A novel framework for classification of two-class motor imagery EEG signals using logistic regression classification algorithm

Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer Interface (BCI) is a communication system that allows humans to communicate with their environment by detecting and quantifying control signals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 18; H. 9; S. e0276133
Hauptverfasser: Khan, Rabia Avais, Rashid, Nasir, Shahzaib, Muhammad, Malik, Umar Farooq, Arif, Arshia, Iqbal, Javaid, Saleem, Mubasher, Khan, Umar Shahbaz, Tiwana, Mohsin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: San Francisco Public Library of Science 08.09.2023
Public Library of Science (PLoS)
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer Interface (BCI) is a communication system that allows humans to communicate with their environment by detecting and quantifying control signals produced from different modalities and translating them into voluntary commands for actuating an external device. For that purpose, classification the brain signals with a very high accuracy and minimization of the errors is of profound importance to the researchers. So in this study, a novel framework has been proposed to classify the binary-class electroencephalogram (EEG) data. The proposed framework is tested on BCI Competition IV dataset 1 and BCI Competition III dataset 4a. Artifact removal from EEG data is done through preprocessing, followed by feature extraction for recognizing discriminative information in the recorded brain signals. Signal preprocessing involves the application of independent component analysis (ICA) on raw EEG data, accompanied by the employment of common spatial pattern (CSP) and log-variance for extracting useful features. Six different classification algorithms, namely support vector machine, linear discriminant analysis, k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, have been compared to classify the EEG data accurately. The proposed framework achieved the best classification accuracies with logistic regression classifier for both datasets. Average classification accuracy of 90.42% has been attained on BCI Competition IV dataset 1 for seven different subjects, while for BCI Competition III dataset 4a, an average accuracy of 95.42% has been attained on five subjects. This indicates that the model can be used in real time BCI systems and provide extra-ordinary results for 2-class Motor Imagery (MI) signals classification applications and with some modifications this framework can also be made compatible for multi-class classification in the future.
AbstractList Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer Interface (BCI) is a communication system that allows humans to communicate with their environment by detecting and quantifying control signals produced from different modalities and translating them into voluntary commands for actuating an external device. For that purpose, classification the brain signals with a very high accuracy and minimization of the errors is of profound importance to the researchers. So in this study, a novel framework has been proposed to classify the binary-class electroencephalogram (EEG) data. The proposed framework is tested on BCI Competition IV dataset 1 and BCI Competition III dataset 4a. Artifact removal from EEG data is done through preprocessing, followed by feature extraction for recognizing discriminative information in the recorded brain signals. Signal preprocessing involves the application of independent component analysis (ICA) on raw EEG data, accompanied by the employment of common spatial pattern (CSP) and log-variance for extracting useful features. Six different classification algorithms, namely support vector machine, linear discriminant analysis, k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, have been compared to classify the EEG data accurately. The proposed framework achieved the best classification accuracies with logistic regression classifier for both datasets. Average classification accuracy of 90.42% has been attained on BCI Competition IV dataset 1 for seven different subjects, while for BCI Competition III dataset 4a, an average accuracy of 95.42% has been attained on five subjects. This indicates that the model can be used in real time BCI systems and provide extra-ordinary results for 2-class Motor Imagery (MI) signals classification applications and with some modifications this framework can also be made compatible for multi-class classification in the future.Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer Interface (BCI) is a communication system that allows humans to communicate with their environment by detecting and quantifying control signals produced from different modalities and translating them into voluntary commands for actuating an external device. For that purpose, classification the brain signals with a very high accuracy and minimization of the errors is of profound importance to the researchers. So in this study, a novel framework has been proposed to classify the binary-class electroencephalogram (EEG) data. The proposed framework is tested on BCI Competition IV dataset 1 and BCI Competition III dataset 4a. Artifact removal from EEG data is done through preprocessing, followed by feature extraction for recognizing discriminative information in the recorded brain signals. Signal preprocessing involves the application of independent component analysis (ICA) on raw EEG data, accompanied by the employment of common spatial pattern (CSP) and log-variance for extracting useful features. Six different classification algorithms, namely support vector machine, linear discriminant analysis, k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, have been compared to classify the EEG data accurately. The proposed framework achieved the best classification accuracies with logistic regression classifier for both datasets. Average classification accuracy of 90.42% has been attained on BCI Competition IV dataset 1 for seven different subjects, while for BCI Competition III dataset 4a, an average accuracy of 95.42% has been attained on five subjects. This indicates that the model can be used in real time BCI systems and provide extra-ordinary results for 2-class Motor Imagery (MI) signals classification applications and with some modifications this framework can also be made compatible for multi-class classification in the future.
Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer Interface (BCI) is a communication system that allows humans to communicate with their environment by detecting and quantifying control signals produced from different modalities and translating them into voluntary commands for actuating an external device. For that purpose, classification the brain signals with a very high accuracy and minimization of the errors is of profound importance to the researchers. So in this study, a novel framework has been proposed to classify the binary-class electroencephalogram (EEG) data. The proposed framework is tested on BCI Competition IV dataset 1 and BCI Competition III dataset 4a. Artifact removal from EEG data is done through preprocessing, followed by feature extraction for recognizing discriminative information in the recorded brain signals. Signal preprocessing involves the application of independent component analysis (ICA) on raw EEG data, accompanied by the employment of common spatial pattern (CSP) and log-variance for extracting useful features. Six different classification algorithms, namely support vector machine, linear discriminant analysis, k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, have been compared to classify the EEG data accurately. The proposed framework achieved the best classification accuracies with logistic regression classifier for both datasets. Average classification accuracy of 90.42% has been attained on BCI Competition IV dataset 1 for seven different subjects, while for BCI Competition III dataset 4a, an average accuracy of 95.42% has been attained on five subjects. This indicates that the model can be used in real time BCI systems and provide extra-ordinary results for 2-class Motor Imagery (MI) signals classification applications and with some modifications this framework can also be made compatible for multi-class classification in the future.
Audience Academic
Author Rashid, Nasir
Malik, Umar Farooq
Tiwana, Mohsin
Iqbal, Javaid
Saleem, Mubasher
Khan, Rabia Avais
Arif, Arshia
Khan, Umar Shahbaz
Shahzaib, Muhammad
AuthorAffiliation Effat University, SAUDI ARABIA
1 Department of Mechatronics Engineering, National University of Sciences & Technology, Islamabad, Pakistan
2 Robot Design and Development Lab, National Centre of Robotics and Automation (NCRA), Punjab, Pakistan
AuthorAffiliation_xml – name: 2 Robot Design and Development Lab, National Centre of Robotics and Automation (NCRA), Punjab, Pakistan
– name: Effat University, SAUDI ARABIA
– name: 1 Department of Mechatronics Engineering, National University of Sciences & Technology, Islamabad, Pakistan
Author_xml – sequence: 1
  givenname: Rabia Avais
  surname: Khan
  fullname: Khan, Rabia Avais
– sequence: 2
  givenname: Nasir
  orcidid: 0000-0003-0499-8042
  surname: Rashid
  fullname: Rashid, Nasir
– sequence: 3
  givenname: Muhammad
  surname: Shahzaib
  fullname: Shahzaib, Muhammad
– sequence: 4
  givenname: Umar Farooq
  surname: Malik
  fullname: Malik, Umar Farooq
– sequence: 5
  givenname: Arshia
  surname: Arif
  fullname: Arif, Arshia
– sequence: 6
  givenname: Javaid
  surname: Iqbal
  fullname: Iqbal, Javaid
– sequence: 7
  givenname: Mubasher
  surname: Saleem
  fullname: Saleem, Mubasher
– sequence: 8
  givenname: Umar Shahbaz
  orcidid: 0000-0002-5263-1408
  surname: Khan
  fullname: Khan, Umar Shahbaz
– sequence: 9
  givenname: Mohsin
  surname: Tiwana
  fullname: Tiwana, Mohsin
BookMark eNqNk12L1DAUhousuB_6DwQLgujFjPnoNKk3MizrOrCw4NdtOE2TTsa0GZN2173xt5vOVNkOi0gv2pw-75tzDuecJketa1WSPMdojinDbzeu9y3Y-TaG54iwHFP6KDnBBSWznCB6dO_7ODkNYYPQgvI8f5IcU5Zzwnl2kvxapq27UTbVHhp16_z3VDufSgshGG0kdMa1qdNpd-tmu2jauC4SpoFa-bv04uIyDaaOmYS0D6atU-tqEzojU69qr6JNNDjwA1s7b7p18zR5rKNSPRvfZ8nXDxdfzj_Orq4vV-fLq5nMGepmUEBBC1phpRcccUa4XmSZjidSlUBLIJBlHEvFFppyzRjwMpOQa66pBsboWfJi77u1LoixdUEQnhO2QKhAkVjticrBRmx9rM_fCQdG7ALO1wJ8rMoqUSoiJSKSSw1ZCZhrTDgDnGFexZx49Ho_3taXjaqkajsPdmI6_dOatajdjcAoK4byosPr0cG7H70KnWhMkMpaaJXrd4lTUrCMD4m_PEAfLm-kaogVmFa7eLEcTMWS5RkmC4yHNs0foOJTqcbIOGjaxPhE8GYiiEynfnY19CGI1edP_89ef5uyr-6xawW2Wwdn-2F6whTM9qD0LgSv9N8uYySGPfnTDTHsiRj3JMreHcik6XazGQs29t_i35jZHNE
CitedBy_id crossref_primary_10_1007_s11042_024_20510_6
crossref_primary_10_1016_j_jneumeth_2025_110565
crossref_primary_10_1109_ACCESS_2025_3604528
crossref_primary_10_1007_s11042_025_20605_8
crossref_primary_10_1016_j_brs_2025_09_001
crossref_primary_10_1016_j_procs_2025_04_546
crossref_primary_10_3390_chemosensors12110225
Cites_doi 10.1007/s11517-017-1611-4
10.1186/1471-2105-13-24
10.1016/j.paerosci.2017.07.003
10.1016/S0079-6123(06)59028-4
10.1109/CIEC.2016.7513812
10.1109/ICASSP.2011.5946970
10.1109/TNSRE.2003.814441
10.1109/EPETSG.2018.8659292
10.1109/ACCESS.2019.2947701
10.1109/MSP.2008.4408441
10.1016/j.measurement.2016.02.059
10.1051/matecconf/201714001024
10.1109/BRC.2013.6487514
10.1109/LSP.2009.2022557
10.1109/JBHI.2014.2333010
10.7717/peerj-cs.374
10.1109/ICET.2013.6743513
10.1109/ICCKE50421.2020.9303717
10.1016/j.cmpb.2013.12.020
10.1088/1741-2560/1/3/002
10.1080/10447318.2013.780869
10.1016/B978-0-12-411474-6.00018-9
10.1016/j.eswa.2006.09.004
10.1109/BIBM49941.2020.9313336
10.1109/72.788640
10.1016/B978-0-12-809633-8.20460-3
10.1016/j.eswa.2011.01.077
10.1016/j.patcog.2021.107918
10.1109/CIVEMSA45640.2019.9071599
10.3390/s20174749
10.1016/S0926-6410(03)00173-3
10.1016/j.asoc.2019.105519
10.1109/TNSRE.2021.3071140
10.1016/j.cortex.2016.03.019
10.1109/ACCESS.2018.2868178
10.1109/MSP.2008.4408442
10.1109/SMC42975.2020.9282917
10.1109/TNSRE.2019.2922713
10.1016/j.jneumeth.2020.108833
10.1109/TCYB.2015.2479240
10.1016/S1388-2457(99)00141-8
10.1016/j.neuroimage.2007.01.051
10.1109/ICCME.2011.5876793
10.1109/TNN.2006.873281
10.1088/1741-2560/9/5/056002
10.1109/CCMB.2011.5952111
ContentType Journal Article
Copyright COPYRIGHT 2023 Public Library of Science
2023 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2023 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2023 Khan et al 2023 Khan et al
2023 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2023 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2023 Khan et al 2023 Khan et al
– notice: 2023 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0276133
DatabaseName CrossRef
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



CrossRef

Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Novel framework for classification of two-class motor imagery EEG signals
EISSN 1932-6203
ExternalDocumentID 2862750090
oai_doaj_org_article_be2cc02c8cfa4ba18f1287a1418dfef8
PMC10490872
A764125117
10_1371_journal_pone_0276133
GeographicLocations Pakistan
GeographicLocations_xml – name: Pakistan
GrantInformation_xml – fundername: ;
  grantid: DF-1009-31
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ID FETCH-LOGICAL-c670t-a9a9393d1ef5808728f544fef52dba3ba2a4481ce75f38f77a8b4ca6f8f3fa773
IEDL.DBID FPL
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001091871500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Wed Aug 13 01:19:57 EDT 2025
Tue Oct 14 15:05:03 EDT 2025
Tue Nov 04 02:06:25 EST 2025
Sun Nov 09 12:06:37 EST 2025
Tue Oct 07 08:09:02 EDT 2025
Sat Nov 29 14:11:33 EST 2025
Sat Nov 29 10:54:06 EST 2025
Wed Nov 26 11:22:47 EST 2025
Wed Nov 26 11:23:48 EST 2025
Thu May 22 21:20:03 EDT 2025
Sat Nov 29 03:50:38 EST 2025
Tue Nov 18 22:43:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c670t-a9a9393d1ef5808728f544fef52dba3ba2a4481ce75f38f77a8b4ca6f8f3fa773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-0499-8042
0000-0002-5263-1408
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0276133
PMID 37682884
PQID 2862750090
PQPubID 1436336
PageCount e0276133
ParticipantIDs plos_journals_2862750090
doaj_primary_oai_doaj_org_article_be2cc02c8cfa4ba18f1287a1418dfef8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10490872
proquest_miscellaneous_2863297480
proquest_journals_2862750090
gale_infotracmisc_A764125117
gale_infotracacademiconefile_A764125117
gale_incontextgauss_ISR_A764125117
gale_incontextgauss_IOV_A764125117
gale_healthsolutions_A764125117
crossref_primary_10_1371_journal_pone_0276133
crossref_citationtrail_10_1371_journal_pone_0276133
PublicationCentury 2000
PublicationDate 2023-09-08
PublicationDateYYYYMMDD 2023-09-08
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-08
  day: 08
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References L Qin (pone.0276133.ref029) 2004; 1
G Pfurtscheller (pone.0276133.ref007) 2006; 159
Li Y Siuly (pone.0276133.ref056) 2014; 113
NE Md Isa (pone.0276133.ref011) 2017; 140
Y Miao (pone.0276133.ref022) 2021; 29
S Selim (pone.0276133.ref035) 2018; 6
P Goel (pone.0276133.ref037) 2018
C-J Du (pone.0276133.ref051) 2008
Wang H Siuly (pone.0276133.ref048) 2016; 86
TA Fatehi (pone.0276133.ref001) 2011
D Garrett (pone.0276133.ref040) 2003; 11
AU Haq (pone.0276133.ref054) 2019; 7
pone.0276133.ref047
pone.0276133.ref045
Y Park (pone.0276133.ref018) 2019; 27
L Breiman (pone.0276133.ref052) 1984
ME Mavroforakis (pone.0276133.ref010) 2006; 17
B Blankertz (pone.0276133.ref026) 2007; 37
B Blankertz (pone.0276133.ref036) 2008; 25
R Fu (pone.0276133.ref019) 2020; 343
pone.0276133.ref050
E Dong (pone.0276133.ref039) 2017; 55
K Roy (pone.0276133.ref044) 2015
D Cheyne (pone.0276133.ref006) 2003; 17
pone.0276133.ref016
pone.0276133.ref017
H-J Hwang (pone.0276133.ref003) 2013; 29
pone.0276133.ref055
S-Y Dong (pone.0276133.ref004) 2016; 46
pone.0276133.ref014
pone.0276133.ref012
pone.0276133.ref013
Y Shin (pone.0276133.ref027) 2012; 9
M Rashid (pone.0276133.ref053) 2021; 7
V Mishuhina (pone.0276133.ref015) 2021; 115
H Zhang (pone.0276133.ref033) 2012; 6
B. Calabrese (pone.0276133.ref031) 2019
VN Vapnik (pone.0276133.ref041) 1999; 10
JS Kirar (pone.0276133.ref024) 2020; 97
A Wijaya (pone.0276133.ref025) 2021; 14
pone.0276133.ref021
HM Hobson (pone.0276133.ref002) 2016; 82
Z Wen (pone.0276133.ref032) 2017; 94
pone.0276133.ref023
F Yao (pone.0276133.ref030) 2012; 13
S Veetil (pone.0276133.ref049) 2014
A. Subasi (pone.0276133.ref042) 2020
S Zhang (pone.0276133.ref020) 2020; 20
I Kurt (pone.0276133.ref043) 2008; 34
S Wang (pone.0276133.ref046) 2011; 38
pone.0276133.ref038
JK Feng (pone.0276133.ref034) 2019; 2019
A Kachenoura (pone.0276133.ref009) 2008; 25
H Kang (pone.0276133.ref008) 2009; 16
R Mahajan (pone.0276133.ref028) 2015; 19
G Pfurtscheller (pone.0276133.ref005) 1999; 110
References_xml – volume: 55
  start-page: 1809
  issue: 10
  year: 2017
  ident: pone.0276133.ref039
  article-title: Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain-computer interfaces
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-017-1611-4
– volume: 13
  start-page: 24
  year: 2012
  ident: pone.0276133.ref030
  article-title: Independent Principal Component Analysis for biologically meaningful dimension reduction of large biological data sets
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-24
– volume: 94
  start-page: 1
  year: 2017
  ident: pone.0276133.ref032
  article-title: A review of electrostatic monitoring technology: The state of the art and future research directions
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2017.07.003
– volume: 159
  start-page: 433
  year: 2006
  ident: pone.0276133.ref007
  article-title: Future prospects of ERD/ERS in the context of brain-computer interface (BCI) developments
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(06)59028-4
– ident: pone.0276133.ref013
  doi: 10.1109/CIEC.2016.7513812
– ident: pone.0276133.ref038
  doi: 10.1109/ICASSP.2011.5946970
– volume: 11
  start-page: 141
  issue: 2
  year: 2003
  ident: pone.0276133.ref040
  article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2003.814441
– volume-title: Classification and Regression Trees
  year: 1984
  ident: pone.0276133.ref052
– ident: pone.0276133.ref045
  doi: 10.1109/EPETSG.2018.8659292
– volume: 7
  start-page: 151482
  year: 2019
  ident: pone.0276133.ref054
  article-title: Combining multiple feature-ranking techniques and clustering of variables for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947701
– volume: 25
  start-page: 41
  issue: 1
  year: 2008
  ident: pone.0276133.ref036
  article-title: Optimizing Spatial filters for Robust EEG Single-Trial Analysis
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2008.4408441
– volume: 86
  start-page: 148
  year: 2016
  ident: pone.0276133.ref048
  article-title: Detection of motor imagery EEG signals employing Naïve Bayes based learning process
  publication-title: Measurement (Lond)
  doi: 10.1016/j.measurement.2016.02.059
– volume: 140
  start-page: 01024
  year: 2017
  ident: pone.0276133.ref011
  article-title: The performance analysis of K-nearest neighbors (K-NN) algorithm for motor imagery classification based on EEG signal
  publication-title: MATEC Web Conf
  doi: 10.1051/matecconf/201714001024
– ident: pone.0276133.ref012
– ident: pone.0276133.ref050
  doi: 10.1109/BRC.2013.6487514
– volume: 16
  start-page: 683
  issue: 8
  year: 2009
  ident: pone.0276133.ref008
  article-title: Composite common spatial pattern for subject-to-subject transfer
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2009.2022557
– volume: 19
  start-page: 158
  issue: 1
  year: 2015
  ident: pone.0276133.ref028
  article-title: Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, Kurtosis, and wavelet-ICA
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2014.2333010
– volume: 7
  start-page: e374
  issue: e374
  year: 2021
  ident: pone.0276133.ref053
  article-title: The classification of motor imagery response: an accuracy enhancement through the ensemble of random subspace k-NN
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.374
– ident: pone.0276133.ref014
  doi: 10.1109/ICET.2013.6743513
– year: 2011
  ident: pone.0276133.ref001
  publication-title: Features extraction techniques of EEG signals for BCI application
– ident: pone.0276133.ref021
  doi: 10.1109/ICCKE50421.2020.9303717
– volume: 113
  start-page: 767
  issue: 3
  year: 2014
  ident: pone.0276133.ref056
  article-title: Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2013.12.020
– volume: 6
  start-page: 7
  year: 2012
  ident: pone.0276133.ref033
  article-title: BCI competition IV—data set I: Learning discriminative patterns for self-paced EEG-based motor imagery detection
  publication-title: Front Neurosci
– volume: 1
  start-page: 135
  issue: 3
  year: 2004
  ident: pone.0276133.ref029
  article-title: Motor imagery classification by means of source analysis for brain-computer interface applications
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/1/3/002
– start-page: 81
  volume-title: Computer Vision Technology for Food Quality Evaluation
  year: 2008
  ident: pone.0276133.ref051
– volume: 29
  start-page: 814
  issue: 12
  year: 2013
  ident: pone.0276133.ref003
  article-title: EEG-based brain-computer interfaces: A thorough literature survey
  publication-title: Int J Hum Comput Interact
  doi: 10.1080/10447318.2013.780869
– start-page: 281
  volume-title: Emerging Trends in ICT Security
  year: 2014
  ident: pone.0276133.ref049
  doi: 10.1016/B978-0-12-411474-6.00018-9
– volume: 34
  start-page: 366
  issue: 1
  year: 2008
  ident: pone.0276133.ref043
  article-title: Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.09.004
– ident: pone.0276133.ref023
  doi: 10.1109/BIBM49941.2020.9313336
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  ident: pone.0276133.ref041
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.788640
– start-page: 480
  volume-title: Encyclopedia of Bioinformatics and Computational Biology
  year: 2019
  ident: pone.0276133.ref031
  doi: 10.1016/B978-0-12-809633-8.20460-3
– volume-title: Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment
  year: 2015
  ident: pone.0276133.ref044
– volume: 38
  start-page: 8696
  issue: 7
  year: 2011
  ident: pone.0276133.ref046
  article-title: A feature selection method based on improved fisher’s discriminant ratio for text sentiment classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.01.077
– volume: 115
  start-page: 107918
  issue: 107918
  year: 2021
  ident: pone.0276133.ref015
  article-title: Complex common spatial patterns on time-frequency decomposed EEG for brain-computer interface
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2021.107918
– ident: pone.0276133.ref016
  doi: 10.1109/CIVEMSA45640.2019.9071599
– volume: 20
  start-page: 4749
  issue: 17
  year: 2020
  ident: pone.0276133.ref020
  article-title: The CSP-based new features plus non-convex log sparse feature selection for motor imagery EEG classification
  publication-title: Sensors (Basel)
  doi: 10.3390/s20174749
– volume: 17
  start-page: 599
  issue: 3
  year: 2003
  ident: pone.0276133.ref006
  article-title: Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation
  publication-title: Brain Res Cogn Brain Res
  doi: 10.1016/S0926-6410(03)00173-3
– volume: 97
  start-page: 105519
  issue: 105519
  year: 2020
  ident: pone.0276133.ref024
  article-title: A combination of spectral graph theory and quantum genetic algorithm to find relevant set of electrodes for motor imagery classification
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105519
– start-page: 26
  volume-title: Intelligent Human Computer Interaction
  year: 2018
  ident: pone.0276133.ref037
– volume: 29
  start-page: 699
  year: 2021
  ident: pone.0276133.ref022
  article-title: Learning common time-frequency-spatial patterns for motor imagery classification
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2021.3071140
– volume: 82
  start-page: 290
  year: 2016
  ident: pone.0276133.ref002
  article-title: Mu suppression—A good measure of the human mirror neuron system?
  publication-title: Cortex
  doi: 10.1016/j.cortex.2016.03.019
– volume: 6
  start-page: 49192
  year: 2018
  ident: pone.0276133.ref035
  article-title: A CSP\AM-BA-SVM approach for motor imagery BCI system.
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2868178
– volume: 25
  start-page: 57
  issue: 1
  year: 2008
  ident: pone.0276133.ref009
  article-title: Ica: a potential tool for bci systems
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2008.4408442
– ident: pone.0276133.ref017
  doi: 10.1109/SMC42975.2020.9282917
– volume: 27
  start-page: 1378
  issue: 7
  year: 2019
  ident: pone.0276133.ref018
  article-title: Frequency-optimized local region common spatial pattern approach for motor imagery classification
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2019.2922713
– volume: 343
  start-page: 108833
  issue: 108833
  year: 2020
  ident: pone.0276133.ref019
  article-title: Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2020.108833
– volume: 46
  start-page: 2535
  issue: 11
  year: 2016
  ident: pone.0276133.ref004
  article-title: EEG-based classification of implicit intention during self-relevant sentence reading
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2479240
– volume: 110
  start-page: 1842
  issue: 11
  year: 1999
  ident: pone.0276133.ref005
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 14
  start-page: 134
  issue: 1
  year: 2021
  ident: pone.0276133.ref025
  article-title: Logistic Regression based Feature Selection and Two-Stage Detection for EEG based Motor Imagery Classification
  publication-title: Int j intell eng syst
– volume: 37
  start-page: 539
  issue: 2
  year: 2007
  ident: pone.0276133.ref026
  article-title: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.01.051
– ident: pone.0276133.ref055
  doi: 10.1109/ICCME.2011.5876793
– volume: 17
  start-page: 671
  issue: 3
  year: 2006
  ident: pone.0276133.ref010
  article-title: A geometric approach to support vector machine (SVM) classification
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.873281
– volume: 9
  start-page: 056002
  issue: 5
  year: 2012
  ident: pone.0276133.ref027
  article-title: Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/9/5/056002
– volume-title: Practical machine learning for data analysis using python
  year: 2020
  ident: pone.0276133.ref042
– ident: pone.0276133.ref047
  doi: 10.1109/CCMB.2011.5952111
– volume: 2019
  start-page: 8068357
  year: 2019
  ident: pone.0276133.ref034
  article-title: An optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI system
  publication-title: Comput Intell Neurosci
SSID ssj0053866
Score 2.5032299
Snippet Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0276133
SubjectTerms Accuracy
Algorithms
Analysis
Artificial intelligence
Biology and Life Sciences
Brain
Brain research
Classification
Communications systems
Competition
Computer and Information Sciences
Computer applications
Datasets
Decision analysis
Decision trees
Disabilities
Discriminant analysis
EEG
Electroencephalography
Engineering and Technology
Evaluation
Feature extraction
Feature recognition
Human-computer interface
Image classification
Implants
Independent component analysis
Literature reviews
Logistic regression
Medicine and Health Sciences
Mental task performance
Physical Sciences
Preprocessing
Regression
Regression analysis
Research and Analysis Methods
Robotics
Signal classification
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQigMXRPlQlxYwCAk4pI3tJPYeF7QFJFQQX-otsh17u9I2WW12i7jw25lxvFGDkMqBa_wSJTPj8Yzy_EzI88Ig9YlDp5pWWZJZIxKVOZTcN5JXXHnTnVryQZ6eqrOzyacrR30hJ6yTB-4Md2wctzblVlmvM6OZ8pBRpWYZU5V3PmzzTeVk10x1ORhmcVHEjXJCsuPol6NVU7sjaMRgDRODhSjo9fdZebRaNu2g5BwSJq-sQCd3yO1YOtJp98p75Iar75K9ODlb-jIqSL-6R35Nad1cuiX1O-oVhdqUWqyUkRoUvEEbTzc_miRcpeAxQCwuUNLiJ53N3lJkdkBsUmTGz2m3U2hh6drNO-ps_efz9HLerBeb84v75NvJ7Oubd0k8aCGxhUw3iZ7oiZiIijmfq1RJcFGeZWDdnFdGC6O5hi6OWSdzL5SXUiuTWV145YXXUooHZFSDafcJdYUoDMs1KzhUYiY1zmcKRd9MnrrU2jERO6uXNqqQ42EYyzL8WpPQjXTWLNFXZfTVmCT9XatOheMa_Gt0aI9FDe1wASKrjJFVXhdZY_IEw6HsNqT2maCcyiLDspDJMXkWEKijUSNRZ663bVu-__j9H0BfPg9ALyLIN2AOq-PmCPgm1OcaIA8HSMgGdjC8j8G7s0pbcoU61FBJp3DnLqD_Pvy0H8aHIvmuds02YASHvlMBRg0mwsDAw5F6cR7Eyln4tSz5w__hkgNyi0ORGTh-6pCMNuute0Ru2svNol0_DingN0HLZpk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLagcOACjB9aYYBBSMAhW2ynsXtCBW2AhAYaMO0W2Y7dVeqS0rRDXPjbec9xCkEIkDg2_pLGfs_Pz_Hnz4Q8zg1SnzjMVNMySzJrRKIyh5L7RvKSK2_aU0veysNDdXIyfh8_uDWRVtnFxBCoy9riN_I9rlBPFzKC9Pnic4KnRuHqajxC4yK5xDA3Bn-WR8ddJIa-nOdxu5yQbC9aZ3dRV24XpmMwkonecBRU-zexebCY100v8ezTJn8ahw6u_W8NrpOrMQOlk9ZltsgFV90gW7GPN_RpFKJ-dpN8m9CqPndz6jsGF4UUl1pMuJFhFIxKa09XX-okXKVgeEDMzlAZ4yvd339FkSACLk6RYD-l7YajmaVLN20ZuNWvz9PzKbz16vTsFvl0sP_x5esknteQ2Fymq0SP9ViMRcmcH6lUSbD0KMs8_OKl0cJormEyyKyTIy-Ul1Irk1mde-WF11KK22RQgW22CXW5yA0baZZzSOhMapzPFGrHmVHqUmuHRHRmK2wUM8czNeZFWKGTMKlpW7NAYxfR2EOSbO5atGIef8G_QI_YYFGKO1yol9Mi9uzCOG5tyq2yXmdGM-VhyJeaZUyVUHc1JA_Qn4p2X-smoBQTmWeYXTI5JI8CAuU4KuT7TPW6aYo3747_AfThqAd6EkG-huawOu6xgDqhzFcPudNDQlCxveJt9P6uVZrih_PCnZ17_7744aYYH4ocvsrV64ARHKavCjCq15N6DdwvqWanQfOchRVqye_8-d_vkiscstBAAlQ7ZLBart09ctmer2bN8n6IDt8BcfZzOQ
  priority: 102
  providerName: ProQuest
Title A novel framework for classification of two-class motor imagery EEG signals using logistic regression classification algorithm
URI https://www.proquest.com/docview/2862750090
https://www.proquest.com/docview/2863297480
https://pubmed.ncbi.nlm.nih.gov/PMC10490872
https://doaj.org/article/be2cc02c8cfa4ba18f1287a1418dfef8
http://dx.doi.org/10.1371/journal.pone.0276133
Volume 18
WOSCitedRecordID wos001091871500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdYx4ELMD60wigGIQGHlMROYvfYTi1M20rUwVS4RLZrd5W6pGraIS787Tw7aSETE3B5UuKfo-Q9f7wXP_-M0KtY2tQnApGqPwm9UEnq8VBbyn3JyIRwI8tTS07YcMjH407yK1C8toJPWfCu0ml7kWe6DUEUzD90B-0SGsc22BokJ5uRF_puHFfb426qWZt-HEv_dixuLOZ5UXM062mSv807g3v_-8b30d3Kw8TdsknsoVs6e4D2qj5c4DcV0fTbh-hHF2f5lZ5js8nQwuDCYmUdaptB5IyGc4NX33LP3cVgWEDMLi3zxXfc77_HNgEEmjC2CfRTXG4omim81NMywza7_jwxn-bL2eri8hH6POh_OvzgVecxeCpm_soTHdGhHToJtIm4zxlYMgpDA1dkIgWVgggI9gKlWWQoN4wJLkMlYsMNNYIx-hg1MtDJPsI6prEMIhHEBBw26UttQm654WTka1-pJqIbM6WqIiu3Z2bMU7cCxyBoKbWZWiWnlZKbyNvWWpRkHX_B92wL2GIt1ba7AdZMq56bSk2U8oniyohQioAbmNKZCMKAT-DbeRM9t-0nLfetbgeMtMvi0HqPAWuilw5h6TYym88zFeuiSI8-nv8D6GxUA72uQCYHdShR7aGAb7I0XjXkQQ0Jg4aqFe_b1r7RSpESbumqweH2oeamB_y5-MW22D7U5uhlOl87DCUQnnLA8FrPqSm4XpLNLhyneeBWoBl5cvOLPUV3CHiYLsGPH6DGarnWz9BtdbWaFcsW2mGjcyvHzEkOkh8GLbTb6w-TUcv9bGm58QLkca8N8tQ_tpIlTp6BTKKvUCM5Ok2-_ARwuW35
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgAQXoDzUQKELAgEHt_b6sZsDQgFSGjWEihZUcTG76900UmqHOGnVCz-J38iMHwEjBFx64Bjv5409mZmdyc58S8ijSGHpE4NM1U0CJ9DKd0RgkHJfcZYwYVV5asmAD4fi8LCzt0K-1b0wWFZZ-8TCUSeZxv_It5hAPl2ICNwX0y8OnhqFu6v1ERqlWuyas1NI2fLn_dfw-z5mbLt38GrHqU4VcHTE3bkjO7Ljd_zEMzYUruDwPGEQWPjEEiV9JZmElMXThofWF5ZzKVSgZWSF9a3k3Id5L5CLQcBctKK98FPt-cF3RFHVnudzb6vShs1plppNSP9g5fQby19xSsByLWhNJ1neCHSbZZo_rXvb1_43iV0nV6sIm3ZLk1glKya9QVYrH5bTpxXR9rOb5GuXptmJmVBbV6hRCOGpxoQCK6gKpaWZpfPTzCmuUlBsQIyPkfnjjPZ6bygWwIAJU2wgGNGyoWqs6cyMygrj9Nf55GQEUpofHd8iH85FDrdJKwVdWCPURH6kvFB6EYOAVbnK2EAgN54KXeNq3SZ-rSaxrsja8cyQSVzsQHJI2kppxqhccaVcbeIs75qWZCV_wb9EDVxikWq8uJDNRnHluWJlmNYu00JbGSjpCQshDZde4IkE3l20yQbqb1z27S4dZtzlUYDRs8fb5GGBQLqRFOuZRnKR53H_3cd_AO2_b4CeVCCbgTi0rHpI4J2QxqyBXG8gwWnqxvAaWlstlTz-YSxwZ21Ovx9-sBzGSbFGMTXZosD4DNJzARjRsNyGgJsj6fio4HT3ih14zu78-ds3yOWdg7eDeNAf7t4lVxhE3EXBo1gnrflsYe6RS_pkPs5n9wvPRMnn8zbs76sW0dw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VgBAXoCxqoNABgYCDG3u8zOSAUKAJVK1CBAVVXMzMeCaNlNohTlr1wg_j1_Gel4ARAi49cIzn88R-eWvmLYQ8ihSmPjGIVN0kcAKtfEcEBlvuK84SJqwqp5bs8-FQHB52R2vkW10Lg2mVtU4sFHWSafyPvMME9tMFj8Dt2CotYrQzeDH74uAEKTxprcdplCyyZ85OIXzLn-_uwG_9mLFB_-DVG6eaMODoiLsLR3Zl1-_6iWdsKFzB4dnCILDwiSVK-koyCeGLpw0PrS8s51KoQMvICutbybkP-14gFznEmJhOOAo_1VYA9EgUVaV6Pvc6FWdsz7LUbEMoCFbUb5jCYmLAyi60ZtMsbzi9zZTNn2zg4Nr_TL3r5GrledNeKSrrZM2kN8h6pdty-rRqwP3sJvnao2l2YqbU1plrFFx7qjHQwMyqgplpZuniNHOKqxQYHhCTY-wIckb7_dcUE2NAtCkWFoxpWWg10XRuxmXmcfrrfnI6Biotjo5vkQ_nQofbpJUCX2wQaiI_Ul4ovYiBI6tcZWwgsGeeCl3jat0mfs0ysa6auOMskWlcnExyCOZKasbIaHHFaG3irO6alU1M_oJ_idy4wmIL8uJCNh_HlUaLlWFau0wLbWWgpCcsuDpceoEnEnh30SZbyMtxWc-7UqRxj0cBetUeb5OHBQLbkKTIkmO5zPN49-3HfwC9f9cAPalANgNyaFnVlsA7YXuzBnKzgQRlqhvLGyh5NVXy-IfgwJ21aP1--cFqGTfF3MXUZMsC4zMI2wVgREOKGwRurqSTo6LXu1eczHN258_fvkUugzzH-7vDvbvkCgNHvMiDFJuktZgvzT1ySZ8sJvn8fqGkKPl83nL9HTPU2qY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+framework+for+classification+of+two-class+motor+imagery+EEG+signals+using+logistic+regression+classification+algorithm&rft.jtitle=PloS+one&rft.au=Khan%2C+Rabia+Avais&rft.au=Rashid%2C+Nasir&rft.au=Shahzaib%2C+Muhammad&rft.au=Malik%2C+Umar+Farooq&rft.date=2023-09-08&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=9&rft.spage=e0276133&rft_id=info:doi/10.1371%2Fjournal.pone.0276133&rft.externalDocID=A764125117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon