A novel machine learning-based approach for the detection and analysis of spontaneous synaptic currents
Spontaneous synaptic activity is a hallmark of biological neural networks. A thorough description of these synaptic signals is essential for understanding neurotransmitter release and the generation of a postsynaptic response. However, the complexity of synaptic current trajectories has either precl...
Saved in:
| Published in: | PloS one Vol. 17; no. 9; p. e0273501 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
San Francisco
Public Library of Science
19.09.2022
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Spontaneous synaptic activity is a hallmark of biological neural networks. A thorough description of these synaptic signals is essential for understanding neurotransmitter release and the generation of a postsynaptic response. However, the complexity of synaptic current trajectories has either precluded an in-depth analysis or it has forced human observers to resort to manual or semi-automated approaches based on subjective amplitude and area threshold settings. Both procedures are time-consuming, error-prone and likely affected by human bias. Here, we present three complimentary methods for a fully automated analysis of spontaneous excitatory postsynaptic currents measured in major cell types of the mouse retina and in a primary culture of mouse auditory cortex. Two approaches rely on classical threshold methods, while the third represents a novel machine learning-based algorithm. Comparison with frequently used existing methods demonstrates the suitability of our algorithms for an unbiased and efficient analysis of synaptic signals in the central nervous system. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no completing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0273501 |