A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems
We study a generic minimization problem with separable nonconvex piecewise linear costs, showing that the linear programming (LP) relaxation of three textbook mixed-integer programming formulations each approximates the cost function by its lower convex envelope. We also show a relationship between...
Uložené v:
| Vydané v: | Management science Ročník 49; číslo 9; s. 1268 - 1273 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Linthicum
INFORMS
01.09.2003
Institute for Operations Research and the Management Sciences |
| Edícia: | Management Science |
| Predmet: | |
| ISSN: | 0025-1909, 1526-5501 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We study a generic minimization problem with separable nonconvex piecewise linear costs, showing that the linear programming (LP) relaxation of three textbook mixed-integer programming formulations each approximates the cost function by its lower convex envelope. We also show a relationship between this result and classical Lagrangian duality theory. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0025-1909 1526-5501 |
| DOI: | 10.1287/mnsc.49.9.1268.16570 |