Remote sensing image super-resolution using multi-scale convolutional sparse coding network

With the development of convolutional neural networks, impressive success has been achieved in remote sensing image super-resolution. However, the performance of super-resolution reconstruction is unsatisfactory due to the lack of details in remote sensing images when compared to natural images. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 17; číslo 10; s. e0276648
Hlavní autoři: Cheng, Ruihong, Wang, Huajun, Luo, Ping
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Francisco Public Library of Science 26.10.2022
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With the development of convolutional neural networks, impressive success has been achieved in remote sensing image super-resolution. However, the performance of super-resolution reconstruction is unsatisfactory due to the lack of details in remote sensing images when compared to natural images. Therefore, this paper presents a novel multiscale convolutional sparse coding network (MCSCN) to carry out the remote sensing images SR reconstruction with rich details. The MCSCN, which consists of a multiscale convolutional sparse coding module (MCSCM) with dictionary convolution units, can improve the extraction of high frequency features. We can obtain more plentiful feature information by combining multiple sizes of sparse features. Finally, a layer based on sub-pixel convolution that combines global and local features takes as the reconstruction block. The experimental results show that the MCSCN gains an advantage over several existing state-of-the-art methods in terms of peak signal-to-noise ratio and structural similarity.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0276648