A novel framework for classification of two-class motor imagery EEG signals using logistic regression classification algorithm
Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer Interface (BCI) is a communication system that allows humans to communicate with their environment by detecting and quantifying control signals...
Gespeichert in:
| Veröffentlicht in: | PloS one Jg. 18; H. 9; S. e0276133 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
San Francisco
Public Library of Science
08.09.2023
Public Library of Science (PLoS) |
| Schlagworte: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer Interface (BCI) is a communication system that allows humans to communicate with their environment by detecting and quantifying control signals produced from different modalities and translating them into voluntary commands for actuating an external device. For that purpose, classification the brain signals with a very high accuracy and minimization of the errors is of profound importance to the researchers. So in this study, a novel framework has been proposed to classify the binary-class electroencephalogram (EEG) data. The proposed framework is tested on BCI Competition IV dataset 1 and BCI Competition III dataset 4a. Artifact removal from EEG data is done through preprocessing, followed by feature extraction for recognizing discriminative information in the recorded brain signals. Signal preprocessing involves the application of independent component analysis (ICA) on raw EEG data, accompanied by the employment of common spatial pattern (CSP) and log-variance for extracting useful features. Six different classification algorithms, namely support vector machine, linear discriminant analysis, k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, have been compared to classify the EEG data accurately. The proposed framework achieved the best classification accuracies with logistic regression classifier for both datasets. Average classification accuracy of 90.42% has been attained on BCI Competition IV dataset 1 for seven different subjects, while for BCI Competition III dataset 4a, an average accuracy of 95.42% has been attained on five subjects. This indicates that the model can be used in real time BCI systems and provide extra-ordinary results for 2-class Motor Imagery (MI) signals classification applications and with some modifications this framework can also be made compatible for multi-class classification in the future. |
|---|---|
| AbstractList | Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer Interface (BCI) is a communication system that allows humans to communicate with their environment by detecting and quantifying control signals produced from different modalities and translating them into voluntary commands for actuating an external device. For that purpose, classification the brain signals with a very high accuracy and minimization of the errors is of profound importance to the researchers. So in this study, a novel framework has been proposed to classify the binary-class electroencephalogram (EEG) data. The proposed framework is tested on BCI Competition IV dataset 1 and BCI Competition III dataset 4a. Artifact removal from EEG data is done through preprocessing, followed by feature extraction for recognizing discriminative information in the recorded brain signals. Signal preprocessing involves the application of independent component analysis (ICA) on raw EEG data, accompanied by the employment of common spatial pattern (CSP) and log-variance for extracting useful features. Six different classification algorithms, namely support vector machine, linear discriminant analysis, k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, have been compared to classify the EEG data accurately. The proposed framework achieved the best classification accuracies with logistic regression classifier for both datasets. Average classification accuracy of 90.42% has been attained on BCI Competition IV dataset 1 for seven different subjects, while for BCI Competition III dataset 4a, an average accuracy of 95.42% has been attained on five subjects. This indicates that the model can be used in real time BCI systems and provide extra-ordinary results for 2-class Motor Imagery (MI) signals classification applications and with some modifications this framework can also be made compatible for multi-class classification in the future.Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer Interface (BCI) is a communication system that allows humans to communicate with their environment by detecting and quantifying control signals produced from different modalities and translating them into voluntary commands for actuating an external device. For that purpose, classification the brain signals with a very high accuracy and minimization of the errors is of profound importance to the researchers. So in this study, a novel framework has been proposed to classify the binary-class electroencephalogram (EEG) data. The proposed framework is tested on BCI Competition IV dataset 1 and BCI Competition III dataset 4a. Artifact removal from EEG data is done through preprocessing, followed by feature extraction for recognizing discriminative information in the recorded brain signals. Signal preprocessing involves the application of independent component analysis (ICA) on raw EEG data, accompanied by the employment of common spatial pattern (CSP) and log-variance for extracting useful features. Six different classification algorithms, namely support vector machine, linear discriminant analysis, k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, have been compared to classify the EEG data accurately. The proposed framework achieved the best classification accuracies with logistic regression classifier for both datasets. Average classification accuracy of 90.42% has been attained on BCI Competition IV dataset 1 for seven different subjects, while for BCI Competition III dataset 4a, an average accuracy of 95.42% has been attained on five subjects. This indicates that the model can be used in real time BCI systems and provide extra-ordinary results for 2-class Motor Imagery (MI) signals classification applications and with some modifications this framework can also be made compatible for multi-class classification in the future. Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer Interface (BCI) is a communication system that allows humans to communicate with their environment by detecting and quantifying control signals produced from different modalities and translating them into voluntary commands for actuating an external device. For that purpose, classification the brain signals with a very high accuracy and minimization of the errors is of profound importance to the researchers. So in this study, a novel framework has been proposed to classify the binary-class electroencephalogram (EEG) data. The proposed framework is tested on BCI Competition IV dataset 1 and BCI Competition III dataset 4a. Artifact removal from EEG data is done through preprocessing, followed by feature extraction for recognizing discriminative information in the recorded brain signals. Signal preprocessing involves the application of independent component analysis (ICA) on raw EEG data, accompanied by the employment of common spatial pattern (CSP) and log-variance for extracting useful features. Six different classification algorithms, namely support vector machine, linear discriminant analysis, k-nearest neighbor, naïve Bayes, decision trees, and logistic regression, have been compared to classify the EEG data accurately. The proposed framework achieved the best classification accuracies with logistic regression classifier for both datasets. Average classification accuracy of 90.42% has been attained on BCI Competition IV dataset 1 for seven different subjects, while for BCI Competition III dataset 4a, an average accuracy of 95.42% has been attained on five subjects. This indicates that the model can be used in real time BCI systems and provide extra-ordinary results for 2-class Motor Imagery (MI) signals classification applications and with some modifications this framework can also be made compatible for multi-class classification in the future. |
| Audience | Academic |
| Author | Rashid, Nasir Malik, Umar Farooq Tiwana, Mohsin Iqbal, Javaid Saleem, Mubasher Khan, Rabia Avais Arif, Arshia Khan, Umar Shahbaz Shahzaib, Muhammad |
| AuthorAffiliation | Effat University, SAUDI ARABIA 1 Department of Mechatronics Engineering, National University of Sciences & Technology, Islamabad, Pakistan 2 Robot Design and Development Lab, National Centre of Robotics and Automation (NCRA), Punjab, Pakistan |
| AuthorAffiliation_xml | – name: 2 Robot Design and Development Lab, National Centre of Robotics and Automation (NCRA), Punjab, Pakistan – name: Effat University, SAUDI ARABIA – name: 1 Department of Mechatronics Engineering, National University of Sciences & Technology, Islamabad, Pakistan |
| Author_xml | – sequence: 1 givenname: Rabia Avais surname: Khan fullname: Khan, Rabia Avais – sequence: 2 givenname: Nasir orcidid: 0000-0003-0499-8042 surname: Rashid fullname: Rashid, Nasir – sequence: 3 givenname: Muhammad surname: Shahzaib fullname: Shahzaib, Muhammad – sequence: 4 givenname: Umar Farooq surname: Malik fullname: Malik, Umar Farooq – sequence: 5 givenname: Arshia surname: Arif fullname: Arif, Arshia – sequence: 6 givenname: Javaid surname: Iqbal fullname: Iqbal, Javaid – sequence: 7 givenname: Mubasher surname: Saleem fullname: Saleem, Mubasher – sequence: 8 givenname: Umar Shahbaz orcidid: 0000-0002-5263-1408 surname: Khan fullname: Khan, Umar Shahbaz – sequence: 9 givenname: Mohsin surname: Tiwana fullname: Tiwana, Mohsin |
| BookMark | eNqNk12L1DAUhousuB_6DwQLgujFjPnoNKk3MizrOrCw4NdtOE2TTsa0GZN2173xt5vOVNkOi0gv2pw-75tzDuecJketa1WSPMdojinDbzeu9y3Y-TaG54iwHFP6KDnBBSWznCB6dO_7ODkNYYPQgvI8f5IcU5Zzwnl2kvxapq27UTbVHhp16_z3VDufSgshGG0kdMa1qdNpd-tmu2jauC4SpoFa-bv04uIyDaaOmYS0D6atU-tqEzojU69qr6JNNDjwA1s7b7p18zR5rKNSPRvfZ8nXDxdfzj_Orq4vV-fLq5nMGepmUEBBC1phpRcccUa4XmSZjidSlUBLIJBlHEvFFppyzRjwMpOQa66pBsboWfJi77u1LoixdUEQnhO2QKhAkVjticrBRmx9rM_fCQdG7ALO1wJ8rMoqUSoiJSKSSw1ZCZhrTDgDnGFexZx49Ho_3taXjaqkajsPdmI6_dOatajdjcAoK4byosPr0cG7H70KnWhMkMpaaJXrd4lTUrCMD4m_PEAfLm-kaogVmFa7eLEcTMWS5RkmC4yHNs0foOJTqcbIOGjaxPhE8GYiiEynfnY19CGI1edP_89ef5uyr-6xawW2Wwdn-2F6whTM9qD0LgSv9N8uYySGPfnTDTHsiRj3JMreHcik6XazGQs29t_i35jZHNE |
| CitedBy_id | crossref_primary_10_1007_s11042_024_20510_6 crossref_primary_10_1016_j_jneumeth_2025_110565 crossref_primary_10_1109_ACCESS_2025_3604528 crossref_primary_10_1007_s11042_025_20605_8 crossref_primary_10_1016_j_brs_2025_09_001 crossref_primary_10_1016_j_procs_2025_04_546 crossref_primary_10_3390_chemosensors12110225 |
| Cites_doi | 10.1007/s11517-017-1611-4 10.1186/1471-2105-13-24 10.1016/j.paerosci.2017.07.003 10.1016/S0079-6123(06)59028-4 10.1109/CIEC.2016.7513812 10.1109/ICASSP.2011.5946970 10.1109/TNSRE.2003.814441 10.1109/EPETSG.2018.8659292 10.1109/ACCESS.2019.2947701 10.1109/MSP.2008.4408441 10.1016/j.measurement.2016.02.059 10.1051/matecconf/201714001024 10.1109/BRC.2013.6487514 10.1109/LSP.2009.2022557 10.1109/JBHI.2014.2333010 10.7717/peerj-cs.374 10.1109/ICET.2013.6743513 10.1109/ICCKE50421.2020.9303717 10.1016/j.cmpb.2013.12.020 10.1088/1741-2560/1/3/002 10.1080/10447318.2013.780869 10.1016/B978-0-12-411474-6.00018-9 10.1016/j.eswa.2006.09.004 10.1109/BIBM49941.2020.9313336 10.1109/72.788640 10.1016/B978-0-12-809633-8.20460-3 10.1016/j.eswa.2011.01.077 10.1016/j.patcog.2021.107918 10.1109/CIVEMSA45640.2019.9071599 10.3390/s20174749 10.1016/S0926-6410(03)00173-3 10.1016/j.asoc.2019.105519 10.1109/TNSRE.2021.3071140 10.1016/j.cortex.2016.03.019 10.1109/ACCESS.2018.2868178 10.1109/MSP.2008.4408442 10.1109/SMC42975.2020.9282917 10.1109/TNSRE.2019.2922713 10.1016/j.jneumeth.2020.108833 10.1109/TCYB.2015.2479240 10.1016/S1388-2457(99)00141-8 10.1016/j.neuroimage.2007.01.051 10.1109/ICCME.2011.5876793 10.1109/TNN.2006.873281 10.1088/1741-2560/9/5/056002 10.1109/CCMB.2011.5952111 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 Public Library of Science 2023 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright: © 2023 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2023 Khan et al 2023 Khan et al 2023 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright: © 2023 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: 2023 Khan et al 2023 Khan et al – notice: 2023 Khan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0276133 |
| DatabaseName | CrossRef Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Novel framework for classification of two-class motor imagery EEG signals |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2862750090 oai_doaj_org_article_be2cc02c8cfa4ba18f1287a1418dfef8 PMC10490872 A764125117 10_1371_journal_pone_0276133 |
| GeographicLocations | Pakistan |
| GeographicLocations_xml | – name: Pakistan |
| GrantInformation_xml | – fundername: ; grantid: DF-1009-31 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c670t-a9a9393d1ef5808728f544fef52dba3ba2a4481ce75f38f77a8b4ca6f8f3fa773 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001091871500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Wed Aug 13 01:19:57 EDT 2025 Tue Oct 14 15:05:03 EDT 2025 Tue Nov 04 02:06:25 EST 2025 Sun Nov 09 12:06:37 EST 2025 Tue Oct 07 08:09:02 EDT 2025 Sat Nov 29 14:11:33 EST 2025 Sat Nov 29 10:54:06 EST 2025 Wed Nov 26 11:22:47 EST 2025 Wed Nov 26 11:23:48 EST 2025 Thu May 22 21:20:03 EDT 2025 Sat Nov 29 03:50:38 EST 2025 Tue Nov 18 22:43:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c670t-a9a9393d1ef5808728f544fef52dba3ba2a4481ce75f38f77a8b4ca6f8f3fa773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-0499-8042 0000-0002-5263-1408 |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pone.0276133 |
| PMID | 37682884 |
| PQID | 2862750090 |
| PQPubID | 1436336 |
| PageCount | e0276133 |
| ParticipantIDs | plos_journals_2862750090 doaj_primary_oai_doaj_org_article_be2cc02c8cfa4ba18f1287a1418dfef8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10490872 proquest_miscellaneous_2863297480 proquest_journals_2862750090 gale_infotracmisc_A764125117 gale_infotracacademiconefile_A764125117 gale_incontextgauss_ISR_A764125117 gale_incontextgauss_IOV_A764125117 gale_healthsolutions_A764125117 crossref_primary_10_1371_journal_pone_0276133 crossref_citationtrail_10_1371_journal_pone_0276133 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-08 |
| PublicationDateYYYYMMDD | 2023-09-08 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | San Francisco |
| PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationYear | 2023 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | L Qin (pone.0276133.ref029) 2004; 1 G Pfurtscheller (pone.0276133.ref007) 2006; 159 Li Y Siuly (pone.0276133.ref056) 2014; 113 NE Md Isa (pone.0276133.ref011) 2017; 140 Y Miao (pone.0276133.ref022) 2021; 29 S Selim (pone.0276133.ref035) 2018; 6 P Goel (pone.0276133.ref037) 2018 C-J Du (pone.0276133.ref051) 2008 Wang H Siuly (pone.0276133.ref048) 2016; 86 TA Fatehi (pone.0276133.ref001) 2011 D Garrett (pone.0276133.ref040) 2003; 11 AU Haq (pone.0276133.ref054) 2019; 7 pone.0276133.ref047 pone.0276133.ref045 Y Park (pone.0276133.ref018) 2019; 27 L Breiman (pone.0276133.ref052) 1984 ME Mavroforakis (pone.0276133.ref010) 2006; 17 B Blankertz (pone.0276133.ref026) 2007; 37 B Blankertz (pone.0276133.ref036) 2008; 25 R Fu (pone.0276133.ref019) 2020; 343 pone.0276133.ref050 E Dong (pone.0276133.ref039) 2017; 55 K Roy (pone.0276133.ref044) 2015 D Cheyne (pone.0276133.ref006) 2003; 17 pone.0276133.ref016 pone.0276133.ref017 H-J Hwang (pone.0276133.ref003) 2013; 29 pone.0276133.ref055 S-Y Dong (pone.0276133.ref004) 2016; 46 pone.0276133.ref014 pone.0276133.ref012 pone.0276133.ref013 Y Shin (pone.0276133.ref027) 2012; 9 M Rashid (pone.0276133.ref053) 2021; 7 V Mishuhina (pone.0276133.ref015) 2021; 115 H Zhang (pone.0276133.ref033) 2012; 6 B. Calabrese (pone.0276133.ref031) 2019 VN Vapnik (pone.0276133.ref041) 1999; 10 JS Kirar (pone.0276133.ref024) 2020; 97 A Wijaya (pone.0276133.ref025) 2021; 14 pone.0276133.ref021 HM Hobson (pone.0276133.ref002) 2016; 82 Z Wen (pone.0276133.ref032) 2017; 94 pone.0276133.ref023 F Yao (pone.0276133.ref030) 2012; 13 S Veetil (pone.0276133.ref049) 2014 A. Subasi (pone.0276133.ref042) 2020 S Zhang (pone.0276133.ref020) 2020; 20 I Kurt (pone.0276133.ref043) 2008; 34 S Wang (pone.0276133.ref046) 2011; 38 pone.0276133.ref038 JK Feng (pone.0276133.ref034) 2019; 2019 A Kachenoura (pone.0276133.ref009) 2008; 25 H Kang (pone.0276133.ref008) 2009; 16 R Mahajan (pone.0276133.ref028) 2015; 19 G Pfurtscheller (pone.0276133.ref005) 1999; 110 |
| References_xml | – volume: 55 start-page: 1809 issue: 10 year: 2017 ident: pone.0276133.ref039 article-title: Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain-computer interfaces publication-title: Med Biol Eng Comput doi: 10.1007/s11517-017-1611-4 – volume: 13 start-page: 24 year: 2012 ident: pone.0276133.ref030 article-title: Independent Principal Component Analysis for biologically meaningful dimension reduction of large biological data sets publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-24 – volume: 94 start-page: 1 year: 2017 ident: pone.0276133.ref032 article-title: A review of electrostatic monitoring technology: The state of the art and future research directions publication-title: Prog Aerosp Sci doi: 10.1016/j.paerosci.2017.07.003 – volume: 159 start-page: 433 year: 2006 ident: pone.0276133.ref007 article-title: Future prospects of ERD/ERS in the context of brain-computer interface (BCI) developments publication-title: Prog Brain Res doi: 10.1016/S0079-6123(06)59028-4 – ident: pone.0276133.ref013 doi: 10.1109/CIEC.2016.7513812 – ident: pone.0276133.ref038 doi: 10.1109/ICASSP.2011.5946970 – volume: 11 start-page: 141 issue: 2 year: 2003 ident: pone.0276133.ref040 article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2003.814441 – volume-title: Classification and Regression Trees year: 1984 ident: pone.0276133.ref052 – ident: pone.0276133.ref045 doi: 10.1109/EPETSG.2018.8659292 – volume: 7 start-page: 151482 year: 2019 ident: pone.0276133.ref054 article-title: Combining multiple feature-ranking techniques and clustering of variables for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947701 – volume: 25 start-page: 41 issue: 1 year: 2008 ident: pone.0276133.ref036 article-title: Optimizing Spatial filters for Robust EEG Single-Trial Analysis publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2008.4408441 – volume: 86 start-page: 148 year: 2016 ident: pone.0276133.ref048 article-title: Detection of motor imagery EEG signals employing Naïve Bayes based learning process publication-title: Measurement (Lond) doi: 10.1016/j.measurement.2016.02.059 – volume: 140 start-page: 01024 year: 2017 ident: pone.0276133.ref011 article-title: The performance analysis of K-nearest neighbors (K-NN) algorithm for motor imagery classification based on EEG signal publication-title: MATEC Web Conf doi: 10.1051/matecconf/201714001024 – ident: pone.0276133.ref012 – ident: pone.0276133.ref050 doi: 10.1109/BRC.2013.6487514 – volume: 16 start-page: 683 issue: 8 year: 2009 ident: pone.0276133.ref008 article-title: Composite common spatial pattern for subject-to-subject transfer publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2009.2022557 – volume: 19 start-page: 158 issue: 1 year: 2015 ident: pone.0276133.ref028 article-title: Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, Kurtosis, and wavelet-ICA publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2014.2333010 – volume: 7 start-page: e374 issue: e374 year: 2021 ident: pone.0276133.ref053 article-title: The classification of motor imagery response: an accuracy enhancement through the ensemble of random subspace k-NN publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.374 – ident: pone.0276133.ref014 doi: 10.1109/ICET.2013.6743513 – year: 2011 ident: pone.0276133.ref001 publication-title: Features extraction techniques of EEG signals for BCI application – ident: pone.0276133.ref021 doi: 10.1109/ICCKE50421.2020.9303717 – volume: 113 start-page: 767 issue: 3 year: 2014 ident: pone.0276133.ref056 article-title: Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2013.12.020 – volume: 6 start-page: 7 year: 2012 ident: pone.0276133.ref033 article-title: BCI competition IV—data set I: Learning discriminative patterns for self-paced EEG-based motor imagery detection publication-title: Front Neurosci – volume: 1 start-page: 135 issue: 3 year: 2004 ident: pone.0276133.ref029 article-title: Motor imagery classification by means of source analysis for brain-computer interface applications publication-title: J Neural Eng doi: 10.1088/1741-2560/1/3/002 – start-page: 81 volume-title: Computer Vision Technology for Food Quality Evaluation year: 2008 ident: pone.0276133.ref051 – volume: 29 start-page: 814 issue: 12 year: 2013 ident: pone.0276133.ref003 article-title: EEG-based brain-computer interfaces: A thorough literature survey publication-title: Int J Hum Comput Interact doi: 10.1080/10447318.2013.780869 – start-page: 281 volume-title: Emerging Trends in ICT Security year: 2014 ident: pone.0276133.ref049 doi: 10.1016/B978-0-12-411474-6.00018-9 – volume: 34 start-page: 366 issue: 1 year: 2008 ident: pone.0276133.ref043 article-title: Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2006.09.004 – ident: pone.0276133.ref023 doi: 10.1109/BIBM49941.2020.9313336 – volume: 10 start-page: 988 issue: 5 year: 1999 ident: pone.0276133.ref041 article-title: An overview of statistical learning theory publication-title: IEEE Trans Neural Netw doi: 10.1109/72.788640 – start-page: 480 volume-title: Encyclopedia of Bioinformatics and Computational Biology year: 2019 ident: pone.0276133.ref031 doi: 10.1016/B978-0-12-809633-8.20460-3 – volume-title: Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment year: 2015 ident: pone.0276133.ref044 – volume: 38 start-page: 8696 issue: 7 year: 2011 ident: pone.0276133.ref046 article-title: A feature selection method based on improved fisher’s discriminant ratio for text sentiment classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.01.077 – volume: 115 start-page: 107918 issue: 107918 year: 2021 ident: pone.0276133.ref015 article-title: Complex common spatial patterns on time-frequency decomposed EEG for brain-computer interface publication-title: Pattern Recognit doi: 10.1016/j.patcog.2021.107918 – ident: pone.0276133.ref016 doi: 10.1109/CIVEMSA45640.2019.9071599 – volume: 20 start-page: 4749 issue: 17 year: 2020 ident: pone.0276133.ref020 article-title: The CSP-based new features plus non-convex log sparse feature selection for motor imagery EEG classification publication-title: Sensors (Basel) doi: 10.3390/s20174749 – volume: 17 start-page: 599 issue: 3 year: 2003 ident: pone.0276133.ref006 article-title: Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation publication-title: Brain Res Cogn Brain Res doi: 10.1016/S0926-6410(03)00173-3 – volume: 97 start-page: 105519 issue: 105519 year: 2020 ident: pone.0276133.ref024 article-title: A combination of spectral graph theory and quantum genetic algorithm to find relevant set of electrodes for motor imagery classification publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105519 – start-page: 26 volume-title: Intelligent Human Computer Interaction year: 2018 ident: pone.0276133.ref037 – volume: 29 start-page: 699 year: 2021 ident: pone.0276133.ref022 article-title: Learning common time-frequency-spatial patterns for motor imagery classification publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2021.3071140 – volume: 82 start-page: 290 year: 2016 ident: pone.0276133.ref002 article-title: Mu suppression—A good measure of the human mirror neuron system? publication-title: Cortex doi: 10.1016/j.cortex.2016.03.019 – volume: 6 start-page: 49192 year: 2018 ident: pone.0276133.ref035 article-title: A CSP\AM-BA-SVM approach for motor imagery BCI system. publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2868178 – volume: 25 start-page: 57 issue: 1 year: 2008 ident: pone.0276133.ref009 article-title: Ica: a potential tool for bci systems publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2008.4408442 – ident: pone.0276133.ref017 doi: 10.1109/SMC42975.2020.9282917 – volume: 27 start-page: 1378 issue: 7 year: 2019 ident: pone.0276133.ref018 article-title: Frequency-optimized local region common spatial pattern approach for motor imagery classification publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2019.2922713 – volume: 343 start-page: 108833 issue: 108833 year: 2020 ident: pone.0276133.ref019 article-title: Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2020.108833 – volume: 46 start-page: 2535 issue: 11 year: 2016 ident: pone.0276133.ref004 article-title: EEG-based classification of implicit intention during self-relevant sentence reading publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2479240 – volume: 110 start-page: 1842 issue: 11 year: 1999 ident: pone.0276133.ref005 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00141-8 – volume: 14 start-page: 134 issue: 1 year: 2021 ident: pone.0276133.ref025 article-title: Logistic Regression based Feature Selection and Two-Stage Detection for EEG based Motor Imagery Classification publication-title: Int j intell eng syst – volume: 37 start-page: 539 issue: 2 year: 2007 ident: pone.0276133.ref026 article-title: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.01.051 – ident: pone.0276133.ref055 doi: 10.1109/ICCME.2011.5876793 – volume: 17 start-page: 671 issue: 3 year: 2006 ident: pone.0276133.ref010 article-title: A geometric approach to support vector machine (SVM) classification publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.873281 – volume: 9 start-page: 056002 issue: 5 year: 2012 ident: pone.0276133.ref027 article-title: Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems publication-title: J Neural Eng doi: 10.1088/1741-2560/9/5/056002 – volume-title: Practical machine learning for data analysis using python year: 2020 ident: pone.0276133.ref042 – ident: pone.0276133.ref047 doi: 10.1109/CCMB.2011.5952111 – volume: 2019 start-page: 8068357 year: 2019 ident: pone.0276133.ref034 article-title: An optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI system publication-title: Comput Intell Neurosci |
| SSID | ssj0053866 |
| Score | 2.5032299 |
| Snippet | Robotics and artificial intelligence have played a significant role in developing assistive technologies for people with motor disabilities. Brain-Computer... |
| SourceID | plos doaj pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | e0276133 |
| SubjectTerms | Accuracy Algorithms Analysis Artificial intelligence Biology and Life Sciences Brain Brain research Classification Communications systems Competition Computer and Information Sciences Computer applications Datasets Decision analysis Decision trees Disabilities Discriminant analysis EEG Electroencephalography Engineering and Technology Evaluation Feature extraction Feature recognition Human-computer interface Image classification Implants Independent component analysis Literature reviews Logistic regression Medicine and Health Sciences Mental task performance Physical Sciences Preprocessing Regression Regression analysis Research and Analysis Methods Robotics Signal classification Support vector machines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQigMXRPlQlxYwCAk4pI3tJPYeF7QFJFQQX-otsh17u9I2WW12i7jw25lxvFGDkMqBa_wSJTPj8Yzy_EzI88Ig9YlDp5pWWZJZIxKVOZTcN5JXXHnTnVryQZ6eqrOzyacrR30hJ6yTB-4Md2wctzblVlmvM6OZ8pBRpWYZU5V3PmzzTeVk10x1ORhmcVHEjXJCsuPol6NVU7sjaMRgDRODhSjo9fdZebRaNu2g5BwSJq-sQCd3yO1YOtJp98p75Iar75K9ODlb-jIqSL-6R35Nad1cuiX1O-oVhdqUWqyUkRoUvEEbTzc_miRcpeAxQCwuUNLiJ53N3lJkdkBsUmTGz2m3U2hh6drNO-ps_efz9HLerBeb84v75NvJ7Oubd0k8aCGxhUw3iZ7oiZiIijmfq1RJcFGeZWDdnFdGC6O5hi6OWSdzL5SXUiuTWV145YXXUooHZFSDafcJdYUoDMs1KzhUYiY1zmcKRd9MnrrU2jERO6uXNqqQ42EYyzL8WpPQjXTWLNFXZfTVmCT9XatOheMa_Gt0aI9FDe1wASKrjJFVXhdZY_IEw6HsNqT2maCcyiLDspDJMXkWEKijUSNRZ663bVu-__j9H0BfPg9ALyLIN2AOq-PmCPgm1OcaIA8HSMgGdjC8j8G7s0pbcoU61FBJp3DnLqD_Pvy0H8aHIvmuds02YASHvlMBRg0mwsDAw5F6cR7Eyln4tSz5w__hkgNyi0ORGTh-6pCMNuute0Ru2svNol0_DingN0HLZpk priority: 102 providerName: Directory of Open Access Journals – databaseName: Nursing & Allied Health Database dbid: 7RV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLagcOACjB9aYYBBSMAhW2ynsXtCBW2AhAYaMO0W2Y7dVeqS0rRDXPjbec9xCkEIkDg2_pLGfs_Pz_Hnz4Q8zg1SnzjMVNMySzJrRKIyh5L7RvKSK2_aU0veysNDdXIyfh8_uDWRVtnFxBCoy9riN_I9rlBPFzKC9Pnic4KnRuHqajxC4yK5xDA3Bn-WR8ddJIa-nOdxu5yQbC9aZ3dRV24XpmMwkonecBRU-zexebCY100v8ezTJn8ahw6u_W8NrpOrMQOlk9ZltsgFV90gW7GPN_RpFKJ-dpN8m9CqPndz6jsGF4UUl1pMuJFhFIxKa09XX-okXKVgeEDMzlAZ4yvd339FkSACLk6RYD-l7YajmaVLN20ZuNWvz9PzKbz16vTsFvl0sP_x5esknteQ2Fymq0SP9ViMRcmcH6lUSbD0KMs8_OKl0cJormEyyKyTIy-Ul1Irk1mde-WF11KK22RQgW22CXW5yA0baZZzSOhMapzPFGrHmVHqUmuHRHRmK2wUM8czNeZFWKGTMKlpW7NAYxfR2EOSbO5atGIef8G_QI_YYFGKO1yol9Mi9uzCOG5tyq2yXmdGM-VhyJeaZUyVUHc1JA_Qn4p2X-smoBQTmWeYXTI5JI8CAuU4KuT7TPW6aYo3747_AfThqAd6EkG-huawOu6xgDqhzFcPudNDQlCxveJt9P6uVZrih_PCnZ17_7744aYYH4ocvsrV64ARHKavCjCq15N6DdwvqWanQfOchRVqye_8-d_vkiscstBAAlQ7ZLBart09ctmer2bN8n6IDt8BcfZzOQ priority: 102 providerName: ProQuest |
| Title | A novel framework for classification of two-class motor imagery EEG signals using logistic regression classification algorithm |
| URI | https://www.proquest.com/docview/2862750090 https://www.proquest.com/docview/2863297480 https://pubmed.ncbi.nlm.nih.gov/PMC10490872 https://doaj.org/article/be2cc02c8cfa4ba18f1287a1418dfef8 http://dx.doi.org/10.1371/journal.pone.0276133 |
| Volume | 18 |
| WOSCitedRecordID | wos001091871500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdYx4ELMD60wigGIQGHlMROYvfYTi1M20rUwVS4RLZrd5W6pGraIS787Tw7aSETE3B5UuKfo-Q9f7wXP_-M0KtY2tQnApGqPwm9UEnq8VBbyn3JyIRwI8tTS07YcMjH407yK1C8toJPWfCu0ml7kWe6DUEUzD90B-0SGsc22BokJ5uRF_puHFfb426qWZt-HEv_dixuLOZ5UXM062mSv807g3v_-8b30d3Kw8TdsknsoVs6e4D2qj5c4DcV0fTbh-hHF2f5lZ5js8nQwuDCYmUdaptB5IyGc4NX33LP3cVgWEDMLi3zxXfc77_HNgEEmjC2CfRTXG4omim81NMywza7_jwxn-bL2eri8hH6POh_OvzgVecxeCpm_soTHdGhHToJtIm4zxlYMgpDA1dkIgWVgggI9gKlWWQoN4wJLkMlYsMNNYIx-hg1MtDJPsI6prEMIhHEBBw26UttQm654WTka1-pJqIbM6WqIiu3Z2bMU7cCxyBoKbWZWiWnlZKbyNvWWpRkHX_B92wL2GIt1ba7AdZMq56bSk2U8oniyohQioAbmNKZCMKAT-DbeRM9t-0nLfetbgeMtMvi0HqPAWuilw5h6TYym88zFeuiSI8-nv8D6GxUA72uQCYHdShR7aGAb7I0XjXkQQ0Jg4aqFe_b1r7RSpESbumqweH2oeamB_y5-MW22D7U5uhlOl87DCUQnnLA8FrPqSm4XpLNLhyneeBWoBl5cvOLPUV3CHiYLsGPH6DGarnWz9BtdbWaFcsW2mGjcyvHzEkOkh8GLbTb6w-TUcv9bGm58QLkca8N8tQ_tpIlTp6BTKKvUCM5Ok2-_ARwuW35 |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgAQXoDzUQKELAgEHt_b6sZsDQgFSGjWEihZUcTG76900UmqHOGnVCz-J38iMHwEjBFx64Bjv5409mZmdyc58S8ijSGHpE4NM1U0CJ9DKd0RgkHJfcZYwYVV5asmAD4fi8LCzt0K-1b0wWFZZ-8TCUSeZxv_It5hAPl2ICNwX0y8OnhqFu6v1ERqlWuyas1NI2fLn_dfw-z5mbLt38GrHqU4VcHTE3bkjO7Ljd_zEMzYUruDwPGEQWPjEEiV9JZmElMXThofWF5ZzKVSgZWSF9a3k3Id5L5CLQcBctKK98FPt-cF3RFHVnudzb6vShs1plppNSP9g5fQby19xSsByLWhNJ1neCHSbZZo_rXvb1_43iV0nV6sIm3ZLk1glKya9QVYrH5bTpxXR9rOb5GuXptmJmVBbV6hRCOGpxoQCK6gKpaWZpfPTzCmuUlBsQIyPkfnjjPZ6bygWwIAJU2wgGNGyoWqs6cyMygrj9Nf55GQEUpofHd8iH85FDrdJKwVdWCPURH6kvFB6EYOAVbnK2EAgN54KXeNq3SZ-rSaxrsja8cyQSVzsQHJI2kppxqhccaVcbeIs75qWZCV_wb9EDVxikWq8uJDNRnHluWJlmNYu00JbGSjpCQshDZde4IkE3l20yQbqb1z27S4dZtzlUYDRs8fb5GGBQLqRFOuZRnKR53H_3cd_AO2_b4CeVCCbgTi0rHpI4J2QxqyBXG8gwWnqxvAaWlstlTz-YSxwZ21Ovx9-sBzGSbFGMTXZosD4DNJzARjRsNyGgJsj6fio4HT3ih14zu78-ds3yOWdg7eDeNAf7t4lVxhE3EXBo1gnrflsYe6RS_pkPs5n9wvPRMnn8zbs76sW0dw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VgBAXoCxqoNABgYCDG3u8zOSAUKAJVK1CBAVVXMzMeCaNlNohTlr1wg_j1_Gel4ARAi49cIzn88R-eWvmLYQ8ihSmPjGIVN0kcAKtfEcEBlvuK84SJqwqp5bs8-FQHB52R2vkW10Lg2mVtU4sFHWSafyPvMME9tMFj8Dt2CotYrQzeDH74uAEKTxprcdplCyyZ85OIXzLn-_uwG_9mLFB_-DVG6eaMODoiLsLR3Zl1-_6iWdsKFzB4dnCILDwiSVK-koyCeGLpw0PrS8s51KoQMvICutbybkP-14gFznEmJhOOAo_1VYA9EgUVaV6Pvc6FWdsz7LUbEMoCFbUb5jCYmLAyi60ZtMsbzi9zZTNn2zg4Nr_TL3r5GrledNeKSrrZM2kN8h6pdty-rRqwP3sJvnao2l2YqbU1plrFFx7qjHQwMyqgplpZuniNHOKqxQYHhCTY-wIckb7_dcUE2NAtCkWFoxpWWg10XRuxmXmcfrrfnI6Biotjo5vkQ_nQofbpJUCX2wQaiI_Ul4ovYiBI6tcZWwgsGeeCl3jat0mfs0ysa6auOMskWlcnExyCOZKasbIaHHFaG3irO6alU1M_oJ_idy4wmIL8uJCNh_HlUaLlWFau0wLbWWgpCcsuDpceoEnEnh30SZbyMtxWc-7UqRxj0cBetUeb5OHBQLbkKTIkmO5zPN49-3HfwC9f9cAPalANgNyaFnVlsA7YXuzBnKzgQRlqhvLGyh5NVXy-IfgwJ21aP1--cFqGTfF3MXUZMsC4zMI2wVgREOKGwRurqSTo6LXu1eczHN258_fvkUugzzH-7vDvbvkCgNHvMiDFJuktZgvzT1ySZ8sJvn8fqGkKPl83nL9HTPU2qY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+framework+for+classification+of+two-class+motor+imagery+EEG+signals+using+logistic+regression+classification+algorithm&rft.jtitle=PloS+one&rft.au=Khan%2C+Rabia+Avais&rft.au=Rashid%2C+Nasir&rft.au=Shahzaib%2C+Muhammad&rft.au=Malik%2C+Umar+Farooq&rft.date=2023-09-08&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=9&rft.spage=e0276133&rft_id=info:doi/10.1371%2Fjournal.pone.0276133&rft.externalDocID=A764125117 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |