Analysis of epidemiological association patterns of serum thyrotropin by combining random forests and Bayesian networks

Approaching epidemiological data with flexible machine learning algorithms is of great value for understanding disease-specific association patterns. However, it can be difficult to correctly extract and understand those patterns due to the lack of model interpretability. We here propose a machine l...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 17; no. 7; p. e0271610
Main Authors: Becker, Ann-Kristin, Ittermann, Till, Dörr, Markus, Felix, Stephan B., Nauck, Matthias, Teumer, Alexander, Völker, Uwe, Völzke, Henry, Kaderali, Lars, Nath, Neetika
Format: Journal Article
Language:English
Published: San Francisco Public Library of Science 21.07.2022
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first