Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes

Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C‐exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology Jg. 14; H. 10; S. 2317 - 2332
Hauptverfasser: NILSSON, MATS, SAGERFORS, JÖRGEN, BUFFAM, ISHI, LAUDON, HJALMAR, ERIKSSON, TOBIAS, GRELLE, ACHIM, KLEMEDTSSON, LEIF, WESLIEN, PER, LINDROTH, ANDERS
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.10.2008
Blackwell
Schlagworte:
ISSN:1354-1013, 1365-2486, 1365-2486
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C‐exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11′N, 19°33′E). Data on the following fluxes were collected: land–atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C‐concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m−2 yr−1 during 2004 and 20±3.4 g C m−2 yr−1 during 2005. This could be partitioned into an annual surface–atmosphere CO2 net uptake of 55±1.9 g C m−2 yr−1 during 2004 and 48±1.6 g C m−2 yr−1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m−2 yr−1 during 2004 and 86 g C m−2 yr−1 during 2005, and a net loss season with a loss of 37 g C m−2 yr−1 during 2004 and 38 g C m−2 yr−1 during 2005. Of the annual net CO2‐C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC≫CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C‐sink, with carbon accumulation rates comparable to the long‐term Holocene C‐accumulation, and higher than the C‐accumulation during the late Holocene in the region.
Bibliographie:ArticleID:GCB1654
istex:BBB0D37C6F9593725D8E8D1C4CE4B5845D424A65
ark:/67375/WNG-TF5RZH65-M
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1354-1013
1365-2486
1365-2486
DOI:10.1111/j.1365-2486.2008.01654.x