Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes

Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C‐exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology Jg. 14; H. 10; S. 2317 - 2332
Hauptverfasser: NILSSON, MATS, SAGERFORS, JÖRGEN, BUFFAM, ISHI, LAUDON, HJALMAR, ERIKSSON, TOBIAS, GRELLE, ACHIM, KLEMEDTSSON, LEIF, WESLIEN, PER, LINDROTH, ANDERS
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.10.2008
Blackwell
Schlagworte:
ISSN:1354-1013, 1365-2486, 1365-2486
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C‐exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11′N, 19°33′E). Data on the following fluxes were collected: land–atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C‐concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m−2 yr−1 during 2004 and 20±3.4 g C m−2 yr−1 during 2005. This could be partitioned into an annual surface–atmosphere CO2 net uptake of 55±1.9 g C m−2 yr−1 during 2004 and 48±1.6 g C m−2 yr−1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m−2 yr−1 during 2004 and 86 g C m−2 yr−1 during 2005, and a net loss season with a loss of 37 g C m−2 yr−1 during 2004 and 38 g C m−2 yr−1 during 2005. Of the annual net CO2‐C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC≫CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C‐sink, with carbon accumulation rates comparable to the long‐term Holocene C‐accumulation, and higher than the C‐accumulation during the late Holocene in the region.
AbstractList Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64 degrees 11'N, 19 degrees 33'E). Data on the following fluxes were collected: land-atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27 +/- 3.4 (+/- SD) g C m(-2) yr(-1) during 2004 and 20 +/- 3.4 g C m(-2) yr(-1) during 2005. This could be partitioned into an annual surface-atmosphere CO2 net uptake of 55 +/- 1.9 g C m(-2) yr(-1) during 2004 and 48 +/- 1.6 g C m(-2) yr(-1) during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m(-2) yr(-1) during 2004 and 86 g C m(-2) yr(-1) during 2005, and a net loss season with a loss of 37 g C m(-2) yr(-1) during 2004 and 38 g C m(-2) yr(-1) during 2005. Of the annual net CO2-C uptake, 37% and 31% was lost through runoff (with runoff TOC > DIC >> CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region.
Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64 degrees 11'N, 19 degrees 33'E). Data on the following fluxes were collected: land-atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27 +/- 3.4 ( +/-SD) g C m-2 yr-1 during 2004 and 20 +/- 3.4 g C m-2 yr-1 during 2005. This could be partitioned into an annual surface-atmosphere CO2 net uptake of 55 +/- 1.9 g C m-2 yr-1 during 2004 and 48 +/- 1.6 g C m-2 yr-1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m-2 yr-1 during 2004 and 86 g C m-2 yr-1 during 2005, and a net loss season with a loss of 37 g C m-2 yr-1 during 2004 and 38 g C m-2 yr-1 during 2005. Of the annual net CO2-C uptake, 37% and 31% was lost through runoff (with runoff TOC > DIC [much greater than] CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region. [PUBLICATION ABSTRACT]
Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11'N, 19°33'E). Data on the following fluxes were collected: land–atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m−2 yr−1 during 2004 and 20±3.4 g C m−2 yr−1 during 2005. This could be partitioned into an annual surface–atmosphere CO2 net uptake of 55±1.9 g C m−2 yr−1 during 2004 and 48±1.6 g C m−2 yr−1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m−2 yr−1 during 2004 and 86 g C m−2 yr−1 during 2005, and a net loss season with a loss of 37 g C m−2 yr−1 during 2004 and 38 g C m−2 yr−1 during 2005. Of the annual net CO2-C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC≫CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region
Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64 degrees 11'N, 19 degrees 33'E). Data on the following fluxes were collected: land-atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27 +/- 3.4 (+/- SD) g C m(-2) yr(-1) during 2004 and 20 +/- 3.4 g C m(-2) yr(-1) during 2005. This could be partitioned into an annual surface-atmosphere CO2 net uptake of 55 +/- 1.9 g C m(-2) yr(-1) during 2004 and 48 +/- 1.6 g C m(-2) yr(-1) during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m(-2) yr(-1) during 2004 and 86 g C m(-2) yr(-1) during 2005, and a net loss season with a loss of 37 g C m(-2) yr(-1) during 2004 and 38 g C m(-2) yr(-1) during 2005. Of the annual net CO2-C uptake, 37% and 31% was lost through runoff (with runoff TOC > DIC >> CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region.
Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C‐exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11′N, 19°33′E). Data on the following fluxes were collected: land–atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C‐concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m−2 yr−1 during 2004 and 20±3.4 g C m−2 yr−1 during 2005. This could be partitioned into an annual surface–atmosphere CO2 net uptake of 55±1.9 g C m−2 yr−1 during 2004 and 48±1.6 g C m−2 yr−1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m−2 yr−1 during 2004 and 86 g C m−2 yr−1 during 2005, and a net loss season with a loss of 37 g C m−2 yr−1 during 2004 and 38 g C m−2 yr−1 during 2005. Of the annual net CO2‐C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC≫CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C‐sink, with carbon accumulation rates comparable to the long‐term Holocene C‐accumulation, and higher than the C‐accumulation during the late Holocene in the region.
Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C‐exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11′N, 19°33′E). Data on the following fluxes were collected: land–atmosphere CO 2 exchange (continuous Eddy covariance measurements) and CH 4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH 4 through stream water runoff (continuous discharge measurements and regular C‐concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m −2  yr −1 during 2004 and 20±3.4 g C m −2  yr −1 during 2005. This could be partitioned into an annual surface–atmosphere CO 2 net uptake of 55±1.9 g C m −2  yr −1 during 2004 and 48±1.6 g C m −2  yr −1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m −2  yr −1 during 2004 and 86 g C m −2  yr −1 during 2005, and a net loss season with a loss of 37 g C m −2  yr −1 during 2004 and 38 g C m −2  yr −1 during 2005. Of the annual net CO 2 ‐C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC≫CH 4 ) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C‐sink, with carbon accumulation rates comparable to the long‐term Holocene C‐accumulation, and higher than the C‐accumulation during the late Holocene in the region.
Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11'N, 19°33'E). Data on the following fluxes were collected: land-atmosphere CO₂ exchange (continuous Eddy covariance measurements) and CH₄ exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH₄ through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m⁻² yr⁻¹ during 2004 and 20±3.4 g C m⁻² yr⁻¹ during 2005. This could be partitioned into an annual surface-atmosphere CO₂ net uptake of 55±1.9 g C m⁻² yr⁻¹ during 2004 and 48±1.6 g C m⁻² yr⁻¹ during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m⁻² yr⁻¹ during 2004 and 86 g C m⁻² yr⁻¹ during 2005, and a net loss season with a loss of 37 g C m⁻² yr⁻¹ during 2004 and 38 g C m⁻² yr⁻¹ during 2005. Of the annual net CO₂-C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC[double greater-than sign]CH₄) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region.
Author NILSSON, MATS
BUFFAM, ISHI
ERIKSSON, TOBIAS
KLEMEDTSSON, LEIF
WESLIEN, PER
LINDROTH, ANDERS
GRELLE, ACHIM
LAUDON, HJALMAR
SAGERFORS, JÖRGEN
Author_xml – sequence: 1
  givenname: MATS
  surname: NILSSON
  fullname: NILSSON, MATS
  organization: Department of Forest Ecology & Management, Swedish University of Agricultural Sciences, Umeå, Sweden
– sequence: 2
  givenname: JÖRGEN
  surname: SAGERFORS
  fullname: SAGERFORS, JÖRGEN
  organization: Department of Forest Ecology & Management, Swedish University of Agricultural Sciences, Umeå, Sweden
– sequence: 3
  givenname: ISHI
  surname: BUFFAM
  fullname: BUFFAM, ISHI
  organization: Department of Forest Ecology & Management, Swedish University of Agricultural Sciences, Umeå, Sweden
– sequence: 4
  givenname: HJALMAR
  surname: LAUDON
  fullname: LAUDON, HJALMAR
  organization: Department of Ecology and Environmental Science, University of Umeå, Umeå, Sweden
– sequence: 5
  givenname: TOBIAS
  surname: ERIKSSON
  fullname: ERIKSSON, TOBIAS
  organization: Department of Forest Ecology & Management, Swedish University of Agricultural Sciences, Umeå, Sweden
– sequence: 6
  givenname: ACHIM
  surname: GRELLE
  fullname: GRELLE, ACHIM
  organization: Department for Ecology and Environmental Research, Swedish University of Agricultural Sciences, Uppsala, Sweden
– sequence: 7
  givenname: LEIF
  surname: KLEMEDTSSON
  fullname: KLEMEDTSSON, LEIF
  organization: Department of Plant and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
– sequence: 8
  givenname: PER
  surname: WESLIEN
  fullname: WESLIEN, PER
  organization: Department of Plant and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
– sequence: 9
  givenname: ANDERS
  surname: LINDROTH
  fullname: LINDROTH, ANDERS
  organization: Department of Physical Geography and Ecosystems Analysis, University of Lund, Lund, Sweden
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20692287$$DView record in Pascal Francis
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-11365$$DView record from Swedish Publication Index (Umeå universitet)
https://gup.ub.gu.se/publication/81930$$DView record from Swedish Publication Index (Göteborgs universitet)
BookMark eNqNksFu1DAQhiNUJNrCO0RIcCKL7cROcgCpXWiLVEBCBSQuo4nXTr312oudqNsjb46zW-2hEqi5ZCb5_n884znKDpx3KstySmY0PW-XM1oKXrCqETNGSDMjVPBqtnmSHe5_HEwxrwpKaPksO4pxSQgpGRGH2Z-5d4NarX3AcJdLDJ13OUo5rkaLg0mJSXne-aDQ5t6a3g_Br6-NzFfGqeB75bZxUHmRwGh6Z7SR6IYUu5sc9aDC5OhHNxjX59qn1Np8Xmg7blR8nj3VaKN6cf8-zr6ffbyaXxSXX88_zU8uCylEWxUCG951TSMJYUwIUWmsBVtoXbeMKkkrsUDkRFPNWYtdvRCtpIiyFIqJGnV5nOHON96q9djBOphV6hk8GkjtD2ghqKgwyGuwI0QFibKpk2kKEWpZVoJwCWXLNFQ1EdBVdAFNyRRrW8IIdqnGm3_W6Mc1pE_91rqhbUn-i38wP07Ahx7STQCdrjLhr3f4Ovjfo4oDrEyUylp0yo8RqobwVnCRwJcPwKUfg0vTBUY4YzVvaYJe3UMYJVod0EkT92dI29Ey1tSJa3acDD7GoPQeoQSmFYQlTMeDadNgWkHYriBskvT9A6k0w3aeQ0BjH2Pwbmdwa6y6e3RhOJ-fTlHSFzu9iYPa7PUYbkDUZc3h55dzuDrj335dJJ_P5V9yDQme
CitedBy_id crossref_primary_10_1007_s10533_010_9452_3
crossref_primary_10_5194_bg_12_1881_2015
crossref_primary_10_1002_wat2_1147
crossref_primary_10_1016_j_scitotenv_2009_12_025
crossref_primary_10_1139_a11_014
crossref_primary_10_1016_j_agrformet_2016_08_023
crossref_primary_10_5194_bg_19_1321_2022
crossref_primary_10_1007_s00484_015_1074_y
crossref_primary_10_1016_j_scitotenv_2024_178197
crossref_primary_10_1002_eco_2536
crossref_primary_10_1007_s10533_017_0324_y
crossref_primary_10_1038_s41598_018_26147_4
crossref_primary_10_1016_j_ecolind_2015_11_033
crossref_primary_10_1002_2013JG002365
crossref_primary_10_1016_j_scitotenv_2021_150457
crossref_primary_10_5194_hess_27_3935_2023
crossref_primary_10_1016_j_scitotenv_2015_10_149
crossref_primary_10_1002_2016JG003697
crossref_primary_10_1111_gcb_13308
crossref_primary_10_1016_j_ecolind_2022_108847
crossref_primary_10_1002_ece3_2469
crossref_primary_10_1007_s10021_021_00639_3
crossref_primary_10_1111_j_1365_2389_2012_01467_x
crossref_primary_10_5194_acp_16_8281_2016
crossref_primary_10_5194_bg_15_3603_2018
crossref_primary_10_1007_s10533_010_9534_2
crossref_primary_10_1111_j_1749_8198_2008_00212_x
crossref_primary_10_5194_bg_8_901_2011
crossref_primary_10_1111_j_1365_2486_2009_02083_x
crossref_primary_10_1080_00103624_2014_989049
crossref_primary_10_1016_j_geoderma_2008_11_007
crossref_primary_10_1111_nph_12792
crossref_primary_10_5194_bg_8_779_2011
crossref_primary_10_1016_j_agrformet_2014_01_017
crossref_primary_10_1016_j_agrformet_2018_07_002
crossref_primary_10_1029_2021GL096616
crossref_primary_10_1016_j_soilbio_2019_06_006
crossref_primary_10_1029_2019WR026336
crossref_primary_10_5194_bg_20_737_2023
crossref_primary_10_1111_j_1365_2486_2010_02313_x
crossref_primary_10_1007_s10533_012_9798_9
crossref_primary_10_5194_bg_21_5745_2024
crossref_primary_10_3389_fevo_2022_953349
crossref_primary_10_1002_2016JG003357
crossref_primary_10_1111_gcb_13325
crossref_primary_10_1002_2016WR019186
crossref_primary_10_2136_sssaj2016_12_0422
crossref_primary_10_1038_s41586_021_03523_1
crossref_primary_10_1002_hyp_13921
crossref_primary_10_5194_bg_13_2637_2016
crossref_primary_10_1016_j_rse_2023_113875
crossref_primary_10_1007_s13157_012_0324_6
crossref_primary_10_1016_j_scitotenv_2018_05_192
crossref_primary_10_1038_s41467_020_18027_1
crossref_primary_10_1016_j_geoderma_2018_03_006
crossref_primary_10_1111_j_1365_2486_2009_02104_x
crossref_primary_10_1029_2012JG001978
crossref_primary_10_5194_hess_27_213_2023
crossref_primary_10_3390_w9100806
crossref_primary_10_1016_j_jhydrol_2018_05_041
crossref_primary_10_1016_j_jhydrol_2025_134282
crossref_primary_10_1016_j_scitotenv_2019_02_239
crossref_primary_10_1111_j_1365_2486_2010_02180_x
crossref_primary_10_1111_gcb_13621
crossref_primary_10_1002_hyp_10710
crossref_primary_10_1002_esp_2239
crossref_primary_10_1007_s10533_015_0170_8
crossref_primary_10_24057_2071_9388_2018_77
crossref_primary_10_1080_07055900_2012_730980
crossref_primary_10_1007_s13157_018_0999_4
crossref_primary_10_1029_2019JD031429
crossref_primary_10_1007_s00248_010_9751_1
crossref_primary_10_1016_j_palaeo_2013_12_019
crossref_primary_10_1007_s00027_015_0464_x
crossref_primary_10_1002_jgrg_20028
crossref_primary_10_1016_j_scitotenv_2011_07_063
crossref_primary_10_1016_j_scitotenv_2023_168450
crossref_primary_10_1016_j_agrformet_2016_01_012
crossref_primary_10_1016_j_agee_2018_09_020
crossref_primary_10_1016_j_fmre_2022_09_024
crossref_primary_10_1029_2020AV000163
crossref_primary_10_1111_gcb_14983
crossref_primary_10_1029_2021JD034671
crossref_primary_10_1016_j_scitotenv_2015_03_102
crossref_primary_10_1038_s41467_021_27059_0
crossref_primary_10_1002_2014JG002814
crossref_primary_10_5194_bg_9_4071_2012
crossref_primary_10_1016_j_jhydrol_2009_03_031
crossref_primary_10_1002_eco_1501
crossref_primary_10_2478_oszn_2019_0009
crossref_primary_10_1016_j_scitotenv_2010_09_009
crossref_primary_10_1111_gcbb_12334
crossref_primary_10_1016_j_jhydrol_2015_04_061
crossref_primary_10_1088_1748_9326_10_6_065006
crossref_primary_10_5194_bg_10_2885_2013
crossref_primary_10_3389_feart_2021_631368
crossref_primary_10_1007_s10533_020_00668_5
crossref_primary_10_1111_gcb_13520
crossref_primary_10_1177_0959683616675936
crossref_primary_10_1007_s13157_023_01751_x
crossref_primary_10_1016_j_jhydrol_2024_131729
crossref_primary_10_1016_j_atmosenv_2014_02_034
crossref_primary_10_1029_2023GL105205
crossref_primary_10_1111_j_1365_2486_2009_02032_x
crossref_primary_10_1111_j_1365_2486_2012_02666_x
crossref_primary_10_5194_bg_14_4563_2017
crossref_primary_10_1016_j_scitotenv_2021_147848
crossref_primary_10_3389_fenvs_2021_730106
crossref_primary_10_1007_s10021_016_0034_7
crossref_primary_10_1016_j_catena_2017_09_010
crossref_primary_10_1016_j_jenvrad_2012_06_010
crossref_primary_10_1111_gcb_14292
crossref_primary_10_3390_rs10111784
crossref_primary_10_1111_gcb_12672
crossref_primary_10_1029_2019JG005142
crossref_primary_10_1029_2020JG006235
crossref_primary_10_1007_s13157_017_0888_2
crossref_primary_10_1111_gcb_12864
crossref_primary_10_1007_s10533_014_9977_y
crossref_primary_10_1016_j_agrformet_2018_06_015
crossref_primary_10_1016_j_soilbio_2017_01_008
crossref_primary_10_1088_1748_9326_10_3_035002
crossref_primary_10_1111_gcb_12745
crossref_primary_10_1007_s10750_011_0729_x
crossref_primary_10_5194_bg_7_2901_2010
crossref_primary_10_1038_nature11818
crossref_primary_10_1016_j_agrformet_2011_04_001
crossref_primary_10_1038_s41467_023_37232_2
crossref_primary_10_1029_2010GB003975
crossref_primary_10_1016_j_orggeochem_2017_06_019
crossref_primary_10_5194_bg_16_713_2019
crossref_primary_10_1002_2013JG002527
crossref_primary_10_1016_j_agrformet_2019_04_010
crossref_primary_10_1007_s10021_023_00836_2
crossref_primary_10_1002_2017JG004312
crossref_primary_10_1007_s10021_011_9452_8
crossref_primary_10_1016_j_ecoleng_2019_05_016
crossref_primary_10_1029_2019JG005156
crossref_primary_10_1002_2013GB004782
crossref_primary_10_1007_s13280_025_02220_x
crossref_primary_10_1016_j_rse_2010_01_005
crossref_primary_10_1111_gcbb_12308
crossref_primary_10_1029_2021JG006435
crossref_primary_10_1111_j_1365_2486_2009_02016_x
crossref_primary_10_1016_j_agee_2020_106984
crossref_primary_10_1111_j_1600_0706_2008_17129_x
crossref_primary_10_1007_s11273_014_9402_2
crossref_primary_10_1111_j_1749_8198_2011_00420_x
crossref_primary_10_1007_s00027_015_0447_y
crossref_primary_10_1002_wcc_862
crossref_primary_10_1016_j_jhydrol_2018_04_050
crossref_primary_10_1007_s10021_017_0133_0
crossref_primary_10_1016_j_atmosenv_2016_09_036
crossref_primary_10_1016_j_scitotenv_2016_12_104
crossref_primary_10_3389_feart_2023_1263418
crossref_primary_10_5194_bg_10_7739_2013
crossref_primary_10_3389_fenvs_2025_1544586
crossref_primary_10_3390_rs13040818
crossref_primary_10_1007_s10533_016_0182_z
crossref_primary_10_1657_1938_4246_46_1_103
crossref_primary_10_1007_s10021_025_00991_8
crossref_primary_10_1029_2023JF007324
crossref_primary_10_1111_sum_12164
crossref_primary_10_1016_j_agrformet_2023_109361
crossref_primary_10_1007_s10021_018_0284_7
crossref_primary_10_1111_j_1365_2486_2010_02378_x
crossref_primary_10_1088_1748_9326_8_3_035051
crossref_primary_10_5194_bg_12_5291_2015
crossref_primary_10_1002_2013JG002423
crossref_primary_10_1111_gcb_12760
crossref_primary_10_1002_eco_2114
crossref_primary_10_1021_es900416h
crossref_primary_10_1029_2017JG003996
crossref_primary_10_5194_bg_7_2711_2010
crossref_primary_10_1080_20964129_2020_1806113
crossref_primary_10_1016_j_jhydrol_2014_11_019
crossref_primary_10_1002_hyp_8106
crossref_primary_10_1007_s00374_018_1279_4
crossref_primary_10_1016_j_jhydrol_2014_11_014
crossref_primary_10_1088_1748_9326_10_9_094019
crossref_primary_10_2136_vzj2011_0039
crossref_primary_10_1016_j_scitotenv_2019_134632
crossref_primary_10_1002_esp_3193
crossref_primary_10_1002_2013JG002410
crossref_primary_10_1016_j_jhydrol_2015_10_002
crossref_primary_10_1111_gcb_14449
crossref_primary_10_1134_S1064229319090060
crossref_primary_10_1111_gcb_13119
crossref_primary_10_1016_j_earscirev_2016_12_001
crossref_primary_10_1016_j_agrformet_2023_109696
crossref_primary_10_1002_2017JG004083
crossref_primary_10_1002_ecy_1627
crossref_primary_10_1016_j_atmosenv_2017_10_025
crossref_primary_10_1007_s10021_014_9838_5
crossref_primary_10_1016_j_agrformet_2014_03_003
crossref_primary_10_1029_2011EO120001
crossref_primary_10_1029_2019JG005090
crossref_primary_10_1186_s13021_018_0105_5
crossref_primary_10_1016_j_agrformet_2024_110280
crossref_primary_10_1016_j_scitotenv_2017_09_103
crossref_primary_10_3390_f2010243
crossref_primary_10_1007_s10533_016_0230_8
crossref_primary_10_1088_1748_9326_10_2_025004
crossref_primary_10_1002_2016JG003375
crossref_primary_10_1016_j_ecoleng_2018_06_021
crossref_primary_10_1016_j_foreco_2012_10_008
crossref_primary_10_1038_s41467_025_59387_w
crossref_primary_10_1016_j_ecolmodel_2024_110633
crossref_primary_10_1002_hyp_14350
crossref_primary_10_1088_1748_9326_add607
crossref_primary_10_1016_j_scitotenv_2021_147552
crossref_primary_10_1016_j_agrformet_2020_108021
crossref_primary_10_1016_j_scitotenv_2012_06_032
crossref_primary_10_1016_j_ecoleng_2012_06_027
crossref_primary_10_1111_gcb_13815
crossref_primary_10_1007_s10533_014_0060_5
crossref_primary_10_1002_hyp_13158
crossref_primary_10_1016_j_quascirev_2016_03_011
crossref_primary_10_3389_feart_2023_1194749
crossref_primary_10_1029_2020JG005654
crossref_primary_10_1016_j_scitotenv_2017_11_252
crossref_primary_10_5194_bg_18_5811_2021
crossref_primary_10_1371_journal_pone_0189692
crossref_primary_10_1016_j_agrformet_2017_09_010
crossref_primary_10_1016_j_scitotenv_2018_07_390
crossref_primary_10_5194_bg_12_1799_2015
crossref_primary_10_1007_s10021_014_9815_z
crossref_primary_10_1002_grl_50281
crossref_primary_10_1080_07420528_2024_2365825
crossref_primary_10_5194_bg_14_2571_2017
crossref_primary_10_5194_soil_6_299_2020
crossref_primary_10_1016_j_ecolind_2019_105831
crossref_primary_10_1111_j_1365_2486_2009_02097_x
crossref_primary_10_1111_j_1365_2486_2009_02119_x
crossref_primary_10_1002_esp_2174
crossref_primary_10_5194_essd_11_1263_2019
crossref_primary_10_1016_j_agrformet_2015_01_001
crossref_primary_10_1111_j_1475_2743_2010_00274_x
crossref_primary_10_1139_b11_068
crossref_primary_10_1016_j_geoderma_2018_09_019
crossref_primary_10_1029_2022JG007003
crossref_primary_10_1016_j_scitotenv_2025_179526
crossref_primary_10_1007_s10533_023_01093_0
crossref_primary_10_1016_j_catena_2018_10_011
crossref_primary_10_1016_j_foreco_2023_121020
crossref_primary_10_1016_j_agrformet_2024_110179
Cites_doi 10.2307/2261660
10.1029/96GB00365
10.1029/2006JG000306
10.1016/S1352-2310(02)00771-9
10.1007/s002160050832
10.2307/1941811
10.1006/qres.1996.0008
10.1029/2002JD002055
10.1023/A:1005408719297
10.1029/2000GB001356
10.1007/BF00992977
10.1029/97GB01961
10.1016/B978-0-12-505580-2.50006-4
10.1029/2006 JG000381
10.2307/3547057
10.1046/j.1365-2427.2001.00751.x
10.1016/S0269-7491(01)00267-6
10.1111/j.1600-0889.2007.00261.x
10.1029/96GB01666
10.1177/095968369600600204
10.1016/j.agrformet.2006.03.018
10.1029/2006GL025754
10.1029/2007GL031797
10.1016/0304-4203(74)90015-2
10.1038/361520a0
10.1016/0169-5347(94)90152-X
10.1890/0012-9658(2001)082[1982:EOTANA]2.0.CO;2
10.1007/BF00002641
10.1111/j.1365-2486.2007.01339.x
10.1029/2006JG000218
10.1002/hyp.3360050407
10.1016/S0048-9697(03)00226-2
10.1029/2004GL020315
10.1016/j.agrformet.2003.12.003
10.1111/j.1365-2486.2006.01292.x
10.1029/97JD01176
10.1029/2005GL024731
10.1098/rstb.1984.0002
10.1111/j.1365-2486.2003.00721.x
10.1080/15230430.2001.12003417
10.1029/98GB02636
10.1016/S0929-1393(98)00146-2
10.1111/j.1365-2486.1996.tb00071.x
10.1029/2001JD900119
10.1029/2003GB002058
10.1007/BF00164332
10.1191/0959683602hl522rp
10.1016/S0065-2504(08)60018-5
10.1007/s003740050317
10.1177/095968369700700304
10.1029/2002GB001983
10.1029/97GB02732
10.2307/1941992
10.1672/0277-5212(2000)020[0113:SAYODC]2.0.CO;2
10.1007/s00027-004-0700-2
10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2
10.1002/hyp.5209
10.1111/j.1600-0889.2007.00309.x
10.1016/0269-7491(94)90142-2
10.1007/s10021-005-0105-7
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
2008 INIST-CNRS
Journal compilation © 2008 Blackwell Publishing
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
– notice: 2008 INIST-CNRS
– notice: Journal compilation © 2008 Blackwell Publishing
CorporateAuthor Lunds universitet
Naturvetenskapliga fakulteten
Faculty of Science
Lund University
Dept of Physical Geography and Ecosystem Science
Institutionen för naturgeografi och ekosystemvetenskap
CorporateAuthor_xml – name: Dept of Physical Geography and Ecosystem Science
– name: Naturvetenskapliga fakulteten
– name: Lund University
– name: Faculty of Science
– name: Lunds universitet
– name: Institutionen för naturgeografi och ekosystemvetenskap
DBID BSCLL
AAYXX
CITATION
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7S9
L.6
ADTPV
AOWAS
D93
F1U
D95
DOI 10.1111/j.1365-2486.2008.01654.x
DatabaseName Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Umeå universitet
SWEPUB Göteborgs universitet
SWEPUB Lunds universitet
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional



CrossRef
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 2332
ExternalDocumentID oai_portal_research_lu_se_publications_7c34605c_392f_4706_b41d_832e299020ab
oai_gup_ub_gu_se_81930
oai_DiVA_org_umu_11365
1559631481
20692287
10_1111_j_1365_2486_2008_01654_x
GCB1654
ark_67375_WNG_TF5RZH65_M
Genre article
Feature
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
ALUQN
AAYXX
CITATION
O8X
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7S9
L.6
ADTPV
AOWAS
D93
F1U
D95
ID FETCH-LOGICAL-c6694-6a85bb88c00226664fa762dff7921ec146daa50f1f529ab7d69c1aac36e267af3
IEDL.DBID DRFUL
ISICitedReferencesCount 299
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259360500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
1365-2486
IngestDate Wed Dec 10 12:45:30 EST 2025
Tue Nov 04 16:55:03 EST 2025
Tue Nov 04 16:38:09 EST 2025
Sun Nov 09 09:24:48 EST 2025
Mon Nov 10 02:48:02 EST 2025
Mon Jul 21 09:13:33 EDT 2025
Sat Nov 29 06:02:11 EST 2025
Tue Nov 18 22:10:14 EST 2025
Sun Sep 21 06:19:30 EDT 2025
Tue Nov 11 03:33:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Methane
Bryophyta
TOC
Trophic status
Sphagnobrya
Peat
Carbon balance
Peat bog
Sphagnum
NEE
Dissolved organic carbon
NECB
Eddy covariance
Runoff
Stagnant water
boreal mire
DOC
Biological accumulation
Oligotrophy
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6694-6a85bb88c00226664fa762dff7921ec146daa50f1f529ab7d69c1aac36e267af3
Notes ArticleID:GCB1654
istex:BBB0D37C6F9593725D8E8D1C4CE4B5845D424A65
ark:/67375/WNG-TF5RZH65-M
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 205227591
PQPubID 30327
PageCount 16
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_7c34605c_392f_4706_b41d_832e299020ab
swepub_primary_oai_gup_ub_gu_se_81930
swepub_primary_oai_DiVA_org_umu_11365
proquest_miscellaneous_48059656
proquest_journals_205227591
pascalfrancis_primary_20692287
crossref_primary_10_1111_j_1365_2486_2008_01654_x
crossref_citationtrail_10_1111_j_1365_2486_2008_01654_x
wiley_primary_10_1111_j_1365_2486_2008_01654_x_GCB1654
istex_primary_ark_67375_WNG_TF5RZH65_M
PublicationCentury 2000
PublicationDate October 2008
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: October 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global change biology
PublicationYear 2008
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland - application to boreal and subarctic regions. Holocene, 12, 69-80.
Billet MF, Garnett MH, Harvey F (2007) UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers. Geophysical Research Letters, 34, L23401, doi: DOI: 10.1029/2007GL031797.
Clymo RS (1984) The limits to peat bog growth. Philosophical Transactions of the Royal Society of London Series B, 303, 605-654.
Laudon H, Kohler S, Buffam I (2004) Seasonal TOC export from seven boreal catchments in northern Sweden. Aquatic Sciences, 66, 223-230.
Belyea LR, Baird AJ (2006) Beyond "the limits to peat bog growth": cross-scale feedback in peatland development. Ecological Monographs, 76, 299-322.
Oechel WC, Vourlitis GL, Hastings SJ, Bochkarev SA (1995) Change in Arctic CO2 flux over 2 decades - effects of climate-change at Barrow, Alaska. Ecological Applications, 5, 846-855.
Bishop K, Seibert J, Koher S, Laudon H (2004) Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrological Processes, 18, 185-189.
Klinger LF, Taylor JA, Franzén LG (1996) The potential role of peatland dynamics in ice-age initiation. Quaternary Research, 45, 89-92.
Jarvis PG, Massheder JM, Hale SE, Moncrieff JB, Rayment M, Scott SL (1997) Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. Journal of Geophysical Research - Atmospheres, 102, 28953-28966.
Algesten G, Sobek S, Bergstrom AK, Agren A, Tranvik LJ, Jansson M (2004) Role of lakes for organic carbon cycling in the boreal zone. Global Change Biology, 10, 141-147.
Dawson JJC, Billett MF, Hope D (2001) Diurnal variations in the carbon chemistry of two acidic peatland streams in north-east Scotland. Freshwater Biology, 46, 1309-1322.
Greco S, Baldocchi DD (1996) Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biology, 2, 183-197.
Roulet N, Hardill S, Comer N (1991) Continuous measurement of the depth of water-table (inundation) in wetlands with fluctuating surfaces. Hydrological Processes, 5, 399-403.
Ångström A, Liljequist GH, Wallén CC (1974) Sveriges Klimat, 3rd edn. Generalstabens litografiska anstalt 1974, Stockholm, Sweden (in Swedish).
Granberg G, Ottosson-Lofvenius M, Grip H, Sundh I, Nilsson M (2001a) Effect of climatic variability from 1980 to 1997 on simulated methane emission from a boreal mixed mire in northern Sweden. Global Biogeochemical Cycles, 15, 977-991.
Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2, 203-215.
Chapin FS III, Woodwell GM, Randerson JT et al. (2006) Reconciling carbon-cycle concepts terminology, and methods. Ecosystema, 9, 1041-1050.
Tolonen K, Turunen J (1996) Accumulation rates of carbon in mires in Finland and implications for climate change. Holocene, 6, 171-178.
Oechel WC, Vourlitis GL (1994) The effects of climate-change on land atmosphere feedbacks in arctic tundra regions. Trends in Ecology & Evolution, 9, 324-329.
Frolking S, Roulet NT (2007) Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Global Change Biology, 13, 1079-1088.
Oldfield F, Thompson R, Crooks PRJ et al. (1997) Radiocarbon dating of a recent high-latitude peat profile: Stor Amyran, northern Sweden. Holocene, 7, 283-290.
Worrall F, Reed M, Warburton J, Burt T (2003) Carbon budget for a British upland peat catchment. Science of the Total Environment, 312, 133-146.
Molot LA, Dillon PJ (1996) Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere. Global Biogeochemical Cycles, 10, 483-492.
Stumm W, Morgan JM (1996) Aquatic Chemistry, 3rd edn. John Wiley & Sons, New York, USA.
Ågren A, Buffam I, Jansson M, Laudon H (2007) Importance of seasonality and small streams for the landscape regulation of DOC export. Journal of Geophysical Research - Biogeosciences, 112, G03003, doi: DOI: 10.1029/2006 JG000381.
Aurela M, Riutta T, Laurila T et al. (2007) CO2 exchange of a sedge fen in southern Finland - the impact of a drought period. Tellus B, 59, 826-837.
Christensen TR, Jonasson S, Callaghan TV, Havstrom M (1999) On the potential CO2 releases from tundra environments in a changing climate. Applied Soil Ecology, 11, 127-134.
Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water - fluxes and processes. Environmental Pollution, 84, 301-324.
Buffam I, Laudon H, Temnerud J, Mörth CM, Bishop K (2007) Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. Journal of Geophysical Research - Biogeosciences, 112, G01022, doi: DOI: 10.1029/2006JG000218.
Morgenstern K, Black TA, Humphreys ER et al. (2004) Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño La Niña cycle. Agricultural and Forest Meteorology, 123, 201-219.
Schotanus P, Nieuwstadt FTM, Debruin HAR (1983) Temperature measurements with a sonic anemometer and its application to heat and moisture fluxes. Boundary Layer Meteorology, 26, 81-93.
Lafleur PM, Griffis TJ, Rouse WR (2001) Interannual variability in net ecosystem CO2 exchange at the arctic treeline. Arctic Antarctic and Alpine Research, 33, 149-157.
Aubinet M, Grelle A, Ibrom A et al. (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research, 30, 113-175.
Clair TA, Arp P, Moore TR, Dalva M, Meng FR (2002) Gaseous carbon dioxide and methane, as well as dissolved organic carbon losses from a small temperate wetland under a changing climate. Environmental Pollution, 116, S143-S148.
Rivers JS, Siegel DI, Chasar LS, Chanton JP, Glaser PH, Roulet NT, McKenzie JM (1998) A stochastic appraisal of the annual carbon budget of a large circumboreal peatland, Rapid River Watershed, northern Minnesota. Global Biogeochemical Cycles, 12, 715-727.
Kortelainen P, Saukkonen S, Mattsson T (1997) Leaching of nitrogen from forested catchments in Finland. Global Biogeochemical Cycles, 11, 627-638.
Nilsson M, Bohlin E (1993) Methane and carbon-dioxide concentrations in bogs and fens - with special reference to the effects of the botanical composition of the peat. Journal of Ecology, 81, 615-625.
Alm J, Saarnio S, Nykanen H, Silvola J, Martikainen PJ (1999) Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry, 44, 163-186.
Grip H (1994) Dissolved Matter Transport in a Discharge Area. International Symposium on Forest Hydrology, Tokyo, Japan pp. 541-548.
Lafleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR (2003) Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochemical Cycles, 17, 1036, doi: DOI: 10.1029/2002GB001983.
Nilsson M, Mikkela C, Sundh I, Granberg G, Svensson BH, Ranneby B (2001) Methane emission from Swedish mires: national and regional budgets and dependence on mire vegetation. Journal of Geophysical Research - Atmospheres, 106, 20847-20860.
Gelbrecht J, Fait M, Dittrich M, Steinberg C (1998) Use of GC and equilibrium calculations of CO2 saturation index to indicate whether freshwater bodies in north-eastern Germany are net sources or sinks for atmospheric CO2. Fresenius Journal of Analytical Chemistry, 361, 47-53.
Roulet N, Lafleur M, Richard PJH, Moore T, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology, 13, 397-411.
Aurela M, Laurila T, Tuovinen JP (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophysical Research Letters, 31, L16119, doi: DOI: 10.1029/2004GL020315.
Elder JF, Rybicki NB, Carter V, Weintraub V (2000) Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of peatland. Wetlands, 20, 113-125.
Clymo RS, Turunen J, Tolonen T (1998) Carbon accumulation in peat. OIKOS, 81, 368-388.
Sagerfors J, Lindroth A, Grelle A, Klemedtsson L, Weslien P, Nilsson M (2008) Annual CO2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere. Journal of Geophysical Research - Biogeosciences, 113, G01001, doi: DOI: 10.1029/2006JG000306.
Finlay J, Neff J, Zimov S, Davydova A, Davydov S (2006) Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: implications for characterization and flux of river DOC. Geophysical Research Letters, 33, L10401, doi: DOI: 10.1029/2006GL025754.
Rinne J, Riutta T, Pihlatie M et al. (2007) Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus Series B - Chemical and Physical Meteorology, 59, 449-457.
Billett MF, Palmer SM, Hope D et al. (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biogeochemical Cycles, 18, 1024, doi: DOI: 10.1029/2003GB002058.
Aurela M, Laurila T, Tuovinen JP (2002) Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. Journal of Geophysical Research - Atmospheres, 107, 4607, doi: DOI: 10.1029/2002JD002055.
Melloh RA, Crill PM (1996) Winter methane dynamics in a temperate peatland. Global Biogeochemical Cycles, 10, 247-254.
Gorham E (1991) Northern peatlands - role in the carbon-cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
Nykänen H, Alm J, Silvola J, Tolonen K, Martikainen PJ (1998) Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles, 12, 53-69.
Dise NB (1992) Winter fluxes of methane from Minnesota peatlands. Biogeochemistry, 17, 71-83.
Sottocornola M, Kiely G (2005) An Atlantic blanket bog is a modest CO2 sink. Geophysical Research Letters, 32, L23
2004; 123
2004; 66
2006; 76
2006; 33
2002; 12
1992; 17
1999; 44
1974
1993; 361
2002; 116
1998; 81
2003; 17
1998; 40
2003; 312
2001; 46
2007; 34
1974; 2
2001; 106
1997; 7
1997; 102
2004; 31
1997; 11
2002; 107
1999; 11
1984
2005; 32
1983
2008; 113
1996; 2
1983; 26
1998; 12
1996; 6
1998; 361
1988
1991; 1
1993; 81
1997; 25
2006; 9
1984; 303
2000; 20
2003; 37
2007
1996
2006
1994
2005
1991
2007; 13
2001b; 82
1996; 10
1994; 84
1995; 5
2007; 59
1991; 5
2004; 10
1994; 9
2007; 112
2004; 18
2000; 30
2006; 140
2001; 33
2001a; 15
1996; 45
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
Ångström A (e_1_2_7_6_1) 1974
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_54_1
Stumm W (e_1_2_7_65_1) 1996
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Grip H (e_1_2_7_33_1) 1994
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Zoltai SC (e_1_2_7_71_1) 1988
References_xml – reference: Jarvis PG, Massheder JM, Hale SE, Moncrieff JB, Rayment M, Scott SL (1997) Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. Journal of Geophysical Research - Atmospheres, 102, 28953-28966.
– reference: Frolking S, Roulet NT (2007) Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Global Change Biology, 13, 1079-1088.
– reference: Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water - fluxes and processes. Environmental Pollution, 84, 301-324.
– reference: Kortelainen P, Saukkonen S, Mattsson T (1997) Leaching of nitrogen from forested catchments in Finland. Global Biogeochemical Cycles, 11, 627-638.
– reference: Christensen TR, Jonasson S, Callaghan TV, Havstrom M (1999) On the potential CO2 releases from tundra environments in a changing climate. Applied Soil Ecology, 11, 127-134.
– reference: Clymo RS, Turunen J, Tolonen T (1998) Carbon accumulation in peat. OIKOS, 81, 368-388.
– reference: Belyea LR, Baird AJ (2006) Beyond "the limits to peat bog growth": cross-scale feedback in peatland development. Ecological Monographs, 76, 299-322.
– reference: Rinne J, Riutta T, Pihlatie M et al. (2007) Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus Series B - Chemical and Physical Meteorology, 59, 449-457.
– reference: Roulet N, Hardill S, Comer N (1991) Continuous measurement of the depth of water-table (inundation) in wetlands with fluctuating surfaces. Hydrological Processes, 5, 399-403.
– reference: Stumm W, Morgan JM (1996) Aquatic Chemistry, 3rd edn. John Wiley & Sons, New York, USA.
– reference: Klinger LF, Taylor JA, Franzén LG (1996) The potential role of peatland dynamics in ice-age initiation. Quaternary Research, 45, 89-92.
– reference: Dise NB (1992) Winter fluxes of methane from Minnesota peatlands. Biogeochemistry, 17, 71-83.
– reference: Finlay J, Neff J, Zimov S, Davydova A, Davydov S (2006) Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: implications for characterization and flux of river DOC. Geophysical Research Letters, 33, L10401, doi: DOI: 10.1029/2006GL025754.
– reference: Elder JF, Rybicki NB, Carter V, Weintraub V (2000) Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of peatland. Wetlands, 20, 113-125.
– reference: Dawson JJC, Billett MF, Hope D (2001) Diurnal variations in the carbon chemistry of two acidic peatland streams in north-east Scotland. Freshwater Biology, 46, 1309-1322.
– reference: Aurela M, Laurila T, Tuovinen JP (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophysical Research Letters, 31, L16119, doi: DOI: 10.1029/2004GL020315.
– reference: Billett MF, Palmer SM, Hope D et al. (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biogeochemical Cycles, 18, 1024, doi: DOI: 10.1029/2003GB002058.
– reference: Sagerfors J, Lindroth A, Grelle A, Klemedtsson L, Weslien P, Nilsson M (2008) Annual CO2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere. Journal of Geophysical Research - Biogeosciences, 113, G01001, doi: DOI: 10.1029/2006JG000306.
– reference: Alm J, Saarnio S, Nykanen H, Silvola J, Martikainen PJ (1999) Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry, 44, 163-186.
– reference: Algesten G, Sobek S, Bergstrom AK, Agren A, Tranvik LJ, Jansson M (2004) Role of lakes for organic carbon cycling in the boreal zone. Global Change Biology, 10, 141-147.
– reference: Klemedtsson L, Klemedtsson AK, Moldan F, Weslien P (1997) Nitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N-deposition. Biology and Fertility of Soils, 25, 290-295.
– reference: Billet MF, Garnett MH, Harvey F (2007) UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers. Geophysical Research Letters, 34, L23401, doi: DOI: 10.1029/2007GL031797.
– reference: Oechel WC, Vourlitis GL (1994) The effects of climate-change on land atmosphere feedbacks in arctic tundra regions. Trends in Ecology & Evolution, 9, 324-329.
– reference: Morgenstern K, Black TA, Humphreys ER et al. (2004) Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño La Niña cycle. Agricultural and Forest Meteorology, 123, 201-219.
– reference: Granberg G, Ottosson-Lofvenius M, Grip H, Sundh I, Nilsson M (2001a) Effect of climatic variability from 1980 to 1997 on simulated methane emission from a boreal mixed mire in northern Sweden. Global Biogeochemical Cycles, 15, 977-991.
– reference: Lafleur PM, Griffis TJ, Rouse WR (2001) Interannual variability in net ecosystem CO2 exchange at the arctic treeline. Arctic Antarctic and Alpine Research, 33, 149-157.
– reference: Melloh RA, Crill PM (1996) Winter methane dynamics in a temperate peatland. Global Biogeochemical Cycles, 10, 247-254.
– reference: Moore TR, Roulet NT, Waddington JM (1998) Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Climatic Change, 40, 229-245.
– reference: Nilsson M, Mikkela C, Sundh I, Granberg G, Svensson BH, Ranneby B (2001) Methane emission from Swedish mires: national and regional budgets and dependence on mire vegetation. Journal of Geophysical Research - Atmospheres, 106, 20847-20860.
– reference: Lafleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR (2003) Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochemical Cycles, 17, 1036, doi: DOI: 10.1029/2002GB001983.
– reference: Nilsson M, Bohlin E (1993) Methane and carbon-dioxide concentrations in bogs and fens - with special reference to the effects of the botanical composition of the peat. Journal of Ecology, 81, 615-625.
– reference: Aubinet M, Grelle A, Ibrom A et al. (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research, 30, 113-175.
– reference: Clair TA, Arp P, Moore TR, Dalva M, Meng FR (2002) Gaseous carbon dioxide and methane, as well as dissolved organic carbon losses from a small temperate wetland under a changing climate. Environmental Pollution, 116, S143-S148.
– reference: Sottocornola M, Kiely G (2005) An Atlantic blanket bog is a modest CO2 sink. Geophysical Research Letters, 32, L23804, doi: DOI: 10.1029/2005GL024731.
– reference: Aurela M, Laurila T, Tuovinen JP (2002) Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. Journal of Geophysical Research - Atmospheres, 107, 4607, doi: DOI: 10.1029/2002JD002055.
– reference: Aurela M, Riutta T, Laurila T et al. (2007) CO2 exchange of a sedge fen in southern Finland - the impact of a drought period. Tellus B, 59, 826-837.
– reference: Huttunen JT, Nykanen H, Turunen J, Martikainen PJ (2003) Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia. Atmospheric Environment, 37, 147-151.
– reference: Oechel WC, Hastings SJ, Vourlitis GL, Jenkins M, Riechers G, Grulke N (1993) Recent change of arctic tundra ecosystems from a net carbon-dioxide sink to a source. Nature, 361, 520-523.
– reference: Clymo RS (1984) The limits to peat bog growth. Philosophical Transactions of the Royal Society of London Series B, 303, 605-654.
– reference: Chapin FS III, Woodwell GM, Randerson JT et al. (2006) Reconciling carbon-cycle concepts terminology, and methods. Ecosystema, 9, 1041-1050.
– reference: Gelbrecht J, Fait M, Dittrich M, Steinberg C (1998) Use of GC and equilibrium calculations of CO2 saturation index to indicate whether freshwater bodies in north-eastern Germany are net sources or sinks for atmospheric CO2. Fresenius Journal of Analytical Chemistry, 361, 47-53.
– reference: Gorham E (1991) Northern peatlands - role in the carbon-cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
– reference: Rivers JS, Siegel DI, Chasar LS, Chanton JP, Glaser PH, Roulet NT, McKenzie JM (1998) A stochastic appraisal of the annual carbon budget of a large circumboreal peatland, Rapid River Watershed, northern Minnesota. Global Biogeochemical Cycles, 12, 715-727.
– reference: Laudon H, Kohler S, Buffam I (2004) Seasonal TOC export from seven boreal catchments in northern Sweden. Aquatic Sciences, 66, 223-230.
– reference: Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2, 203-215.
– reference: Ångström A, Liljequist GH, Wallén CC (1974) Sveriges Klimat, 3rd edn. Generalstabens litografiska anstalt 1974, Stockholm, Sweden (in Swedish).
– reference: Granberg G, Sundh I, Svensson BH, Nilsson M (2001b) Effects of temperature, and nitrogen and sulfur deposition, on methane emission from a boreal mire. Ecology, 82, 1982-1998.
– reference: Schotanus P, Nieuwstadt FTM, Debruin HAR (1983) Temperature measurements with a sonic anemometer and its application to heat and moisture fluxes. Boundary Layer Meteorology, 26, 81-93.
– reference: Tolonen K, Turunen J (1996) Accumulation rates of carbon in mires in Finland and implications for climate change. Holocene, 6, 171-178.
– reference: Ågren A, Buffam I, Jansson M, Laudon H (2007) Importance of seasonality and small streams for the landscape regulation of DOC export. Journal of Geophysical Research - Biogeosciences, 112, G03003, doi: DOI: 10.1029/2006 JG000381.
– reference: Greco S, Baldocchi DD (1996) Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biology, 2, 183-197.
– reference: Roulet N, Lafleur M, Richard PJH, Moore T, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology, 13, 397-411.
– reference: Bishop K, Seibert J, Koher S, Laudon H (2004) Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrological Processes, 18, 185-189.
– reference: Humphreys ER, Black TA, Morgenstern K, Cai TB, Drewitt GB, Nesic Z, Trofymow JA (2006) Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting. Agricultural and Forest Meteorology, 140, 6-22.
– reference: Buffam I, Laudon H, Temnerud J, Mörth CM, Bishop K (2007) Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. Journal of Geophysical Research - Biogeosciences, 112, G01022, doi: DOI: 10.1029/2006JG000218.
– reference: Oldfield F, Thompson R, Crooks PRJ et al. (1997) Radiocarbon dating of a recent high-latitude peat profile: Stor Amyran, northern Sweden. Holocene, 7, 283-290.
– reference: Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland - application to boreal and subarctic regions. Holocene, 12, 69-80.
– reference: Molot LA, Dillon PJ (1996) Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere. Global Biogeochemical Cycles, 10, 483-492.
– reference: Nykänen H, Alm J, Silvola J, Tolonen K, Martikainen PJ (1998) Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles, 12, 53-69.
– reference: Oechel WC, Vourlitis GL, Hastings SJ, Bochkarev SA (1995) Change in Arctic CO2 flux over 2 decades - effects of climate-change at Barrow, Alaska. Ecological Applications, 5, 846-855.
– reference: Worrall F, Reed M, Warburton J, Burt T (2003) Carbon budget for a British upland peat catchment. Science of the Total Environment, 312, 133-146.
– reference: Grip H (1994) Dissolved Matter Transport in a Discharge Area. International Symposium on Forest Hydrology, Tokyo, Japan pp. 541-548.
– volume: 10
  start-page: 483
  year: 1996
  end-page: 492
  article-title: Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere
  publication-title: Global Biogeochemical Cycles
– volume: 1
  start-page: 182
  year: 1991
  end-page: 195
  article-title: Northern peatlands – role in the carbon‐cycle and probable responses to climatic warming
  publication-title: Ecological Applications
– volume: 102
  start-page: 28953
  year: 1997
  end-page: 28966
  article-title: Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest
  publication-title: Journal of Geophysical Research – Atmospheres
– year: 2005
– volume: 123
  start-page: 201
  year: 2004
  end-page: 219
  article-title: Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas‐fir forest during an El Niño La Niña cycle
  publication-title: Agricultural and Forest Meteorology
– volume: 33
  start-page: 149
  year: 2001
  end-page: 157
  article-title: Interannual variability in net ecosystem CO exchange at the arctic treeline
  publication-title: Arctic Antarctic and Alpine Research
– volume: 113
  start-page: G01001
  year: 2008
  article-title: Annual CO exchange between a nutrient‐poor, minerotrophic, boreal mire and the atmosphere
  publication-title: Journal of Geophysical Research – Biogeosciences
– volume: 37
  start-page: 147
  year: 2003
  end-page: 151
  article-title: Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia
  publication-title: Atmospheric Environment
– volume: 11
  start-page: 127
  year: 1999
  end-page: 134
  article-title: On the potential CO releases from tundra environments in a changing climate
  publication-title: Applied Soil Ecology
– volume: 12
  start-page: 53
  year: 1998
  end-page: 69
  article-title: Methane fluxes on boreal peatlands of different fertility and the effect of long‐term experimental lowering of the water table on flux rates
  publication-title: Global Biogeochemical Cycles
– volume: 9
  start-page: 324
  year: 1994
  end-page: 329
  article-title: The effects of climate‐change on land atmosphere feedbacks in arctic tundra regions
  publication-title: Trends in Ecology & Evolution
– volume: 13
  start-page: 397
  year: 2007
  end-page: 411
  article-title: Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland
  publication-title: Global Change Biology
– volume: 31
  start-page: L16119
  year: 2004
  article-title: The timing of snow melt controls the annual CO balance in a subarctic fen
  publication-title: Geophysical Research Letters
– start-page: 97
  year: 1988
  end-page: 154
– volume: 107
  start-page: 4607
  year: 2002
  article-title: Annual CO balance of a subarctic fen in northern Europe
  publication-title: Journal of Geophysical Research – Atmospheres
– volume: 10
  start-page: 247
  year: 1996
  end-page: 254
  article-title: Winter methane dynamics in a temperate peatland
  publication-title: Global Biogeochemical Cycles
– volume: 2
  start-page: 203
  year: 1974
  end-page: 215
  article-title: Carbon dioxide in water and seawater
  publication-title: Marine Chemistry
– volume: 82
  start-page: 1982
  year: 2001b
  end-page: 1998
  article-title: Effects of temperature, and nitrogen and sulfur deposition, on methane emission from a boreal mire
  publication-title: Ecology
– volume: 312
  start-page: 133
  year: 2003
  end-page: 146
  article-title: Carbon budget for a British upland peat catchment
  publication-title: Science of the Total Environment
– volume: 112
  start-page: G01022
  year: 2007
  article-title: Landscape‐scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network
  publication-title: Journal of Geophysical Research – Biogeosciences
– volume: 20
  start-page: 113
  year: 2000
  end-page: 125
  article-title: Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of peatland
  publication-title: Wetlands
– volume: 33
  start-page: L10401
  year: 2006
  article-title: Snowmelt dominance of dissolved organic carbon in high‐latitude watersheds
  publication-title: Geophysical Research Letters
– volume: 361
  start-page: 47
  year: 1998
  end-page: 53
  article-title: Use of GC and equilibrium calculations of CO saturation index to indicate whether freshwater bodies in north‐eastern Germany are net sources or sinks for atmospheric CO
  publication-title: Fresenius Journal of Analytical Chemistry
– volume: 34
  start-page: L23401
  year: 2007
  article-title: UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers
  publication-title: Geophysical Research Letters
– volume: 5
  start-page: 846
  year: 1995
  end-page: 855
  article-title: Change in Arctic CO flux over 2 decades – effects of climate‐change at Barrow, Alaska
  publication-title: Ecological Applications
– volume: 18
  start-page: 1024
  year: 2004
  article-title: Linking land–atmosphere–stream carbon fluxes in a lowland peatland system
  publication-title: Global Biogeochemical Cycles
– volume: 106
  start-page: 20847
  year: 2001
  end-page: 20860
  article-title: Methane emission from Swedish mires
  publication-title: Journal of Geophysical Research – Atmospheres
– volume: 10
  start-page: 141
  year: 2004
  end-page: 147
  article-title: Role of lakes for organic carbon cycling in the boreal zone
  publication-title: Global Change Biology
– volume: 12
  start-page: 69
  year: 2002
  end-page: 80
  article-title: Estimating carbon accumulation rates of undrained mires in Finland – application to boreal and subarctic regions
  publication-title: Holocene
– volume: 46
  start-page: 1309
  year: 2001
  end-page: 1322
  article-title: Diurnal variations in the carbon chemistry of two acidic peatland streams in north‐east Scotland
  publication-title: Freshwater Biology
– volume: 32
  start-page: L23804
  year: 2005
  article-title: An Atlantic blanket bog is a modest CO sink
  publication-title: Geophysical Research Letters
– volume: 30
  start-page: 113
  year: 2000
  end-page: 175
  article-title: Estimates of the annual net carbon and water exchange of forests
  publication-title: Advances in Ecological Research
– volume: 12
  start-page: 715
  year: 1998
  end-page: 727
  article-title: A stochastic appraisal of the annual carbon budget of a large circumboreal peatland, Rapid River Watershed, northern Minnesota
  publication-title: Global Biogeochemical Cycles
– volume: 40
  start-page: 229
  year: 1998
  end-page: 245
  article-title: Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands
  publication-title: Climatic Change
– year: 1983
– volume: 59
  start-page: 449
  year: 2007
  end-page: 457
  article-title: Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique
  publication-title: Tellus Series B – Chemical and Physical Meteorology
– volume: 76
  start-page: 299
  year: 2006
  end-page: 322
  article-title: Beyond “the limits to peat bog growth”
  publication-title: Ecological Monographs
– volume: 2
  start-page: 183
  year: 1996
  end-page: 197
  article-title: Seasonal variations of CO and water vapour exchange rates over a temperate deciduous forest
  publication-title: Global Change Biology
– volume: 44
  start-page: 163
  year: 1999
  end-page: 186
  article-title: Winter CO , CH and N O fluxes on some natural and drained boreal peatlands
  publication-title: Biogeochemistry
– volume: 11
  start-page: 627
  year: 1997
  end-page: 638
  article-title: Leaching of nitrogen from forested catchments in Finland
  publication-title: Global Biogeochemical Cycles
– volume: 7
  start-page: 283
  year: 1997
  end-page: 290
  article-title: Radiocarbon dating of a recent high‐latitude peat profile
  publication-title: Holocene
– volume: 45
  start-page: 89
  year: 1996
  end-page: 92
  article-title: The potential role of peatland dynamics in ice‐age initiation
  publication-title: Quaternary Research
– volume: 5
  start-page: 399
  year: 1991
  end-page: 403
  article-title: Continuous measurement of the depth of water‐table (inundation) in wetlands with fluctuating surfaces
  publication-title: Hydrological Processes
– year: 2007
– volume: 18
  start-page: 185
  year: 2004
  end-page: 189
  article-title: Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry
  publication-title: Hydrological Processes
– year: 1996
– volume: 140
  start-page: 6
  year: 2006
  end-page: 22
  article-title: Carbon dioxide fluxes in coastal Douglas‐fir stands at different stages of development after clearcut harvesting
  publication-title: Agricultural and Forest Meteorology
– volume: 26
  start-page: 81
  year: 1983
  end-page: 93
  article-title: Temperature measurements with a sonic anemometer and its application to heat and moisture fluxes
  publication-title: Boundary Layer Meteorology
– volume: 15
  start-page: 977
  year: 2001a
  end-page: 991
  article-title: Effect of climatic variability from 1980 to 1997 on simulated methane emission from a boreal mixed mire in northern Sweden
  publication-title: Global Biogeochemical Cycles
– volume: 17
  start-page: 1036
  year: 2003
  article-title: Interannual variability in the peatland‐atmosphere carbon dioxide exchange at an ombrotrophic bog
  publication-title: Global Biogeochemical Cycles
– volume: 361
  start-page: 520
  year: 1993
  end-page: 523
  article-title: Recent change of arctic tundra ecosystems from a net carbon‐dioxide sink to a source
  publication-title: Nature
– volume: 116
  start-page: S143
  year: 2002
  end-page: S148
  article-title: Gaseous carbon dioxide and methane, as well as dissolved organic carbon losses from a small temperate wetland under a changing climate
  publication-title: Environmental Pollution
– start-page: 541
  year: 1994
  end-page: 548
– volume: 9
  start-page: 1041
  year: 2006
  end-page: 1050
  article-title: Reconciling carbon‐cycle concepts terminology, and methods
  publication-title: Ecosystema
– volume: 17
  start-page: 71
  year: 1992
  end-page: 83
  article-title: Winter fluxes of methane from Minnesota peatlands
  publication-title: Biogeochemistry
– volume: 81
  start-page: 368
  year: 1998
  end-page: 388
  article-title: Carbon accumulation in peat
  publication-title: OIKOS
– start-page: 11
  year: 1984
  end-page: 117
– year: 2006
– volume: 303
  start-page: 605
  year: 1984
  end-page: 654
  article-title: The limits to peat bog growth
  publication-title: Philosophical Transactions of the Royal Society of London Series B
– volume: 6
  start-page: 171
  year: 1996
  end-page: 178
  article-title: Accumulation rates of carbon in mires in Finland and implications for climate change
  publication-title: Holocene
– year: 1974
– volume: 112
  start-page: G03003
  year: 2007
  article-title: Importance of seasonality and small streams for the landscape regulation of DOC export
  publication-title: Journal of Geophysical Research – Biogeosciences
– volume: 66
  start-page: 223
  year: 2004
  end-page: 230
  article-title: Seasonal TOC export from seven boreal catchments in northern Sweden
  publication-title: Aquatic Sciences
– volume: 13
  start-page: 1079
  year: 2007
  end-page: 1088
  article-title: Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions
  publication-title: Global Change Biology
– volume: 84
  start-page: 301
  year: 1994
  end-page: 324
  article-title: A review of the export of carbon in river water – fluxes and processes
  publication-title: Environmental Pollution
– volume: 59
  start-page: 826
  year: 2007
  end-page: 837
  article-title: CO exchange of a sedge fen in southern Finland – the impact of a drought period
  publication-title: Tellus B
– year: 1991
– volume: 25
  start-page: 290
  year: 1997
  end-page: 295
  article-title: Nitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N‐deposition
  publication-title: Biology and Fertility of Soils
– volume: 81
  start-page: 615
  year: 1993
  end-page: 625
  article-title: Methane and carbon‐dioxide concentrations in bogs and fens – with special reference to the effects of the botanical composition of the peat
  publication-title: Journal of Ecology
– ident: e_1_2_7_48_1
  doi: 10.2307/2261660
– ident: e_1_2_7_44_1
  doi: 10.1029/96GB00365
– ident: e_1_2_7_62_1
  doi: 10.1029/2006JG000306
– ident: e_1_2_7_36_1
  doi: 10.1016/S1352-2310(02)00771-9
– ident: e_1_2_7_28_1
  doi: 10.1007/s002160050832
– ident: e_1_2_7_29_1
  doi: 10.2307/1941811
– ident: e_1_2_7_39_1
  doi: 10.1006/qres.1996.0008
– ident: e_1_2_7_8_1
  doi: 10.1029/2002JD002055
– ident: e_1_2_7_3_1
– ident: e_1_2_7_46_1
  doi: 10.1023/A:1005408719297
– ident: e_1_2_7_56_1
– ident: e_1_2_7_30_1
  doi: 10.1029/2000GB001356
– ident: e_1_2_7_5_1
  doi: 10.1007/BF00992977
– ident: e_1_2_7_40_1
  doi: 10.1029/97GB01961
– ident: e_1_2_7_25_1
  doi: 10.1016/B978-0-12-505580-2.50006-4
– ident: e_1_2_7_2_1
  doi: 10.1029/2006 JG000381
– ident: e_1_2_7_20_1
  doi: 10.2307/3547057
– ident: e_1_2_7_21_1
  doi: 10.1046/j.1365-2427.2001.00751.x
– ident: e_1_2_7_18_1
  doi: 10.1016/S0269-7491(01)00267-6
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1600-0889.2007.00261.x
– ident: e_1_2_7_24_1
– ident: e_1_2_7_45_1
  doi: 10.1029/96GB01666
– ident: e_1_2_7_66_1
  doi: 10.1177/095968369600600204
– start-page: 97
  volume-title: Wetlands of Canada
  year: 1988
  ident: e_1_2_7_71_1
– ident: e_1_2_7_35_1
  doi: 10.1016/j.agrformet.2006.03.018
– ident: e_1_2_7_26_1
  doi: 10.1029/2006GL025754
– ident: e_1_2_7_12_1
  doi: 10.1029/2007GL031797
– ident: e_1_2_7_69_1
  doi: 10.1016/0304-4203(74)90015-2
– ident: e_1_2_7_51_1
  doi: 10.1038/361520a0
– ident: e_1_2_7_68_1
– ident: e_1_2_7_52_1
  doi: 10.1016/0169-5347(94)90152-X
– ident: e_1_2_7_31_1
  doi: 10.1890/0012-9658(2001)082[1982:EOTANA]2.0.CO;2
– ident: e_1_2_7_22_1
  doi: 10.1007/BF00002641
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1365-2486.2007.01339.x
– ident: e_1_2_7_15_1
  doi: 10.1029/2006JG000218
– ident: e_1_2_7_59_1
  doi: 10.1002/hyp.3360050407
– ident: e_1_2_7_70_1
  doi: 10.1016/S0048-9697(03)00226-2
– ident: e_1_2_7_9_1
  doi: 10.1029/2004GL020315
– ident: e_1_2_7_47_1
  doi: 10.1016/j.agrformet.2003.12.003
– ident: e_1_2_7_60_1
  doi: 10.1111/j.1365-2486.2006.01292.x
– ident: e_1_2_7_37_1
  doi: 10.1029/97JD01176
– ident: e_1_2_7_64_1
  doi: 10.1029/2005GL024731
– ident: e_1_2_7_19_1
  doi: 10.1098/rstb.1984.0002
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1365-2486.2003.00721.x
– start-page: 541
  volume-title: Dissolved Matter Transport in a Discharge Area
  year: 1994
  ident: e_1_2_7_33_1
– ident: e_1_2_7_41_1
  doi: 10.1080/15230430.2001.12003417
– volume-title: Aquatic Chemistry
  year: 1996
  ident: e_1_2_7_65_1
– ident: e_1_2_7_58_1
  doi: 10.1029/98GB02636
– ident: e_1_2_7_17_1
  doi: 10.1016/S0929-1393(98)00146-2
– volume-title: Sveriges Klimat
  year: 1974
  ident: e_1_2_7_6_1
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1365-2486.1996.tb00071.x
– ident: e_1_2_7_55_1
– ident: e_1_2_7_49_1
  doi: 10.1029/2001JD900119
– ident: e_1_2_7_13_1
  doi: 10.1029/2003GB002058
– ident: e_1_2_7_63_1
  doi: 10.1007/BF00164332
– ident: e_1_2_7_67_1
  doi: 10.1191/0959683602hl522rp
– ident: e_1_2_7_7_1
  doi: 10.1016/S0065-2504(08)60018-5
– ident: e_1_2_7_38_1
  doi: 10.1007/s003740050317
– ident: e_1_2_7_54_1
  doi: 10.1177/095968369700700304
– ident: e_1_2_7_42_1
  doi: 10.1029/2002GB001983
– ident: e_1_2_7_50_1
  doi: 10.1029/97GB02732
– ident: e_1_2_7_53_1
  doi: 10.2307/1941992
– ident: e_1_2_7_61_1
– ident: e_1_2_7_23_1
  doi: 10.1672/0277-5212(2000)020[0113:SAYODC]2.0.CO;2
– ident: e_1_2_7_43_1
  doi: 10.1007/s00027-004-0700-2
– ident: e_1_2_7_11_1
  doi: 10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2
– ident: e_1_2_7_14_1
  doi: 10.1002/hyp.5209
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1600-0889.2007.00309.x
– ident: e_1_2_7_34_1
  doi: 10.1016/0269-7491(94)90142-2
– ident: e_1_2_7_16_1
  doi: 10.1007/s10021-005-0105-7
SSID ssj0003206
Score 2.4379754
Snippet Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous...
SourceID swepub
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2317
SubjectTerms Accumulation
Animal and plant ecology
Animal, plant and microbial ecology
Atmosphere
Biological and medical sciences
boreal mire
Carbon
carbon balance
Carbon dioxide
Carbon sinks
Climate change
Dissolved inorganic carbon
DOC
Earth and Related Environmental Sciences
Eddy covariance
Emissions
Fundamental and applied biological sciences. Psychology
General aspects
Geovetenskap och relaterad miljövetenskap
Holocene
Measurement techniques
Meteorologi och atmosfärsvetenskap
Meteorology and Atmospheric Sciences
Methane
Natural Sciences
Naturgeografi
Naturvetenskap
NECB
NEE
net ecosystem exchange
Organic carbon
peat
Physical Geography
Runoff
Seasons
Snow
Sphagnum
streams
Sweden
TOC
Wetlands
Title Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes
URI https://api.istex.fr/ark:/67375/WNG-TF5RZH65-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2008.01654.x
https://www.proquest.com/docview/205227591
https://www.proquest.com/docview/48059656
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-11365
https://gup.ub.gu.se/publication/81930
Volume 14
WOSCitedRecordID wos000259360500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQFyQuPBYqQqH4AL0tyst5HMu22x7oClUtVL1YjuNso6bJKtmg5dYLdyT-YX8JM042bKQ9VIibk3gsxf48_pyM5yPkvQJUuEmEE0mJkesobyRiEwaE2UJJ8IeOH2uxCX86DS4uwi9t_BOehWnyQ3Qf3HBmaH-NE1xEVX-S6wgtN_DakEg8mPMR-OQAz1jBRmxwcDo5_9z5ZcfWSpuWw1xwPpbTj-vZ2FZvsRpgvy8xeFJU0H9JI3zRZ6ZNttE-0dUr1eTp_3zHZ-RJy1fpfgOw5-SByofkUaNg-WNItg__HpSDaq2nqIbEOAE2XpS6Gt2j4ywFaqyvXpCf6ymxqBRlVORUSFnftFpiNIVrCugEFkuLLJ0Vi7KYX6WS3uBZxQJAr8ulone3v6EqRqFgzBPABMr5NdXS59hmK4VBgZtTkWV0fHf7K8nqpapekvPJ4dn4eNTKQYyk54XuyBMBi6IgkMg7YNflJgI8eZwkfmhbSoLLj4VgZmIlzA5F5MdeKC0hpOMp2_NF4myTrbzI1StCmc0kw3tmGLjCDSIntlVs-pHDZKh80yD-aty5bHOlo2RHxtf2TDAyHEemVfLEkeFLg1id5bzJF3IPmz0Nrc5AlNcYb-cz_m16xM8m7PTyGAxPDLLbw15nAMgObdj7GmRnBUbe-qIKHgLH9lloGeRd9xScCP4ZErkq6oq7AaowMc8gHxoEdy1j9vGD9Os-L8oZBxhw1ABim-vN6jmHW7OaV4oD03SgHy831Gs2lrzNZnXFM20wX_tMzX3p4A97yYG-J9z1TY9HrhVzWH8UEijbFJFBPD137t3P_Gj8CUuv_9Vwhzy2V-mQrTdka1HW6i15KL8v0qrcbf3NH0-kg8g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZQC4ILPwrTwmDzAXYryi_HyXF064poKzR1MO1iOY7TVcuaKmlRue3CHYn_cH8J7yVpaKUeJsTNSfwixf78_Nl5fh8h7zSgwo1DHEhatl1He20ZmdAhzJZagT90eFSITfDh0L-4CL5UckB4FqbMD1FvuOHIKPw1DnDckN4c5UWIlut7VUwknsz5AISy6XoO9xukeXzWPe_XjtmxC6lNy2EueB_L2Qzs2fqujdmqiQ2_xOhJmUMDxqXyxSY1LdONbjLdYqrqPvuvH_mcPK0YKz0qIfaCPNDTFnlUalj-aJGdk79H5aBa5SvyFjEGwMfTrKhGD2knmQA5Lq5ekp_rSbGoklmYTqlUanFTqYnRCVxTwCfwWJomk3E6z9LZ1UTRGzytmALsi3Km6d3tb6iKcSgY9QRAgfL0mhbi5_jOSgyDAjunMklo5-72V5wsljp_Rc67J6NOr10JQrSV5wVu25M-C0PfV8g8YN3lxhJ8eRTHPLAtrcDpR1IyM7ZiZgcy5JEXKEtK5Xja9riMnR3SmKZTvUsos5lieM8MfFe6fuhEto5MHjpMBZqbBuGrjheqypaOoh2JWFs1Qc8I7JlKyxN7RiwNYtWWszJjyD1sDgts1QYyu8aIO87Et-GpGHXZ2WUPDAcG2d8AX20A0A5sWP0aZG-FRlF5oxweAsvmLLAMclA_BTeC_4bkVKeLXLg-6jAxzyDvSwjXb8b848eTr0cizcYCYCBQBYhtrzdezATcGi9ErgVwTQfa8XJLvXJpKap8VlciKQxmaxvVgisHf9krAQQ-Fi43PRG6ViRgBtJIoWxThgbxisFz73YWp52PWHr9r4YH5HFvNOiL_qfh5z3yxF4lR7bekMY8W-i35KH6Pp_k2X7lfP4AYYeHuA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9MwGLZQC4gLH4WJMNh8gN2K8mHn4zjadUNs1TRtMO1iOY7TRcuSKmnQuO3CHYl_uF_CaycNjdTDhLg5iV9LsR-_fpy8fh-E3ktABYlDNZEkHxJHukMemTAg1OZSgD90vEiLTXjTqX9-Hhw3ckDqLEydH6L94KZmhvbXaoLLeRR3Z7kO0SK-28REqpM5H4FQ9gkNKOmh_vhkcnbYOmbH1lKblkMJeB_L6Qb2rG2rs1r1VcffqOhJXkIHxrXyRZea1ulGu0xXL1WTZ__1JZ-jpw1jxbs1xF6gBzIboEe1huWPAdrY-3tUDqo1vqIcIOMI-Hhe6Gp4B4_SBMixvnqJfq4mxcKCF2GeYS5Edd2oieEErjHgE3gsztNkli-KfH6ZCHytTivmAHtdLiS-u_0NVVUciop6AqBAObvCWvxctdmIYWBg55inKR7d3f6K0-pGlq_Q2WTvdHQwbAQhhsJ1AzJ0uU_D0PeFYh6w7yIxB18exbEX2JYU4PQjzqkZWzG1Ax56kRsIi3PhuNJ2PR47G6iX5Zl8jTC1qaDqnhn4hBM_dCJbRqYXOlQE0jMN5C0HnokmW7oS7UjZyq4JRoapkWm0PNXIsBsDWa3lvM4Ycg-bHY2t1oAXVyrizqPs23SfnU7oycUBGB4ZaKsDvtYAoB3YsPs10OYSjazxRiU8BJbt0cAy0Hb7FNyI-jfEM5lXJSO-0mGiroE-1BBuW1b5x8fJ112WFzMGMGBKBYiurzer5gxuzSpWSgZc04F-vFhTr95asiaf1SVLtcF85UM184SjftkLBgQ-ZsQzXRYSK2KwAklFoWyThwZy9eS5dz-z_dEnVXrzr4bb6PHxeMIOP0-_bKIn9jI3svUW9RZFJd-hh-L7IimLrcb3_AEmJ4cz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contemporary+carbon+accumulation+in+a+boreal+oligotrophic+minerogenic+mire+-+a+significant+sink+after+accounting+for+all+C-fluxes&rft.jtitle=Global+change+biology&rft.au=Nilsson%2C+M.&rft.au=Sagerfors%2C+J.&rft.au=Buffam%2C+I.&rft.au=Laudon%2C+H.&rft.date=2008-10-01&rft.issn=1354-1013&rft.volume=14&rft.issue=10&rft.spage=2317&rft_id=info:doi/10.1111%2Fj.1365-2486.2008.01654.x&rft.externalDocID=oai_gup_ub_gu_se_81930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon