident: 408_CR208 publication-title: Cell doi: 10.1016/j.cell.2021.03.013 – volume: 182 start-page: 1295 year: 2020 ident: 408_CR128 publication-title: Cell doi: 10.1016/j.cell.2020.08.012 – volume: 181 start-page: 281 year: 2020 ident: 408_CR40 publication-title: Cell doi: 10.1016/j.cell.2020.02.058 – volume: 369 start-page: 1014 year: 2020 ident: 408_CR105 publication-title: Science doi: 10.1126/science.abd0831 – volume: 397 start-page: 452 year: 2021 ident: 408_CR30 publication-title: Lancet doi: 10.1016/S0140-6736(21)00183-5 |
| SSID | ssj0016173 |
| Score | 2.7459922 |
| SecondaryResourceType | review_article |
| Snippet | The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 757 |
| SubjectTerms | 631/250/255 631/326/596/4130 Agriculture Animal Genetics and Genomics Biological Evolution Biomedical and Life Sciences Biomedicine Cancer Research Clinical aspects Clinical significance Coronaviruses COVID-19 COVID-19 - epidemiology COVID-19 - virology Disease transmission Dosage and administration Epidemiology Epitopes - immunology Gene Function Genetic diversity Herd immunity Human Genetics Humans Medical research Monoclonal antibodies Mutation Pandemics Review Review Article SARS-CoV-2 - pathogenicity SARS-CoV-2 - physiology Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - immunology Spike protein Vaccination Vaccine efficacy Viruses |
| Title | The biological and clinical significance of emerging SARS-CoV-2 variants |
| URI | https://link.springer.com/article/10.1038/s41576-021-00408-x https://www.ncbi.nlm.nih.gov/pubmed/34535792 https://www.proquest.com/docview/2597612825 https://www.proquest.com/docview/2574406164 https://pubmed.ncbi.nlm.nih.gov/PMC8447121 |
| Volume | 22 |
| WOSCitedRecordID | wos000696747600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1471-0064 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0016173 issn: 1471-0056 databaseCode: 7RV dateStart: 20001001 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFqReeD8CZQkIiQONmjgPOye0rFoVCa1Wu7Dam-VHApWqpDS7Vfn3zORVshK9cPHFE8nOPOzxzHwD8J5pZmOlIy_XvvKi3EeVYlp41he5r_Mgbx70l1_5dCpWq3TWPrhVbVplZxNrQ21LQ2_kR3hNR4-bKi0_XfzyqGsURVfbFho7sEcoCaxO3Zv1UYSkiTAHaIA9wrxsi2b8UBxVeHBxSr-lmQhXeD04mLbN81_n03bu5FYAtT6XTh78744ewv32RuqOGxF6BHey4jHca3pU_n4CpyhIbgPVRPx0VWHdrpzSpewPyjUi0XHL3KVqY-p65C7G84U3KZcec6_QG6dkm6fw_eT42-TUa9sveCbhbO1ZrmOOrFJJyjO8KWil8pg6c9ggNUmqbRAbG4exVQmzGXpCwsRhpDnyWHDDTfgMdouyyF6Aq4zRWZaHlvlZFPhWZSKNFKcqbhskMXcg6P69NC02ObXIOJd1jDwUsuGXRH7Jml_y2oGP_TcXDTLHrdRviKWyqS7t1VqOE_SveBjSGt7VFASKUVDWzQ-1qSr5ZTEfEH1oifISF2hUW8SA2yQcrQHlwYAStdYMpzuhkK3VqOSNRDjwtp-mLykTrsjKDdEQpGOCXq4DzxtR7LcfRsgOnjIH-EBIewLCEh_OFGc_a0xxEaGSsMCBw06cb5b177_68vZdvIJ9RhpWZ_8cwO76cpO9hrvman1WXY5gh8-XNK54PQocxSQYwd7n4-lsPqp1-Q9JfUeu |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70KgUINAHGjUxHk4OSC0Wqh21WWFum3Vm3HsBCqhpDS7pf1T_EZm8ipZid564OxJNLbnm7GTb2YAXvOEm0Alvp0ljrL9zEFI8SSyjRNlTpK5Wf1B_2AiptPo8DD-sgK_21wYolW2PrFy1KbQ9I18C4_peOOmTMsPxz9t6hpFf1fbFhq1Weyk57_wyla-H3_E_X3D-fanveHIbroK2DoUfG4bkQQCNVBhLFIMgIlSWUANJ4wb6zBOjBtoE3iBUSE3KR7wIx14fiJQ9UhooT187zW4TpXsCFHRsKOU0FWhIvSjw7epxmaTpON40VaJgVIQ3ZdGfFyRs14gXA4Hf8XDZa7m0g_bKg5u3_3fVvAe3GlO3GxQQ-Q-rKT5A7hZ9-A8fwgjBAqrS1GRvTKVG9amizJitxCXiqDBioxRNjV1dWKzwe7MHhYHNmenCjGcz8tHsH8l01iD1bzI0yfAlNZJmmae4U7qu45RaRT7SlCWunHDQFjgtnstdVN7nVqA_JAVB8CLZG0fEu1DVvYhzyx41z1zXFceuVR6g0xI1tmznduSgxDvj8LzSIdXlQQV_ciJVfRNLcpSjme7PaG3jVBWoIJaNUkaOE2qE9aTXO9JolfS_eHWCGXjFUt5YYEWvOyG6Uli-uVpsSAZKlkZ4i3egse16XfT93zcDhFzC0QPFJ0A1Urvj-RH36ua6ZGPoOSuBZstfC7U-veqPr18Fhtwa7T3eSIn4-nOM7jNCd0V02kdVucni_Q53NCn86Py5EXlJxh8vWpY_QGNx575 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BQg0CcYBoE-fh5IDQ0nbVVavVaheq3oxjJ1AJJaXZLe1f49cxk8eWrERvPXD2JPLY883YnhfAa55wE6jEt7PEUbafOQgpnkS2caLMSTI3qx_0D_bFeBwdHsaTNfjd5sJQWGWrEytFbQpNb-R9PKbjjZsyLftZExYx2R5-PP5pUwcp8rS27TRqEdlLz3_h9a38MNrGvX7D-XDn89au3XQYsHUo-Nw2IgkEzkaFsUjRGCZKZQE1nzBurMM4MW6gTeAFRoXcpHjYj3Tg-YlANiKhhfbwv9dgXeAhw-_B-qed8WS69GGEtX_bRfVvU8XNJmXH8aJ-iWZTUPAvjfi4Pmcds7hqHP6yjquRmyvu28oqDu_8z-t5F243Z3E2qMFzD9bS_D7cqLtznj-AXYQQq4tUkSQzlRvWJpIyinuhKCsCDSsyRnnW1O-JzQbTmb1VHNicnSpEdz4vH8KXK2HjEfTyIk-fAFNaJ2maeYY7qe86RqVR7CtB-evGDQNhgdvuu9RNVXZqDvJDVtEBXiRrWZEoK7KSFXlmwbvlN8d1TZJLqTdJnGSdV7tUaHIQ4s1SeB7N4VVFQeVAchKEb2pRlnI0m3aI3jZEWYET1KpJ30A2qYJYh3KjQ4n6SneHW4GUjb4s5YU0WvByOUxfUgxgnhYLoqFiliHe7y14XMNgyb7n43aImFsgOgBZElAV9e5IfvS9qqYe-QhQ7lrwvoXSxbT-vapPL-diE24imuT-aLz3DG5xAnoVArUBvfnJIn0O1_Xp_Kg8edEoDQZfrxpXfwCj5qlX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+biological+and+clinical+significance+of+emerging+SARS-CoV-2+variants&rft.jtitle=Nature+reviews.+Genetics&rft.au=Tao%2C+Kaiming&rft.au=Tzou%2C+Philip+L.&rft.au=Nouhin%2C+Janin&rft.au=Gupta%2C+Ravindra+K.&rft.date=2021-12-01&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=22&rft.issue=12&rft.spage=757&rft.epage=773&rft_id=info:doi/10.1038%2Fs41576-021-00408-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41576_021_00408_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon |