Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes
Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C‐exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires...
Gespeichert in:
| Veröffentlicht in: | Global change biology Jg. 14; H. 10; S. 2317 - 2332 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford, UK
Blackwell Publishing Ltd
01.10.2008
Blackwell |
| Schlagworte: | |
| ISSN: | 1354-1013, 1365-2486, 1365-2486 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C‐exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11′N, 19°33′E). Data on the following fluxes were collected: land–atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C‐concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m−2 yr−1 during 2004 and 20±3.4 g C m−2 yr−1 during 2005. This could be partitioned into an annual surface–atmosphere CO2 net uptake of 55±1.9 g C m−2 yr−1 during 2004 and 48±1.6 g C m−2 yr−1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m−2 yr−1 during 2004 and 86 g C m−2 yr−1 during 2005, and a net loss season with a loss of 37 g C m−2 yr−1 during 2004 and 38 g C m−2 yr−1 during 2005. Of the annual net CO2‐C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC≫CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C‐sink, with carbon accumulation rates comparable to the long‐term Holocene C‐accumulation, and higher than the C‐accumulation during the late Holocene in the region. |
|---|---|
| AbstractList | Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64 degrees 11'N, 19 degrees 33'E). Data on the following fluxes were collected: land-atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27 +/- 3.4 (+/- SD) g C m(-2) yr(-1) during 2004 and 20 +/- 3.4 g C m(-2) yr(-1) during 2005. This could be partitioned into an annual surface-atmosphere CO2 net uptake of 55 +/- 1.9 g C m(-2) yr(-1) during 2004 and 48 +/- 1.6 g C m(-2) yr(-1) during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m(-2) yr(-1) during 2004 and 86 g C m(-2) yr(-1) during 2005, and a net loss season with a loss of 37 g C m(-2) yr(-1) during 2004 and 38 g C m(-2) yr(-1) during 2005. Of the annual net CO2-C uptake, 37% and 31% was lost through runoff (with runoff TOC > DIC >> CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region. Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64 degrees 11'N, 19 degrees 33'E). Data on the following fluxes were collected: land-atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27 +/- 3.4 ( +/-SD) g C m-2 yr-1 during 2004 and 20 +/- 3.4 g C m-2 yr-1 during 2005. This could be partitioned into an annual surface-atmosphere CO2 net uptake of 55 +/- 1.9 g C m-2 yr-1 during 2004 and 48 +/- 1.6 g C m-2 yr-1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m-2 yr-1 during 2004 and 86 g C m-2 yr-1 during 2005, and a net loss season with a loss of 37 g C m-2 yr-1 during 2004 and 38 g C m-2 yr-1 during 2005. Of the annual net CO2-C uptake, 37% and 31% was lost through runoff (with runoff TOC > DIC [much greater than] CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region. [PUBLICATION ABSTRACT] Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11'N, 19°33'E). Data on the following fluxes were collected: land–atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m−2 yr−1 during 2004 and 20±3.4 g C m−2 yr−1 during 2005. This could be partitioned into an annual surface–atmosphere CO2 net uptake of 55±1.9 g C m−2 yr−1 during 2004 and 48±1.6 g C m−2 yr−1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m−2 yr−1 during 2004 and 86 g C m−2 yr−1 during 2005, and a net loss season with a loss of 37 g C m−2 yr−1 during 2004 and 38 g C m−2 yr−1 during 2005. Of the annual net CO2-C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC≫CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64 degrees 11'N, 19 degrees 33'E). Data on the following fluxes were collected: land-atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27 +/- 3.4 (+/- SD) g C m(-2) yr(-1) during 2004 and 20 +/- 3.4 g C m(-2) yr(-1) during 2005. This could be partitioned into an annual surface-atmosphere CO2 net uptake of 55 +/- 1.9 g C m(-2) yr(-1) during 2004 and 48 +/- 1.6 g C m(-2) yr(-1) during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m(-2) yr(-1) during 2004 and 86 g C m(-2) yr(-1) during 2005, and a net loss season with a loss of 37 g C m(-2) yr(-1) during 2004 and 38 g C m(-2) yr(-1) during 2005. Of the annual net CO2-C uptake, 37% and 31% was lost through runoff (with runoff TOC > DIC >> CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region. Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C‐exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11′N, 19°33′E). Data on the following fluxes were collected: land–atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C‐concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m−2 yr−1 during 2004 and 20±3.4 g C m−2 yr−1 during 2005. This could be partitioned into an annual surface–atmosphere CO2 net uptake of 55±1.9 g C m−2 yr−1 during 2004 and 48±1.6 g C m−2 yr−1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m−2 yr−1 during 2004 and 86 g C m−2 yr−1 during 2005, and a net loss season with a loss of 37 g C m−2 yr−1 during 2004 and 38 g C m−2 yr−1 during 2005. Of the annual net CO2‐C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC≫CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C‐sink, with carbon accumulation rates comparable to the long‐term Holocene C‐accumulation, and higher than the C‐accumulation during the late Holocene in the region. Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C‐exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11′N, 19°33′E). Data on the following fluxes were collected: land–atmosphere CO 2 exchange (continuous Eddy covariance measurements) and CH 4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH 4 through stream water runoff (continuous discharge measurements and regular C‐concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m −2 yr −1 during 2004 and 20±3.4 g C m −2 yr −1 during 2005. This could be partitioned into an annual surface–atmosphere CO 2 net uptake of 55±1.9 g C m −2 yr −1 during 2004 and 48±1.6 g C m −2 yr −1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m −2 yr −1 during 2004 and 86 g C m −2 yr −1 during 2005, and a net loss season with a loss of 37 g C m −2 yr −1 during 2004 and 38 g C m −2 yr −1 during 2005. Of the annual net CO 2 ‐C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC≫CH 4 ) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C‐sink, with carbon accumulation rates comparable to the long‐term Holocene C‐accumulation, and higher than the C‐accumulation during the late Holocene in the region. Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11'N, 19°33'E). Data on the following fluxes were collected: land-atmosphere CO₂ exchange (continuous Eddy covariance measurements) and CH₄ exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH₄ through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m⁻² yr⁻¹ during 2004 and 20±3.4 g C m⁻² yr⁻¹ during 2005. This could be partitioned into an annual surface-atmosphere CO₂ net uptake of 55±1.9 g C m⁻² yr⁻¹ during 2004 and 48±1.6 g C m⁻² yr⁻¹ during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m⁻² yr⁻¹ during 2004 and 86 g C m⁻² yr⁻¹ during 2005, and a net loss season with a loss of 37 g C m⁻² yr⁻¹ during 2004 and 38 g C m⁻² yr⁻¹ during 2005. Of the annual net CO₂-C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC[double greater-than sign]CH₄) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region. |
| Author | NILSSON, MATS BUFFAM, ISHI ERIKSSON, TOBIAS KLEMEDTSSON, LEIF WESLIEN, PER LINDROTH, ANDERS GRELLE, ACHIM LAUDON, HJALMAR SAGERFORS, JÖRGEN |
| Author_xml | – sequence: 1 givenname: MATS surname: NILSSON fullname: NILSSON, MATS organization: Department of Forest Ecology & Management, Swedish University of Agricultural Sciences, Umeå, Sweden – sequence: 2 givenname: JÖRGEN surname: SAGERFORS fullname: SAGERFORS, JÖRGEN organization: Department of Forest Ecology & Management, Swedish University of Agricultural Sciences, Umeå, Sweden – sequence: 3 givenname: ISHI surname: BUFFAM fullname: BUFFAM, ISHI organization: Department of Forest Ecology & Management, Swedish University of Agricultural Sciences, Umeå, Sweden – sequence: 4 givenname: HJALMAR surname: LAUDON fullname: LAUDON, HJALMAR organization: Department of Ecology and Environmental Science, University of Umeå, Umeå, Sweden – sequence: 5 givenname: TOBIAS surname: ERIKSSON fullname: ERIKSSON, TOBIAS organization: Department of Forest Ecology & Management, Swedish University of Agricultural Sciences, Umeå, Sweden – sequence: 6 givenname: ACHIM surname: GRELLE fullname: GRELLE, ACHIM organization: Department for Ecology and Environmental Research, Swedish University of Agricultural Sciences, Uppsala, Sweden – sequence: 7 givenname: LEIF surname: KLEMEDTSSON fullname: KLEMEDTSSON, LEIF organization: Department of Plant and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden – sequence: 8 givenname: PER surname: WESLIEN fullname: WESLIEN, PER organization: Department of Plant and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden – sequence: 9 givenname: ANDERS surname: LINDROTH fullname: LINDROTH, ANDERS organization: Department of Physical Geography and Ecosystems Analysis, University of Lund, Lund, Sweden |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20692287$$DView record in Pascal Francis https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-11365$$DView record from Swedish Publication Index (Umeå universitet) https://gup.ub.gu.se/publication/81930$$DView record from Swedish Publication Index (Göteborgs universitet) |
| BookMark | eNqNksFu1DAQhiNUJNrCO0RIcCKL7cROcgCpXWiLVEBCBSQuo4nXTr312oudqNsjb46zW-2hEqi5ZCb5_n884znKDpx3KstySmY0PW-XM1oKXrCqETNGSDMjVPBqtnmSHe5_HEwxrwpKaPksO4pxSQgpGRGH2Z-5d4NarX3AcJdLDJ13OUo5rkaLg0mJSXne-aDQ5t6a3g_Br6-NzFfGqeB75bZxUHmRwGh6Z7SR6IYUu5sc9aDC5OhHNxjX59qn1Np8Xmg7blR8nj3VaKN6cf8-zr6ffbyaXxSXX88_zU8uCylEWxUCG951TSMJYUwIUWmsBVtoXbeMKkkrsUDkRFPNWYtdvRCtpIiyFIqJGnV5nOHON96q9djBOphV6hk8GkjtD2ghqKgwyGuwI0QFibKpk2kKEWpZVoJwCWXLNFQ1EdBVdAFNyRRrW8IIdqnGm3_W6Mc1pE_91rqhbUn-i38wP07Ahx7STQCdrjLhr3f4Ovjfo4oDrEyUylp0yo8RqobwVnCRwJcPwKUfg0vTBUY4YzVvaYJe3UMYJVod0EkT92dI29Ey1tSJa3acDD7GoPQeoQSmFYQlTMeDadNgWkHYriBskvT9A6k0w3aeQ0BjH2Pwbmdwa6y6e3RhOJ-fTlHSFzu9iYPa7PUYbkDUZc3h55dzuDrj335dJJ_P5V9yDQme |
| CitedBy_id | crossref_primary_10_1007_s10533_010_9452_3 crossref_primary_10_5194_bg_12_1881_2015 crossref_primary_10_1002_wat2_1147 crossref_primary_10_1016_j_scitotenv_2009_12_025 crossref_primary_10_1139_a11_014 crossref_primary_10_1016_j_agrformet_2016_08_023 crossref_primary_10_5194_bg_19_1321_2022 crossref_primary_10_1007_s00484_015_1074_y crossref_primary_10_1016_j_scitotenv_2024_178197 crossref_primary_10_1002_eco_2536 crossref_primary_10_1007_s10533_017_0324_y crossref_primary_10_1038_s41598_018_26147_4 crossref_primary_10_1016_j_ecolind_2015_11_033 crossref_primary_10_1002_2013JG002365 crossref_primary_10_1016_j_scitotenv_2021_150457 crossref_primary_10_5194_hess_27_3935_2023 crossref_primary_10_1016_j_scitotenv_2015_10_149 crossref_primary_10_1002_2016JG003697 crossref_primary_10_1111_gcb_13308 crossref_primary_10_1016_j_ecolind_2022_108847 crossref_primary_10_1002_ece3_2469 crossref_primary_10_1007_s10021_021_00639_3 crossref_primary_10_1111_j_1365_2389_2012_01467_x crossref_primary_10_5194_acp_16_8281_2016 crossref_primary_10_5194_bg_15_3603_2018 crossref_primary_10_1007_s10533_010_9534_2 crossref_primary_10_1111_j_1749_8198_2008_00212_x crossref_primary_10_5194_bg_8_901_2011 crossref_primary_10_1111_j_1365_2486_2009_02083_x crossref_primary_10_1080_00103624_2014_989049 crossref_primary_10_1016_j_geoderma_2008_11_007 crossref_primary_10_1111_nph_12792 crossref_primary_10_5194_bg_8_779_2011 crossref_primary_10_1016_j_agrformet_2014_01_017 crossref_primary_10_1016_j_agrformet_2018_07_002 crossref_primary_10_1029_2021GL096616 crossref_primary_10_1016_j_soilbio_2019_06_006 crossref_primary_10_1029_2019WR026336 crossref_primary_10_5194_bg_20_737_2023 crossref_primary_10_1111_j_1365_2486_2010_02313_x crossref_primary_10_1007_s10533_012_9798_9 crossref_primary_10_5194_bg_21_5745_2024 crossref_primary_10_3389_fevo_2022_953349 crossref_primary_10_1002_2016JG003357 crossref_primary_10_1111_gcb_13325 crossref_primary_10_1002_2016WR019186 crossref_primary_10_2136_sssaj2016_12_0422 crossref_primary_10_1038_s41586_021_03523_1 crossref_primary_10_1002_hyp_13921 crossref_primary_10_5194_bg_13_2637_2016 crossref_primary_10_1016_j_rse_2023_113875 crossref_primary_10_1007_s13157_012_0324_6 crossref_primary_10_1016_j_scitotenv_2018_05_192 crossref_primary_10_1038_s41467_020_18027_1 crossref_primary_10_1016_j_geoderma_2018_03_006 crossref_primary_10_1111_j_1365_2486_2009_02104_x crossref_primary_10_1029_2012JG001978 crossref_primary_10_5194_hess_27_213_2023 crossref_primary_10_3390_w9100806 crossref_primary_10_1016_j_jhydrol_2018_05_041 crossref_primary_10_1016_j_jhydrol_2025_134282 crossref_primary_10_1016_j_scitotenv_2019_02_239 crossref_primary_10_1111_j_1365_2486_2010_02180_x crossref_primary_10_1111_gcb_13621 crossref_primary_10_1002_hyp_10710 crossref_primary_10_1002_esp_2239 crossref_primary_10_1007_s10533_015_0170_8 crossref_primary_10_24057_2071_9388_2018_77 crossref_primary_10_1080_07055900_2012_730980 crossref_primary_10_1007_s13157_018_0999_4 crossref_primary_10_1029_2019JD031429 crossref_primary_10_1007_s00248_010_9751_1 crossref_primary_10_1016_j_palaeo_2013_12_019 crossref_primary_10_1007_s00027_015_0464_x crossref_primary_10_1002_jgrg_20028 crossref_primary_10_1016_j_scitotenv_2011_07_063 crossref_primary_10_1016_j_scitotenv_2023_168450 crossref_primary_10_1016_j_agrformet_2016_01_012 crossref_primary_10_1016_j_agee_2018_09_020 crossref_primary_10_1016_j_fmre_2022_09_024 crossref_primary_10_1029_2020AV000163 crossref_primary_10_1111_gcb_14983 crossref_primary_10_1029_2021JD034671 crossref_primary_10_1016_j_scitotenv_2015_03_102 crossref_primary_10_1038_s41467_021_27059_0 crossref_primary_10_1002_2014JG002814 crossref_primary_10_5194_bg_9_4071_2012 crossref_primary_10_1016_j_jhydrol_2009_03_031 crossref_primary_10_1002_eco_1501 crossref_primary_10_2478_oszn_2019_0009 crossref_primary_10_1016_j_scitotenv_2010_09_009 crossref_primary_10_1111_gcbb_12334 crossref_primary_10_1016_j_jhydrol_2015_04_061 crossref_primary_10_1088_1748_9326_10_6_065006 crossref_primary_10_5194_bg_10_2885_2013 crossref_primary_10_3389_feart_2021_631368 crossref_primary_10_1007_s10533_020_00668_5 crossref_primary_10_1111_gcb_13520 crossref_primary_10_1177_0959683616675936 crossref_primary_10_1007_s13157_023_01751_x crossref_primary_10_1016_j_jhydrol_2024_131729 crossref_primary_10_1016_j_atmosenv_2014_02_034 crossref_primary_10_1029_2023GL105205 crossref_primary_10_1111_j_1365_2486_2009_02032_x crossref_primary_10_1111_j_1365_2486_2012_02666_x crossref_primary_10_5194_bg_14_4563_2017 crossref_primary_10_1016_j_scitotenv_2021_147848 crossref_primary_10_3389_fenvs_2021_730106 crossref_primary_10_1007_s10021_016_0034_7 crossref_primary_10_1016_j_catena_2017_09_010 crossref_primary_10_1016_j_jenvrad_2012_06_010 crossref_primary_10_1111_gcb_14292 crossref_primary_10_3390_rs10111784 crossref_primary_10_1111_gcb_12672 crossref_primary_10_1029_2019JG005142 crossref_primary_10_1029_2020JG006235 crossref_primary_10_1007_s13157_017_0888_2 crossref_primary_10_1111_gcb_12864 crossref_primary_10_1007_s10533_014_9977_y crossref_primary_10_1016_j_agrformet_2018_06_015 crossref_primary_10_1016_j_soilbio_2017_01_008 crossref_primary_10_1088_1748_9326_10_3_035002 crossref_primary_10_1111_gcb_12745 crossref_primary_10_1007_s10750_011_0729_x crossref_primary_10_5194_bg_7_2901_2010 crossref_primary_10_1038_nature11818 crossref_primary_10_1016_j_agrformet_2011_04_001 crossref_primary_10_1038_s41467_023_37232_2 crossref_primary_10_1029_2010GB003975 crossref_primary_10_1016_j_orggeochem_2017_06_019 crossref_primary_10_5194_bg_16_713_2019 crossref_primary_10_1002_2013JG002527 crossref_primary_10_1016_j_agrformet_2019_04_010 crossref_primary_10_1007_s10021_023_00836_2 crossref_primary_10_1002_2017JG004312 crossref_primary_10_1007_s10021_011_9452_8 crossref_primary_10_1016_j_ecoleng_2019_05_016 crossref_primary_10_1029_2019JG005156 crossref_primary_10_1002_2013GB004782 crossref_primary_10_1007_s13280_025_02220_x crossref_primary_10_1016_j_rse_2010_01_005 crossref_primary_10_1111_gcbb_12308 crossref_primary_10_1029_2021JG006435 crossref_primary_10_1111_j_1365_2486_2009_02016_x crossref_primary_10_1016_j_agee_2020_106984 crossref_primary_10_1111_j_1600_0706_2008_17129_x crossref_primary_10_1007_s11273_014_9402_2 crossref_primary_10_1111_j_1749_8198_2011_00420_x crossref_primary_10_1007_s00027_015_0447_y crossref_primary_10_1002_wcc_862 crossref_primary_10_1016_j_jhydrol_2018_04_050 crossref_primary_10_1007_s10021_017_0133_0 crossref_primary_10_1016_j_atmosenv_2016_09_036 crossref_primary_10_1016_j_scitotenv_2016_12_104 crossref_primary_10_3389_feart_2023_1263418 crossref_primary_10_5194_bg_10_7739_2013 crossref_primary_10_3389_fenvs_2025_1544586 crossref_primary_10_3390_rs13040818 crossref_primary_10_1007_s10533_016_0182_z crossref_primary_10_1657_1938_4246_46_1_103 crossref_primary_10_1007_s10021_025_00991_8 crossref_primary_10_1029_2023JF007324 crossref_primary_10_1111_sum_12164 crossref_primary_10_1016_j_agrformet_2023_109361 crossref_primary_10_1007_s10021_018_0284_7 crossref_primary_10_1111_j_1365_2486_2010_02378_x crossref_primary_10_1088_1748_9326_8_3_035051 crossref_primary_10_5194_bg_12_5291_2015 crossref_primary_10_1002_2013JG002423 crossref_primary_10_1111_gcb_12760 crossref_primary_10_1002_eco_2114 crossref_primary_10_1021_es900416h crossref_primary_10_1029_2017JG003996 crossref_primary_10_5194_bg_7_2711_2010 crossref_primary_10_1080_20964129_2020_1806113 crossref_primary_10_1016_j_jhydrol_2014_11_019 crossref_primary_10_1002_hyp_8106 crossref_primary_10_1007_s00374_018_1279_4 crossref_primary_10_1016_j_jhydrol_2014_11_014 crossref_primary_10_1088_1748_9326_10_9_094019 crossref_primary_10_2136_vzj2011_0039 crossref_primary_10_1016_j_scitotenv_2019_134632 crossref_primary_10_1002_esp_3193 crossref_primary_10_1002_2013JG002410 crossref_primary_10_1016_j_jhydrol_2015_10_002 crossref_primary_10_1111_gcb_14449 crossref_primary_10_1134_S1064229319090060 crossref_primary_10_1111_gcb_13119 crossref_primary_10_1016_j_earscirev_2016_12_001 crossref_primary_10_1016_j_agrformet_2023_109696 crossref_primary_10_1002_2017JG004083 crossref_primary_10_1002_ecy_1627 crossref_primary_10_1016_j_atmosenv_2017_10_025 crossref_primary_10_1007_s10021_014_9838_5 crossref_primary_10_1016_j_agrformet_2014_03_003 crossref_primary_10_1029_2011EO120001 crossref_primary_10_1029_2019JG005090 crossref_primary_10_1186_s13021_018_0105_5 crossref_primary_10_1016_j_agrformet_2024_110280 crossref_primary_10_1016_j_scitotenv_2017_09_103 crossref_primary_10_3390_f2010243 crossref_primary_10_1007_s10533_016_0230_8 crossref_primary_10_1088_1748_9326_10_2_025004 crossref_primary_10_1002_2016JG003375 crossref_primary_10_1016_j_ecoleng_2018_06_021 crossref_primary_10_1016_j_foreco_2012_10_008 crossref_primary_10_1038_s41467_025_59387_w crossref_primary_10_1016_j_ecolmodel_2024_110633 crossref_primary_10_1002_hyp_14350 crossref_primary_10_1088_1748_9326_add607 crossref_primary_10_1016_j_scitotenv_2021_147552 crossref_primary_10_1016_j_agrformet_2020_108021 crossref_primary_10_1016_j_scitotenv_2012_06_032 crossref_primary_10_1016_j_ecoleng_2012_06_027 crossref_primary_10_1111_gcb_13815 crossref_primary_10_1007_s10533_014_0060_5 crossref_primary_10_1002_hyp_13158 crossref_primary_10_1016_j_quascirev_2016_03_011 crossref_primary_10_3389_feart_2023_1194749 crossref_primary_10_1029_2020JG005654 crossref_primary_10_1016_j_scitotenv_2017_11_252 crossref_primary_10_5194_bg_18_5811_2021 crossref_primary_10_1371_journal_pone_0189692 crossref_primary_10_1016_j_agrformet_2017_09_010 crossref_primary_10_1016_j_scitotenv_2018_07_390 crossref_primary_10_5194_bg_12_1799_2015 crossref_primary_10_1007_s10021_014_9815_z crossref_primary_10_1002_grl_50281 crossref_primary_10_1080_07420528_2024_2365825 crossref_primary_10_5194_bg_14_2571_2017 crossref_primary_10_5194_soil_6_299_2020 crossref_primary_10_1016_j_ecolind_2019_105831 crossref_primary_10_1111_j_1365_2486_2009_02097_x crossref_primary_10_1111_j_1365_2486_2009_02119_x crossref_primary_10_1002_esp_2174 crossref_primary_10_5194_essd_11_1263_2019 crossref_primary_10_1016_j_agrformet_2015_01_001 crossref_primary_10_1111_j_1475_2743_2010_00274_x crossref_primary_10_1139_b11_068 crossref_primary_10_1016_j_geoderma_2018_09_019 crossref_primary_10_1029_2022JG007003 crossref_primary_10_1016_j_scitotenv_2025_179526 crossref_primary_10_1007_s10533_023_01093_0 crossref_primary_10_1016_j_catena_2018_10_011 crossref_primary_10_1016_j_foreco_2023_121020 crossref_primary_10_1016_j_agrformet_2024_110179 |
| Cites_doi | 10.2307/2261660 10.1029/96GB00365 10.1029/2006JG000306 10.1016/S1352-2310(02)00771-9 10.1007/s002160050832 10.2307/1941811 10.1006/qres.1996.0008 10.1029/2002JD002055 10.1023/A:1005408719297 10.1029/2000GB001356 10.1007/BF00992977 10.1029/97GB01961 10.1016/B978-0-12-505580-2.50006-4 10.1029/2006 JG000381 10.2307/3547057 10.1046/j.1365-2427.2001.00751.x 10.1016/S0269-7491(01)00267-6 10.1111/j.1600-0889.2007.00261.x 10.1029/96GB01666 10.1177/095968369600600204 10.1016/j.agrformet.2006.03.018 10.1029/2006GL025754 10.1029/2007GL031797 10.1016/0304-4203(74)90015-2 10.1038/361520a0 10.1016/0169-5347(94)90152-X 10.1890/0012-9658(2001)082[1982:EOTANA]2.0.CO;2 10.1007/BF00002641 10.1111/j.1365-2486.2007.01339.x 10.1029/2006JG000218 10.1002/hyp.3360050407 10.1016/S0048-9697(03)00226-2 10.1029/2004GL020315 10.1016/j.agrformet.2003.12.003 10.1111/j.1365-2486.2006.01292.x 10.1029/97JD01176 10.1029/2005GL024731 10.1098/rstb.1984.0002 10.1111/j.1365-2486.2003.00721.x 10.1080/15230430.2001.12003417 10.1029/98GB02636 10.1016/S0929-1393(98)00146-2 10.1111/j.1365-2486.1996.tb00071.x 10.1029/2001JD900119 10.1029/2003GB002058 10.1007/BF00164332 10.1191/0959683602hl522rp 10.1016/S0065-2504(08)60018-5 10.1007/s003740050317 10.1177/095968369700700304 10.1029/2002GB001983 10.1029/97GB02732 10.2307/1941992 10.1672/0277-5212(2000)020[0113:SAYODC]2.0.CO;2 10.1007/s00027-004-0700-2 10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2 10.1002/hyp.5209 10.1111/j.1600-0889.2007.00309.x 10.1016/0269-7491(94)90142-2 10.1007/s10021-005-0105-7 |
| ContentType | Journal Article |
| Copyright | 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd 2008 INIST-CNRS Journal compilation © 2008 Blackwell Publishing |
| Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd – notice: 2008 INIST-CNRS – notice: Journal compilation © 2008 Blackwell Publishing |
| CorporateAuthor | Lunds universitet Naturvetenskapliga fakulteten Faculty of Science Lund University Dept of Physical Geography and Ecosystem Science Institutionen för naturgeografi och ekosystemvetenskap |
| CorporateAuthor_xml | – name: Dept of Physical Geography and Ecosystem Science – name: Naturvetenskapliga fakulteten – name: Lund University – name: Faculty of Science – name: Lunds universitet – name: Institutionen för naturgeografi och ekosystemvetenskap |
| DBID | BSCLL AAYXX CITATION IQODW 7SN 7UA C1K F1W H97 L.G 7S9 L.6 ADTPV AOWAS D93 F1U D95 |
| DOI | 10.1111/j.1365-2486.2008.01654.x |
| DatabaseName | Istex CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Umeå universitet SWEPUB Göteborgs universitet SWEPUB Lunds universitet |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences |
| EISSN | 1365-2486 |
| EndPage | 2332 |
| ExternalDocumentID | oai_portal_research_lu_se_publications_7c34605c_392f_4706_b41d_832e299020ab oai_gup_ub_gu_se_81930 oai_DiVA_org_umu_11365 1559631481 20692287 10_1111_j_1365_2486_2008_01654_x GCB1654 ark_67375_WNG_TF5RZH65_M |
| Genre | article Feature |
| GeographicLocations | Sweden |
| GeographicLocations_xml | – name: Sweden |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT ALUQN AAYXX CITATION O8X IQODW 7SN 7UA C1K F1W H97 L.G 7S9 L.6 ADTPV AOWAS D93 F1U D95 |
| ID | FETCH-LOGICAL-c6694-6a85bb88c00226664fa762dff7921ec146daa50f1f529ab7d69c1aac36e267af3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 299 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259360500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 1365-2486 |
| IngestDate | Wed Dec 10 12:45:30 EST 2025 Tue Nov 04 16:55:03 EST 2025 Tue Nov 04 16:38:09 EST 2025 Sun Nov 09 09:24:48 EST 2025 Mon Nov 10 02:48:02 EST 2025 Mon Jul 21 09:13:33 EDT 2025 Sat Nov 29 06:02:11 EST 2025 Tue Nov 18 22:10:14 EST 2025 Sun Sep 21 06:19:30 EDT 2025 Tue Nov 11 03:33:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Methane Bryophyta TOC Trophic status Sphagnobrya Peat Carbon balance Peat bog Sphagnum NEE Dissolved organic carbon NECB Eddy covariance Runoff Stagnant water boreal mire DOC Biological accumulation Oligotrophy |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6694-6a85bb88c00226664fa762dff7921ec146daa50f1f529ab7d69c1aac36e267af3 |
| Notes | ArticleID:GCB1654 istex:BBB0D37C6F9593725D8E8D1C4CE4B5845D424A65 ark:/67375/WNG-TF5RZH65-M SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 205227591 |
| PQPubID | 30327 |
| PageCount | 16 |
| ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_7c34605c_392f_4706_b41d_832e299020ab swepub_primary_oai_gup_ub_gu_se_81930 swepub_primary_oai_DiVA_org_umu_11365 proquest_miscellaneous_48059656 proquest_journals_205227591 pascalfrancis_primary_20692287 crossref_primary_10_1111_j_1365_2486_2008_01654_x crossref_citationtrail_10_1111_j_1365_2486_2008_01654_x wiley_primary_10_1111_j_1365_2486_2008_01654_x_GCB1654 istex_primary_ark_67375_WNG_TF5RZH65_M |
| PublicationCentury | 2000 |
| PublicationDate | October 2008 |
| PublicationDateYYYYMMDD | 2008-10-01 |
| PublicationDate_xml | – month: 10 year: 2008 text: October 2008 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationTitle | Global change biology |
| PublicationYear | 2008 |
| Publisher | Blackwell Publishing Ltd Blackwell |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
| References | Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland - application to boreal and subarctic regions. Holocene, 12, 69-80. Billet MF, Garnett MH, Harvey F (2007) UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers. Geophysical Research Letters, 34, L23401, doi: DOI: 10.1029/2007GL031797. Clymo RS (1984) The limits to peat bog growth. Philosophical Transactions of the Royal Society of London Series B, 303, 605-654. Laudon H, Kohler S, Buffam I (2004) Seasonal TOC export from seven boreal catchments in northern Sweden. Aquatic Sciences, 66, 223-230. Belyea LR, Baird AJ (2006) Beyond "the limits to peat bog growth": cross-scale feedback in peatland development. Ecological Monographs, 76, 299-322. Oechel WC, Vourlitis GL, Hastings SJ, Bochkarev SA (1995) Change in Arctic CO2 flux over 2 decades - effects of climate-change at Barrow, Alaska. Ecological Applications, 5, 846-855. Bishop K, Seibert J, Koher S, Laudon H (2004) Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrological Processes, 18, 185-189. Klinger LF, Taylor JA, Franzén LG (1996) The potential role of peatland dynamics in ice-age initiation. Quaternary Research, 45, 89-92. Jarvis PG, Massheder JM, Hale SE, Moncrieff JB, Rayment M, Scott SL (1997) Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. Journal of Geophysical Research - Atmospheres, 102, 28953-28966. Algesten G, Sobek S, Bergstrom AK, Agren A, Tranvik LJ, Jansson M (2004) Role of lakes for organic carbon cycling in the boreal zone. Global Change Biology, 10, 141-147. Dawson JJC, Billett MF, Hope D (2001) Diurnal variations in the carbon chemistry of two acidic peatland streams in north-east Scotland. Freshwater Biology, 46, 1309-1322. Greco S, Baldocchi DD (1996) Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biology, 2, 183-197. Roulet N, Hardill S, Comer N (1991) Continuous measurement of the depth of water-table (inundation) in wetlands with fluctuating surfaces. Hydrological Processes, 5, 399-403. Ångström A, Liljequist GH, Wallén CC (1974) Sveriges Klimat, 3rd edn. Generalstabens litografiska anstalt 1974, Stockholm, Sweden (in Swedish). Granberg G, Ottosson-Lofvenius M, Grip H, Sundh I, Nilsson M (2001a) Effect of climatic variability from 1980 to 1997 on simulated methane emission from a boreal mixed mire in northern Sweden. Global Biogeochemical Cycles, 15, 977-991. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2, 203-215. Chapin FS III, Woodwell GM, Randerson JT et al. (2006) Reconciling carbon-cycle concepts terminology, and methods. Ecosystema, 9, 1041-1050. Tolonen K, Turunen J (1996) Accumulation rates of carbon in mires in Finland and implications for climate change. Holocene, 6, 171-178. Oechel WC, Vourlitis GL (1994) The effects of climate-change on land atmosphere feedbacks in arctic tundra regions. Trends in Ecology & Evolution, 9, 324-329. Frolking S, Roulet NT (2007) Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Global Change Biology, 13, 1079-1088. Oldfield F, Thompson R, Crooks PRJ et al. (1997) Radiocarbon dating of a recent high-latitude peat profile: Stor Amyran, northern Sweden. Holocene, 7, 283-290. Worrall F, Reed M, Warburton J, Burt T (2003) Carbon budget for a British upland peat catchment. Science of the Total Environment, 312, 133-146. Molot LA, Dillon PJ (1996) Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere. Global Biogeochemical Cycles, 10, 483-492. Stumm W, Morgan JM (1996) Aquatic Chemistry, 3rd edn. John Wiley & Sons, New York, USA. Ågren A, Buffam I, Jansson M, Laudon H (2007) Importance of seasonality and small streams for the landscape regulation of DOC export. Journal of Geophysical Research - Biogeosciences, 112, G03003, doi: DOI: 10.1029/2006 JG000381. Aurela M, Riutta T, Laurila T et al. (2007) CO2 exchange of a sedge fen in southern Finland - the impact of a drought period. Tellus B, 59, 826-837. Christensen TR, Jonasson S, Callaghan TV, Havstrom M (1999) On the potential CO2 releases from tundra environments in a changing climate. Applied Soil Ecology, 11, 127-134. Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water - fluxes and processes. Environmental Pollution, 84, 301-324. Buffam I, Laudon H, Temnerud J, Mörth CM, Bishop K (2007) Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. Journal of Geophysical Research - Biogeosciences, 112, G01022, doi: DOI: 10.1029/2006JG000218. Morgenstern K, Black TA, Humphreys ER et al. (2004) Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño La Niña cycle. Agricultural and Forest Meteorology, 123, 201-219. Schotanus P, Nieuwstadt FTM, Debruin HAR (1983) Temperature measurements with a sonic anemometer and its application to heat and moisture fluxes. Boundary Layer Meteorology, 26, 81-93. Lafleur PM, Griffis TJ, Rouse WR (2001) Interannual variability in net ecosystem CO2 exchange at the arctic treeline. Arctic Antarctic and Alpine Research, 33, 149-157. Aubinet M, Grelle A, Ibrom A et al. (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research, 30, 113-175. Clair TA, Arp P, Moore TR, Dalva M, Meng FR (2002) Gaseous carbon dioxide and methane, as well as dissolved organic carbon losses from a small temperate wetland under a changing climate. Environmental Pollution, 116, S143-S148. Rivers JS, Siegel DI, Chasar LS, Chanton JP, Glaser PH, Roulet NT, McKenzie JM (1998) A stochastic appraisal of the annual carbon budget of a large circumboreal peatland, Rapid River Watershed, northern Minnesota. Global Biogeochemical Cycles, 12, 715-727. Kortelainen P, Saukkonen S, Mattsson T (1997) Leaching of nitrogen from forested catchments in Finland. Global Biogeochemical Cycles, 11, 627-638. Nilsson M, Bohlin E (1993) Methane and carbon-dioxide concentrations in bogs and fens - with special reference to the effects of the botanical composition of the peat. Journal of Ecology, 81, 615-625. Alm J, Saarnio S, Nykanen H, Silvola J, Martikainen PJ (1999) Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry, 44, 163-186. Grip H (1994) Dissolved Matter Transport in a Discharge Area. International Symposium on Forest Hydrology, Tokyo, Japan pp. 541-548. Lafleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR (2003) Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochemical Cycles, 17, 1036, doi: DOI: 10.1029/2002GB001983. Nilsson M, Mikkela C, Sundh I, Granberg G, Svensson BH, Ranneby B (2001) Methane emission from Swedish mires: national and regional budgets and dependence on mire vegetation. Journal of Geophysical Research - Atmospheres, 106, 20847-20860. Gelbrecht J, Fait M, Dittrich M, Steinberg C (1998) Use of GC and equilibrium calculations of CO2 saturation index to indicate whether freshwater bodies in north-eastern Germany are net sources or sinks for atmospheric CO2. Fresenius Journal of Analytical Chemistry, 361, 47-53. Roulet N, Lafleur M, Richard PJH, Moore T, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology, 13, 397-411. Aurela M, Laurila T, Tuovinen JP (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophysical Research Letters, 31, L16119, doi: DOI: 10.1029/2004GL020315. Elder JF, Rybicki NB, Carter V, Weintraub V (2000) Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of peatland. Wetlands, 20, 113-125. Clymo RS, Turunen J, Tolonen T (1998) Carbon accumulation in peat. OIKOS, 81, 368-388. Sagerfors J, Lindroth A, Grelle A, Klemedtsson L, Weslien P, Nilsson M (2008) Annual CO2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere. Journal of Geophysical Research - Biogeosciences, 113, G01001, doi: DOI: 10.1029/2006JG000306. Finlay J, Neff J, Zimov S, Davydova A, Davydov S (2006) Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: implications for characterization and flux of river DOC. Geophysical Research Letters, 33, L10401, doi: DOI: 10.1029/2006GL025754. Rinne J, Riutta T, Pihlatie M et al. (2007) Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus Series B - Chemical and Physical Meteorology, 59, 449-457. Billett MF, Palmer SM, Hope D et al. (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biogeochemical Cycles, 18, 1024, doi: DOI: 10.1029/2003GB002058. Aurela M, Laurila T, Tuovinen JP (2002) Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. Journal of Geophysical Research - Atmospheres, 107, 4607, doi: DOI: 10.1029/2002JD002055. Melloh RA, Crill PM (1996) Winter methane dynamics in a temperate peatland. Global Biogeochemical Cycles, 10, 247-254. Gorham E (1991) Northern peatlands - role in the carbon-cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195. Nykänen H, Alm J, Silvola J, Tolonen K, Martikainen PJ (1998) Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles, 12, 53-69. Dise NB (1992) Winter fluxes of methane from Minnesota peatlands. Biogeochemistry, 17, 71-83. Sottocornola M, Kiely G (2005) An Atlantic blanket bog is a modest CO2 sink. Geophysical Research Letters, 32, L23 2004; 123 2004; 66 2006; 76 2006; 33 2002; 12 1992; 17 1999; 44 1974 1993; 361 2002; 116 1998; 81 2003; 17 1998; 40 2003; 312 2001; 46 2007; 34 1974; 2 2001; 106 1997; 7 1997; 102 2004; 31 1997; 11 2002; 107 1999; 11 1984 2005; 32 1983 2008; 113 1996; 2 1983; 26 1998; 12 1996; 6 1998; 361 1988 1991; 1 1993; 81 1997; 25 2006; 9 1984; 303 2000; 20 2003; 37 2007 1996 2006 1994 2005 1991 2007; 13 2001b; 82 1996; 10 1994; 84 1995; 5 2007; 59 1991; 5 2004; 10 1994; 9 2007; 112 2004; 18 2000; 30 2006; 140 2001; 33 2001a; 15 1996; 45 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 Ångström A (e_1_2_7_6_1) 1974 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_54_1 Stumm W (e_1_2_7_65_1) 1996 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Grip H (e_1_2_7_33_1) 1994 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Zoltai SC (e_1_2_7_71_1) 1988 |
| References_xml | – reference: Jarvis PG, Massheder JM, Hale SE, Moncrieff JB, Rayment M, Scott SL (1997) Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. Journal of Geophysical Research - Atmospheres, 102, 28953-28966. – reference: Frolking S, Roulet NT (2007) Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Global Change Biology, 13, 1079-1088. – reference: Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water - fluxes and processes. Environmental Pollution, 84, 301-324. – reference: Kortelainen P, Saukkonen S, Mattsson T (1997) Leaching of nitrogen from forested catchments in Finland. Global Biogeochemical Cycles, 11, 627-638. – reference: Christensen TR, Jonasson S, Callaghan TV, Havstrom M (1999) On the potential CO2 releases from tundra environments in a changing climate. Applied Soil Ecology, 11, 127-134. – reference: Clymo RS, Turunen J, Tolonen T (1998) Carbon accumulation in peat. OIKOS, 81, 368-388. – reference: Belyea LR, Baird AJ (2006) Beyond "the limits to peat bog growth": cross-scale feedback in peatland development. Ecological Monographs, 76, 299-322. – reference: Rinne J, Riutta T, Pihlatie M et al. (2007) Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus Series B - Chemical and Physical Meteorology, 59, 449-457. – reference: Roulet N, Hardill S, Comer N (1991) Continuous measurement of the depth of water-table (inundation) in wetlands with fluctuating surfaces. Hydrological Processes, 5, 399-403. – reference: Stumm W, Morgan JM (1996) Aquatic Chemistry, 3rd edn. John Wiley & Sons, New York, USA. – reference: Klinger LF, Taylor JA, Franzén LG (1996) The potential role of peatland dynamics in ice-age initiation. Quaternary Research, 45, 89-92. – reference: Dise NB (1992) Winter fluxes of methane from Minnesota peatlands. Biogeochemistry, 17, 71-83. – reference: Finlay J, Neff J, Zimov S, Davydova A, Davydov S (2006) Snowmelt dominance of dissolved organic carbon in high-latitude watersheds: implications for characterization and flux of river DOC. Geophysical Research Letters, 33, L10401, doi: DOI: 10.1029/2006GL025754. – reference: Elder JF, Rybicki NB, Carter V, Weintraub V (2000) Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of peatland. Wetlands, 20, 113-125. – reference: Dawson JJC, Billett MF, Hope D (2001) Diurnal variations in the carbon chemistry of two acidic peatland streams in north-east Scotland. Freshwater Biology, 46, 1309-1322. – reference: Aurela M, Laurila T, Tuovinen JP (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophysical Research Letters, 31, L16119, doi: DOI: 10.1029/2004GL020315. – reference: Billett MF, Palmer SM, Hope D et al. (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biogeochemical Cycles, 18, 1024, doi: DOI: 10.1029/2003GB002058. – reference: Sagerfors J, Lindroth A, Grelle A, Klemedtsson L, Weslien P, Nilsson M (2008) Annual CO2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere. Journal of Geophysical Research - Biogeosciences, 113, G01001, doi: DOI: 10.1029/2006JG000306. – reference: Alm J, Saarnio S, Nykanen H, Silvola J, Martikainen PJ (1999) Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry, 44, 163-186. – reference: Algesten G, Sobek S, Bergstrom AK, Agren A, Tranvik LJ, Jansson M (2004) Role of lakes for organic carbon cycling in the boreal zone. Global Change Biology, 10, 141-147. – reference: Klemedtsson L, Klemedtsson AK, Moldan F, Weslien P (1997) Nitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N-deposition. Biology and Fertility of Soils, 25, 290-295. – reference: Billet MF, Garnett MH, Harvey F (2007) UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers. Geophysical Research Letters, 34, L23401, doi: DOI: 10.1029/2007GL031797. – reference: Oechel WC, Vourlitis GL (1994) The effects of climate-change on land atmosphere feedbacks in arctic tundra regions. Trends in Ecology & Evolution, 9, 324-329. – reference: Morgenstern K, Black TA, Humphreys ER et al. (2004) Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño La Niña cycle. Agricultural and Forest Meteorology, 123, 201-219. – reference: Granberg G, Ottosson-Lofvenius M, Grip H, Sundh I, Nilsson M (2001a) Effect of climatic variability from 1980 to 1997 on simulated methane emission from a boreal mixed mire in northern Sweden. Global Biogeochemical Cycles, 15, 977-991. – reference: Lafleur PM, Griffis TJ, Rouse WR (2001) Interannual variability in net ecosystem CO2 exchange at the arctic treeline. Arctic Antarctic and Alpine Research, 33, 149-157. – reference: Melloh RA, Crill PM (1996) Winter methane dynamics in a temperate peatland. Global Biogeochemical Cycles, 10, 247-254. – reference: Moore TR, Roulet NT, Waddington JM (1998) Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Climatic Change, 40, 229-245. – reference: Nilsson M, Mikkela C, Sundh I, Granberg G, Svensson BH, Ranneby B (2001) Methane emission from Swedish mires: national and regional budgets and dependence on mire vegetation. Journal of Geophysical Research - Atmospheres, 106, 20847-20860. – reference: Lafleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR (2003) Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochemical Cycles, 17, 1036, doi: DOI: 10.1029/2002GB001983. – reference: Nilsson M, Bohlin E (1993) Methane and carbon-dioxide concentrations in bogs and fens - with special reference to the effects of the botanical composition of the peat. Journal of Ecology, 81, 615-625. – reference: Aubinet M, Grelle A, Ibrom A et al. (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research, 30, 113-175. – reference: Clair TA, Arp P, Moore TR, Dalva M, Meng FR (2002) Gaseous carbon dioxide and methane, as well as dissolved organic carbon losses from a small temperate wetland under a changing climate. Environmental Pollution, 116, S143-S148. – reference: Sottocornola M, Kiely G (2005) An Atlantic blanket bog is a modest CO2 sink. Geophysical Research Letters, 32, L23804, doi: DOI: 10.1029/2005GL024731. – reference: Aurela M, Laurila T, Tuovinen JP (2002) Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. Journal of Geophysical Research - Atmospheres, 107, 4607, doi: DOI: 10.1029/2002JD002055. – reference: Aurela M, Riutta T, Laurila T et al. (2007) CO2 exchange of a sedge fen in southern Finland - the impact of a drought period. Tellus B, 59, 826-837. – reference: Huttunen JT, Nykanen H, Turunen J, Martikainen PJ (2003) Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia. Atmospheric Environment, 37, 147-151. – reference: Oechel WC, Hastings SJ, Vourlitis GL, Jenkins M, Riechers G, Grulke N (1993) Recent change of arctic tundra ecosystems from a net carbon-dioxide sink to a source. Nature, 361, 520-523. – reference: Clymo RS (1984) The limits to peat bog growth. Philosophical Transactions of the Royal Society of London Series B, 303, 605-654. – reference: Chapin FS III, Woodwell GM, Randerson JT et al. (2006) Reconciling carbon-cycle concepts terminology, and methods. Ecosystema, 9, 1041-1050. – reference: Gelbrecht J, Fait M, Dittrich M, Steinberg C (1998) Use of GC and equilibrium calculations of CO2 saturation index to indicate whether freshwater bodies in north-eastern Germany are net sources or sinks for atmospheric CO2. Fresenius Journal of Analytical Chemistry, 361, 47-53. – reference: Gorham E (1991) Northern peatlands - role in the carbon-cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195. – reference: Rivers JS, Siegel DI, Chasar LS, Chanton JP, Glaser PH, Roulet NT, McKenzie JM (1998) A stochastic appraisal of the annual carbon budget of a large circumboreal peatland, Rapid River Watershed, northern Minnesota. Global Biogeochemical Cycles, 12, 715-727. – reference: Laudon H, Kohler S, Buffam I (2004) Seasonal TOC export from seven boreal catchments in northern Sweden. Aquatic Sciences, 66, 223-230. – reference: Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2, 203-215. – reference: Ångström A, Liljequist GH, Wallén CC (1974) Sveriges Klimat, 3rd edn. Generalstabens litografiska anstalt 1974, Stockholm, Sweden (in Swedish). – reference: Granberg G, Sundh I, Svensson BH, Nilsson M (2001b) Effects of temperature, and nitrogen and sulfur deposition, on methane emission from a boreal mire. Ecology, 82, 1982-1998. – reference: Schotanus P, Nieuwstadt FTM, Debruin HAR (1983) Temperature measurements with a sonic anemometer and its application to heat and moisture fluxes. Boundary Layer Meteorology, 26, 81-93. – reference: Tolonen K, Turunen J (1996) Accumulation rates of carbon in mires in Finland and implications for climate change. Holocene, 6, 171-178. – reference: Ågren A, Buffam I, Jansson M, Laudon H (2007) Importance of seasonality and small streams for the landscape regulation of DOC export. Journal of Geophysical Research - Biogeosciences, 112, G03003, doi: DOI: 10.1029/2006 JG000381. – reference: Greco S, Baldocchi DD (1996) Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biology, 2, 183-197. – reference: Roulet N, Lafleur M, Richard PJH, Moore T, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology, 13, 397-411. – reference: Bishop K, Seibert J, Koher S, Laudon H (2004) Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrological Processes, 18, 185-189. – reference: Humphreys ER, Black TA, Morgenstern K, Cai TB, Drewitt GB, Nesic Z, Trofymow JA (2006) Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting. Agricultural and Forest Meteorology, 140, 6-22. – reference: Buffam I, Laudon H, Temnerud J, Mörth CM, Bishop K (2007) Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. Journal of Geophysical Research - Biogeosciences, 112, G01022, doi: DOI: 10.1029/2006JG000218. – reference: Oldfield F, Thompson R, Crooks PRJ et al. (1997) Radiocarbon dating of a recent high-latitude peat profile: Stor Amyran, northern Sweden. Holocene, 7, 283-290. – reference: Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland - application to boreal and subarctic regions. Holocene, 12, 69-80. – reference: Molot LA, Dillon PJ (1996) Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere. Global Biogeochemical Cycles, 10, 483-492. – reference: Nykänen H, Alm J, Silvola J, Tolonen K, Martikainen PJ (1998) Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles, 12, 53-69. – reference: Oechel WC, Vourlitis GL, Hastings SJ, Bochkarev SA (1995) Change in Arctic CO2 flux over 2 decades - effects of climate-change at Barrow, Alaska. Ecological Applications, 5, 846-855. – reference: Worrall F, Reed M, Warburton J, Burt T (2003) Carbon budget for a British upland peat catchment. Science of the Total Environment, 312, 133-146. – reference: Grip H (1994) Dissolved Matter Transport in a Discharge Area. International Symposium on Forest Hydrology, Tokyo, Japan pp. 541-548. – volume: 10 start-page: 483 year: 1996 end-page: 492 article-title: Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere publication-title: Global Biogeochemical Cycles – volume: 1 start-page: 182 year: 1991 end-page: 195 article-title: Northern peatlands – role in the carbon‐cycle and probable responses to climatic warming publication-title: Ecological Applications – volume: 102 start-page: 28953 year: 1997 end-page: 28966 article-title: Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest publication-title: Journal of Geophysical Research – Atmospheres – year: 2005 – volume: 123 start-page: 201 year: 2004 end-page: 219 article-title: Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas‐fir forest during an El Niño La Niña cycle publication-title: Agricultural and Forest Meteorology – volume: 33 start-page: 149 year: 2001 end-page: 157 article-title: Interannual variability in net ecosystem CO exchange at the arctic treeline publication-title: Arctic Antarctic and Alpine Research – volume: 113 start-page: G01001 year: 2008 article-title: Annual CO exchange between a nutrient‐poor, minerotrophic, boreal mire and the atmosphere publication-title: Journal of Geophysical Research – Biogeosciences – volume: 37 start-page: 147 year: 2003 end-page: 151 article-title: Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia publication-title: Atmospheric Environment – volume: 11 start-page: 127 year: 1999 end-page: 134 article-title: On the potential CO releases from tundra environments in a changing climate publication-title: Applied Soil Ecology – volume: 12 start-page: 53 year: 1998 end-page: 69 article-title: Methane fluxes on boreal peatlands of different fertility and the effect of long‐term experimental lowering of the water table on flux rates publication-title: Global Biogeochemical Cycles – volume: 9 start-page: 324 year: 1994 end-page: 329 article-title: The effects of climate‐change on land atmosphere feedbacks in arctic tundra regions publication-title: Trends in Ecology & Evolution – volume: 13 start-page: 397 year: 2007 end-page: 411 article-title: Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland publication-title: Global Change Biology – volume: 31 start-page: L16119 year: 2004 article-title: The timing of snow melt controls the annual CO balance in a subarctic fen publication-title: Geophysical Research Letters – start-page: 97 year: 1988 end-page: 154 – volume: 107 start-page: 4607 year: 2002 article-title: Annual CO balance of a subarctic fen in northern Europe publication-title: Journal of Geophysical Research – Atmospheres – volume: 10 start-page: 247 year: 1996 end-page: 254 article-title: Winter methane dynamics in a temperate peatland publication-title: Global Biogeochemical Cycles – volume: 2 start-page: 203 year: 1974 end-page: 215 article-title: Carbon dioxide in water and seawater publication-title: Marine Chemistry – volume: 82 start-page: 1982 year: 2001b end-page: 1998 article-title: Effects of temperature, and nitrogen and sulfur deposition, on methane emission from a boreal mire publication-title: Ecology – volume: 312 start-page: 133 year: 2003 end-page: 146 article-title: Carbon budget for a British upland peat catchment publication-title: Science of the Total Environment – volume: 112 start-page: G01022 year: 2007 article-title: Landscape‐scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network publication-title: Journal of Geophysical Research – Biogeosciences – volume: 20 start-page: 113 year: 2000 end-page: 125 article-title: Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of peatland publication-title: Wetlands – volume: 33 start-page: L10401 year: 2006 article-title: Snowmelt dominance of dissolved organic carbon in high‐latitude watersheds publication-title: Geophysical Research Letters – volume: 361 start-page: 47 year: 1998 end-page: 53 article-title: Use of GC and equilibrium calculations of CO saturation index to indicate whether freshwater bodies in north‐eastern Germany are net sources or sinks for atmospheric CO publication-title: Fresenius Journal of Analytical Chemistry – volume: 34 start-page: L23401 year: 2007 article-title: UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers publication-title: Geophysical Research Letters – volume: 5 start-page: 846 year: 1995 end-page: 855 article-title: Change in Arctic CO flux over 2 decades – effects of climate‐change at Barrow, Alaska publication-title: Ecological Applications – volume: 18 start-page: 1024 year: 2004 article-title: Linking land–atmosphere–stream carbon fluxes in a lowland peatland system publication-title: Global Biogeochemical Cycles – volume: 106 start-page: 20847 year: 2001 end-page: 20860 article-title: Methane emission from Swedish mires publication-title: Journal of Geophysical Research – Atmospheres – volume: 10 start-page: 141 year: 2004 end-page: 147 article-title: Role of lakes for organic carbon cycling in the boreal zone publication-title: Global Change Biology – volume: 12 start-page: 69 year: 2002 end-page: 80 article-title: Estimating carbon accumulation rates of undrained mires in Finland – application to boreal and subarctic regions publication-title: Holocene – volume: 46 start-page: 1309 year: 2001 end-page: 1322 article-title: Diurnal variations in the carbon chemistry of two acidic peatland streams in north‐east Scotland publication-title: Freshwater Biology – volume: 32 start-page: L23804 year: 2005 article-title: An Atlantic blanket bog is a modest CO sink publication-title: Geophysical Research Letters – volume: 30 start-page: 113 year: 2000 end-page: 175 article-title: Estimates of the annual net carbon and water exchange of forests publication-title: Advances in Ecological Research – volume: 12 start-page: 715 year: 1998 end-page: 727 article-title: A stochastic appraisal of the annual carbon budget of a large circumboreal peatland, Rapid River Watershed, northern Minnesota publication-title: Global Biogeochemical Cycles – volume: 40 start-page: 229 year: 1998 end-page: 245 article-title: Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands publication-title: Climatic Change – year: 1983 – volume: 59 start-page: 449 year: 2007 end-page: 457 article-title: Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique publication-title: Tellus Series B – Chemical and Physical Meteorology – volume: 76 start-page: 299 year: 2006 end-page: 322 article-title: Beyond “the limits to peat bog growth” publication-title: Ecological Monographs – volume: 2 start-page: 183 year: 1996 end-page: 197 article-title: Seasonal variations of CO and water vapour exchange rates over a temperate deciduous forest publication-title: Global Change Biology – volume: 44 start-page: 163 year: 1999 end-page: 186 article-title: Winter CO , CH and N O fluxes on some natural and drained boreal peatlands publication-title: Biogeochemistry – volume: 11 start-page: 627 year: 1997 end-page: 638 article-title: Leaching of nitrogen from forested catchments in Finland publication-title: Global Biogeochemical Cycles – volume: 7 start-page: 283 year: 1997 end-page: 290 article-title: Radiocarbon dating of a recent high‐latitude peat profile publication-title: Holocene – volume: 45 start-page: 89 year: 1996 end-page: 92 article-title: The potential role of peatland dynamics in ice‐age initiation publication-title: Quaternary Research – volume: 5 start-page: 399 year: 1991 end-page: 403 article-title: Continuous measurement of the depth of water‐table (inundation) in wetlands with fluctuating surfaces publication-title: Hydrological Processes – year: 2007 – volume: 18 start-page: 185 year: 2004 end-page: 189 article-title: Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry publication-title: Hydrological Processes – year: 1996 – volume: 140 start-page: 6 year: 2006 end-page: 22 article-title: Carbon dioxide fluxes in coastal Douglas‐fir stands at different stages of development after clearcut harvesting publication-title: Agricultural and Forest Meteorology – volume: 26 start-page: 81 year: 1983 end-page: 93 article-title: Temperature measurements with a sonic anemometer and its application to heat and moisture fluxes publication-title: Boundary Layer Meteorology – volume: 15 start-page: 977 year: 2001a end-page: 991 article-title: Effect of climatic variability from 1980 to 1997 on simulated methane emission from a boreal mixed mire in northern Sweden publication-title: Global Biogeochemical Cycles – volume: 17 start-page: 1036 year: 2003 article-title: Interannual variability in the peatland‐atmosphere carbon dioxide exchange at an ombrotrophic bog publication-title: Global Biogeochemical Cycles – volume: 361 start-page: 520 year: 1993 end-page: 523 article-title: Recent change of arctic tundra ecosystems from a net carbon‐dioxide sink to a source publication-title: Nature – volume: 116 start-page: S143 year: 2002 end-page: S148 article-title: Gaseous carbon dioxide and methane, as well as dissolved organic carbon losses from a small temperate wetland under a changing climate publication-title: Environmental Pollution – start-page: 541 year: 1994 end-page: 548 – volume: 9 start-page: 1041 year: 2006 end-page: 1050 article-title: Reconciling carbon‐cycle concepts terminology, and methods publication-title: Ecosystema – volume: 17 start-page: 71 year: 1992 end-page: 83 article-title: Winter fluxes of methane from Minnesota peatlands publication-title: Biogeochemistry – volume: 81 start-page: 368 year: 1998 end-page: 388 article-title: Carbon accumulation in peat publication-title: OIKOS – start-page: 11 year: 1984 end-page: 117 – year: 2006 – volume: 303 start-page: 605 year: 1984 end-page: 654 article-title: The limits to peat bog growth publication-title: Philosophical Transactions of the Royal Society of London Series B – volume: 6 start-page: 171 year: 1996 end-page: 178 article-title: Accumulation rates of carbon in mires in Finland and implications for climate change publication-title: Holocene – year: 1974 – volume: 112 start-page: G03003 year: 2007 article-title: Importance of seasonality and small streams for the landscape regulation of DOC export publication-title: Journal of Geophysical Research – Biogeosciences – volume: 66 start-page: 223 year: 2004 end-page: 230 article-title: Seasonal TOC export from seven boreal catchments in northern Sweden publication-title: Aquatic Sciences – volume: 13 start-page: 1079 year: 2007 end-page: 1088 article-title: Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions publication-title: Global Change Biology – volume: 84 start-page: 301 year: 1994 end-page: 324 article-title: A review of the export of carbon in river water – fluxes and processes publication-title: Environmental Pollution – volume: 59 start-page: 826 year: 2007 end-page: 837 article-title: CO exchange of a sedge fen in southern Finland – the impact of a drought period publication-title: Tellus B – year: 1991 – volume: 25 start-page: 290 year: 1997 end-page: 295 article-title: Nitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N‐deposition publication-title: Biology and Fertility of Soils – volume: 81 start-page: 615 year: 1993 end-page: 625 article-title: Methane and carbon‐dioxide concentrations in bogs and fens – with special reference to the effects of the botanical composition of the peat publication-title: Journal of Ecology – ident: e_1_2_7_48_1 doi: 10.2307/2261660 – ident: e_1_2_7_44_1 doi: 10.1029/96GB00365 – ident: e_1_2_7_62_1 doi: 10.1029/2006JG000306 – ident: e_1_2_7_36_1 doi: 10.1016/S1352-2310(02)00771-9 – ident: e_1_2_7_28_1 doi: 10.1007/s002160050832 – ident: e_1_2_7_29_1 doi: 10.2307/1941811 – ident: e_1_2_7_39_1 doi: 10.1006/qres.1996.0008 – ident: e_1_2_7_8_1 doi: 10.1029/2002JD002055 – ident: e_1_2_7_3_1 – ident: e_1_2_7_46_1 doi: 10.1023/A:1005408719297 – ident: e_1_2_7_56_1 – ident: e_1_2_7_30_1 doi: 10.1029/2000GB001356 – ident: e_1_2_7_5_1 doi: 10.1007/BF00992977 – ident: e_1_2_7_40_1 doi: 10.1029/97GB01961 – ident: e_1_2_7_25_1 doi: 10.1016/B978-0-12-505580-2.50006-4 – ident: e_1_2_7_2_1 doi: 10.1029/2006 JG000381 – ident: e_1_2_7_20_1 doi: 10.2307/3547057 – ident: e_1_2_7_21_1 doi: 10.1046/j.1365-2427.2001.00751.x – ident: e_1_2_7_18_1 doi: 10.1016/S0269-7491(01)00267-6 – ident: e_1_2_7_57_1 doi: 10.1111/j.1600-0889.2007.00261.x – ident: e_1_2_7_24_1 – ident: e_1_2_7_45_1 doi: 10.1029/96GB01666 – ident: e_1_2_7_66_1 doi: 10.1177/095968369600600204 – start-page: 97 volume-title: Wetlands of Canada year: 1988 ident: e_1_2_7_71_1 – ident: e_1_2_7_35_1 doi: 10.1016/j.agrformet.2006.03.018 – ident: e_1_2_7_26_1 doi: 10.1029/2006GL025754 – ident: e_1_2_7_12_1 doi: 10.1029/2007GL031797 – ident: e_1_2_7_69_1 doi: 10.1016/0304-4203(74)90015-2 – ident: e_1_2_7_51_1 doi: 10.1038/361520a0 – ident: e_1_2_7_68_1 – ident: e_1_2_7_52_1 doi: 10.1016/0169-5347(94)90152-X – ident: e_1_2_7_31_1 doi: 10.1890/0012-9658(2001)082[1982:EOTANA]2.0.CO;2 – ident: e_1_2_7_22_1 doi: 10.1007/BF00002641 – ident: e_1_2_7_27_1 doi: 10.1111/j.1365-2486.2007.01339.x – ident: e_1_2_7_15_1 doi: 10.1029/2006JG000218 – ident: e_1_2_7_59_1 doi: 10.1002/hyp.3360050407 – ident: e_1_2_7_70_1 doi: 10.1016/S0048-9697(03)00226-2 – ident: e_1_2_7_9_1 doi: 10.1029/2004GL020315 – ident: e_1_2_7_47_1 doi: 10.1016/j.agrformet.2003.12.003 – ident: e_1_2_7_60_1 doi: 10.1111/j.1365-2486.2006.01292.x – ident: e_1_2_7_37_1 doi: 10.1029/97JD01176 – ident: e_1_2_7_64_1 doi: 10.1029/2005GL024731 – ident: e_1_2_7_19_1 doi: 10.1098/rstb.1984.0002 – ident: e_1_2_7_4_1 doi: 10.1111/j.1365-2486.2003.00721.x – start-page: 541 volume-title: Dissolved Matter Transport in a Discharge Area year: 1994 ident: e_1_2_7_33_1 – ident: e_1_2_7_41_1 doi: 10.1080/15230430.2001.12003417 – volume-title: Aquatic Chemistry year: 1996 ident: e_1_2_7_65_1 – ident: e_1_2_7_58_1 doi: 10.1029/98GB02636 – ident: e_1_2_7_17_1 doi: 10.1016/S0929-1393(98)00146-2 – volume-title: Sveriges Klimat year: 1974 ident: e_1_2_7_6_1 – ident: e_1_2_7_32_1 doi: 10.1111/j.1365-2486.1996.tb00071.x – ident: e_1_2_7_55_1 – ident: e_1_2_7_49_1 doi: 10.1029/2001JD900119 – ident: e_1_2_7_13_1 doi: 10.1029/2003GB002058 – ident: e_1_2_7_63_1 doi: 10.1007/BF00164332 – ident: e_1_2_7_67_1 doi: 10.1191/0959683602hl522rp – ident: e_1_2_7_7_1 doi: 10.1016/S0065-2504(08)60018-5 – ident: e_1_2_7_38_1 doi: 10.1007/s003740050317 – ident: e_1_2_7_54_1 doi: 10.1177/095968369700700304 – ident: e_1_2_7_42_1 doi: 10.1029/2002GB001983 – ident: e_1_2_7_50_1 doi: 10.1029/97GB02732 – ident: e_1_2_7_53_1 doi: 10.2307/1941992 – ident: e_1_2_7_61_1 – ident: e_1_2_7_23_1 doi: 10.1672/0277-5212(2000)020[0113:SAYODC]2.0.CO;2 – ident: e_1_2_7_43_1 doi: 10.1007/s00027-004-0700-2 – ident: e_1_2_7_11_1 doi: 10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2 – ident: e_1_2_7_14_1 doi: 10.1002/hyp.5209 – ident: e_1_2_7_10_1 doi: 10.1111/j.1600-0889.2007.00309.x – ident: e_1_2_7_34_1 doi: 10.1016/0269-7491(94)90142-2 – ident: e_1_2_7_16_1 doi: 10.1007/s10021-005-0105-7 |
| SSID | ssj0003206 |
| Score | 2.4379754 |
| Snippet | Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous... |
| SourceID | swepub proquest pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2317 |
| SubjectTerms | Accumulation Animal and plant ecology Animal, plant and microbial ecology Atmosphere Biological and medical sciences boreal mire Carbon carbon balance Carbon dioxide Carbon sinks Climate change Dissolved inorganic carbon DOC Earth and Related Environmental Sciences Eddy covariance Emissions Fundamental and applied biological sciences. Psychology General aspects Geovetenskap och relaterad miljövetenskap Holocene Measurement techniques Meteorologi och atmosfärsvetenskap Meteorology and Atmospheric Sciences Methane Natural Sciences Naturgeografi Naturvetenskap NECB NEE net ecosystem exchange Organic carbon peat Physical Geography Runoff Seasons Snow Sphagnum streams Sweden TOC Wetlands |
| Title | Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes |
| URI | https://api.istex.fr/ark:/67375/WNG-TF5RZH65-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2008.01654.x https://www.proquest.com/docview/205227591 https://www.proquest.com/docview/48059656 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-11365 https://gup.ub.gu.se/publication/81930 |
| Volume | 14 |
| WOSCitedRecordID | wos000259360500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQFyQuPBYqQqH4AL0tyst5HMu22x7oClUtVL1YjuNso6bJKtmg5dYLdyT-YX8JM042bKQ9VIibk3gsxf48_pyM5yPkvQJUuEmEE0mJkesobyRiEwaE2UJJ8IeOH2uxCX86DS4uwi9t_BOehWnyQ3Qf3HBmaH-NE1xEVX-S6wgtN_DakEg8mPMR-OQAz1jBRmxwcDo5_9z5ZcfWSpuWw1xwPpbTj-vZ2FZvsRpgvy8xeFJU0H9JI3zRZ6ZNttE-0dUr1eTp_3zHZ-RJy1fpfgOw5-SByofkUaNg-WNItg__HpSDaq2nqIbEOAE2XpS6Gt2j4ywFaqyvXpCf6ymxqBRlVORUSFnftFpiNIVrCugEFkuLLJ0Vi7KYX6WS3uBZxQJAr8ulone3v6EqRqFgzBPABMr5NdXS59hmK4VBgZtTkWV0fHf7K8nqpapekvPJ4dn4eNTKQYyk54XuyBMBi6IgkMg7YNflJgI8eZwkfmhbSoLLj4VgZmIlzA5F5MdeKC0hpOMp2_NF4myTrbzI1StCmc0kw3tmGLjCDSIntlVs-pHDZKh80yD-aty5bHOlo2RHxtf2TDAyHEemVfLEkeFLg1id5bzJF3IPmz0Nrc5AlNcYb-cz_m16xM8m7PTyGAxPDLLbw15nAMgObdj7GmRnBUbe-qIKHgLH9lloGeRd9xScCP4ZErkq6oq7AaowMc8gHxoEdy1j9vGD9Os-L8oZBxhw1ABim-vN6jmHW7OaV4oD03SgHy831Gs2lrzNZnXFM20wX_tMzX3p4A97yYG-J9z1TY9HrhVzWH8UEijbFJFBPD137t3P_Gj8CUuv_9Vwhzy2V-mQrTdka1HW6i15KL8v0qrcbf3NH0-kg8g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZQC4ILPwrTwmDzAXYryi_HyXF064poKzR1MO1iOY7TVcuaKmlRue3CHYn_cH8J7yVpaKUeJsTNSfwixf78_Nl5fh8h7zSgwo1DHEhatl1He20ZmdAhzJZagT90eFSITfDh0L-4CL5UckB4FqbMD1FvuOHIKPw1DnDckN4c5UWIlut7VUwknsz5AISy6XoO9xukeXzWPe_XjtmxC6lNy2EueB_L2Qzs2fqujdmqiQ2_xOhJmUMDxqXyxSY1LdONbjLdYqrqPvuvH_mcPK0YKz0qIfaCPNDTFnlUalj-aJGdk79H5aBa5SvyFjEGwMfTrKhGD2knmQA5Lq5ekp_rSbGoklmYTqlUanFTqYnRCVxTwCfwWJomk3E6z9LZ1UTRGzytmALsi3Km6d3tb6iKcSgY9QRAgfL0mhbi5_jOSgyDAjunMklo5-72V5wsljp_Rc67J6NOr10JQrSV5wVu25M-C0PfV8g8YN3lxhJ8eRTHPLAtrcDpR1IyM7ZiZgcy5JEXKEtK5Xja9riMnR3SmKZTvUsos5lieM8MfFe6fuhEto5MHjpMBZqbBuGrjheqypaOoh2JWFs1Qc8I7JlKyxN7RiwNYtWWszJjyD1sDgts1QYyu8aIO87Et-GpGHXZ2WUPDAcG2d8AX20A0A5sWP0aZG-FRlF5oxweAsvmLLAMclA_BTeC_4bkVKeLXLg-6jAxzyDvSwjXb8b848eTr0cizcYCYCBQBYhtrzdezATcGi9ErgVwTQfa8XJLvXJpKap8VlciKQxmaxvVgisHf9krAQQ-Fi43PRG6ViRgBtJIoWxThgbxisFz73YWp52PWHr9r4YH5HFvNOiL_qfh5z3yxF4lR7bekMY8W-i35KH6Pp_k2X7lfP4AYYeHuA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9MwGLZQC4gLH4WJMNh8gN2K8mHn4zjadUNs1TRtMO1iOY7TRcuSKmnQuO3CHYl_uF_CaycNjdTDhLg5iV9LsR-_fpy8fh-E3ktABYlDNZEkHxJHukMemTAg1OZSgD90vEiLTXjTqX9-Hhw3ckDqLEydH6L94KZmhvbXaoLLeRR3Z7kO0SK-28REqpM5H4FQ9gkNKOmh_vhkcnbYOmbH1lKblkMJeB_L6Qb2rG2rs1r1VcffqOhJXkIHxrXyRZea1ulGu0xXL1WTZ__1JZ-jpw1jxbs1xF6gBzIboEe1huWPAdrY-3tUDqo1vqIcIOMI-Hhe6Gp4B4_SBMixvnqJfq4mxcKCF2GeYS5Edd2oieEErjHgE3gsztNkli-KfH6ZCHytTivmAHtdLiS-u_0NVVUciop6AqBAObvCWvxctdmIYWBg55inKR7d3f6K0-pGlq_Q2WTvdHQwbAQhhsJ1AzJ0uU_D0PeFYh6w7yIxB18exbEX2JYU4PQjzqkZWzG1Ax56kRsIi3PhuNJ2PR47G6iX5Zl8jTC1qaDqnhn4hBM_dCJbRqYXOlQE0jMN5C0HnokmW7oS7UjZyq4JRoapkWm0PNXIsBsDWa3lvM4Ycg-bHY2t1oAXVyrizqPs23SfnU7oycUBGB4ZaKsDvtYAoB3YsPs10OYSjazxRiU8BJbt0cAy0Hb7FNyI-jfEM5lXJSO-0mGiroE-1BBuW1b5x8fJ112WFzMGMGBKBYiurzer5gxuzSpWSgZc04F-vFhTr95asiaf1SVLtcF85UM184SjftkLBgQ-ZsQzXRYSK2KwAklFoWyThwZy9eS5dz-z_dEnVXrzr4bb6PHxeMIOP0-_bKIn9jI3svUW9RZFJd-hh-L7IimLrcb3_AEmJ4cz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contemporary+carbon+accumulation+in+a+boreal+oligotrophic+minerogenic+mire+-+a+significant+sink+after+accounting+for+all+C-fluxes&rft.jtitle=Global+change+biology&rft.au=Nilsson%2C+M.&rft.au=Sagerfors%2C+J.&rft.au=Buffam%2C+I.&rft.au=Laudon%2C+H.&rft.date=2008-10-01&rft.issn=1354-1013&rft.volume=14&rft.issue=10&rft.spage=2317&rft_id=info:doi/10.1111%2Fj.1365-2486.2008.01654.x&rft.externalDocID=oai_gup_ub_gu_se_81930 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |