Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images

The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:NeuroImage (Orlando, Fla.) Ročník 183; s. 150 - 172
Hlavní autoři: Carass, Aaron, Cuzzocreo, Jennifer L., Han, Shuo, Hernandez-Castillo, Carlos R., Rasser, Paul E., Ganz, Melanie, Beliveau, Vincent, Dolz, Jose, Ben Ayed, Ismail, Desrosiers, Christian, Thyreau, Benjamin, Romero, José E., Coupé, Pierrick, Manjón, José V., Fonov, Vladimir S., Collins, D. Louis, Ying, Sarah H., Onyike, Chiadi U., Crocetti, Deana, Landman, Bennett A., Mostofsky, Stewart H., Thompson, Paul M., Prince, Jerry L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.12.2018
Elsevier Limited
Elsevier
Témata:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method. •First paper to evaluate the state-of-the-art in cerebellum parcellation.•Presenting results on both Adult and Pediatric Cohorts.•Adult Cohort contains healthy controls, and patients with either symptoms of cerebellar dysfunction or SCA 6.•Pediatric Cohort contains healthy controls, and patients with ADHD or Autism.
AbstractList The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.
The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method. •First paper to evaluate the state-of-the-art in cerebellum parcellation.•Presenting results on both Adult and Pediatric Cohorts.•Adult Cohort contains healthy controls, and patients with either symptoms of cerebellar dysfunction or SCA 6.•Pediatric Cohort contains healthy controls, and patients with ADHD or Autism.
The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.
Author Collins, D. Louis
Dolz, Jose
Cuzzocreo, Jennifer L.
Han, Shuo
Desrosiers, Christian
Romero, José E.
Carass, Aaron
Mostofsky, Stewart H.
Landman, Bennett A.
Ganz, Melanie
Beliveau, Vincent
Ying, Sarah H.
Crocetti, Deana
Hernandez-Castillo, Carlos R.
Ben Ayed, Ismail
Thyreau, Benjamin
Manjón, José V.
Fonov, Vladimir S.
Rasser, Paul E.
Coupé, Pierrick
Thompson, Paul M.
Prince, Jerry L.
Onyike, Chiadi U.
AuthorAffiliation a Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
t Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
u Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA
k Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
e Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
m Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, España
f Consejo Nacional de Ciencia y Tecnología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
s Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institut
AuthorAffiliation_xml – name: h Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
– name: m Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, España
– name: q Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– name: a Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
– name: e Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
– name: k Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
– name: l Institute of Development, Aging and Cancer, Tohoku University, Japan
– name: t Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
– name: u Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90292, USA
– name: c Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– name: v Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
– name: i Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
– name: b Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
– name: n University of Bordeaux, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France
– name: r Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
– name: p Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
– name: s Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA
– name: g Priority Research Centre for Brain & Mental Health and Stroke & Brain Injury, University of Newcastle, Callaghan NSW, Australia
– name: d Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
– name: o CNRS, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France
– name: f Consejo Nacional de Ciencia y Tecnología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
– name: j Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Author_xml – sequence: 1
  givenname: Aaron
  surname: Carass
  fullname: Carass, Aaron
  email: aaron_carass@jhu.edu
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
– sequence: 2
  givenname: Jennifer L.
  surname: Cuzzocreo
  fullname: Cuzzocreo, Jennifer L.
  organization: Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
– sequence: 3
  givenname: Shuo
  surname: Han
  fullname: Han, Shuo
  organization: Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
– sequence: 4
  givenname: Carlos R.
  surname: Hernandez-Castillo
  fullname: Hernandez-Castillo, Carlos R.
  organization: Consejo Nacional de Ciencia y Tecnología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
– sequence: 5
  givenname: Paul E.
  surname: Rasser
  fullname: Rasser, Paul E.
  organization: Priority Research Centre for Brain & Mental Health and Stroke & Brain Injury, University of Newcastle, Callaghan, NSW, Australia
– sequence: 6
  givenname: Melanie
  surname: Ganz
  fullname: Ganz, Melanie
  organization: Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
– sequence: 7
  givenname: Vincent
  surname: Beliveau
  fullname: Beliveau, Vincent
  organization: Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
– sequence: 8
  givenname: Jose
  surname: Dolz
  fullname: Dolz, Jose
  organization: Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
– sequence: 9
  givenname: Ismail
  surname: Ben Ayed
  fullname: Ben Ayed, Ismail
  organization: Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
– sequence: 10
  givenname: Christian
  surname: Desrosiers
  fullname: Desrosiers, Christian
  organization: Laboratory for Imagery, Vision, and Artificial Intelligence, École de Technologie Supérieure, Montreal, QC, Canada
– sequence: 11
  givenname: Benjamin
  surname: Thyreau
  fullname: Thyreau, Benjamin
  organization: Institute of Development, Aging and Cancer, Tohoku University, Japan
– sequence: 12
  givenname: José E.
  surname: Romero
  fullname: Romero, José E.
  organization: Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
– sequence: 13
  givenname: Pierrick
  surname: Coupé
  fullname: Coupé, Pierrick
  organization: University of Bordeaux, LaBRI, UMR 5800, PICTURA, Talence, F-33400, France
– sequence: 14
  givenname: José V.
  surname: Manjón
  fullname: Manjón, José V.
  organization: Instituto Universitario de Tecnologías de la Información y Comunicaciones (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
– sequence: 15
  givenname: Vladimir S.
  surname: Fonov
  fullname: Fonov, Vladimir S.
  organization: Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
– sequence: 16
  givenname: D. Louis
  surname: Collins
  fullname: Collins, D. Louis
  organization: Image Processing Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
– sequence: 17
  givenname: Sarah H.
  surname: Ying
  fullname: Ying, Sarah H.
  organization: Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
– sequence: 18
  givenname: Chiadi U.
  surname: Onyike
  fullname: Onyike, Chiadi U.
  organization: Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
– sequence: 19
  givenname: Deana
  surname: Crocetti
  fullname: Crocetti, Deana
  organization: Center for Neurodevelopmental Medicine and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
– sequence: 20
  givenname: Bennett A.
  surname: Landman
  fullname: Landman, Bennett A.
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37235, USA
– sequence: 21
  givenname: Stewart H.
  surname: Mostofsky
  fullname: Mostofsky, Stewart H.
  organization: Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
– sequence: 22
  givenname: Paul M.
  surname: Thompson
  fullname: Thompson, Paul M.
  organization: Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
– sequence: 23
  givenname: Jerry L.
  surname: Prince
  fullname: Prince, Jerry L.
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30099076$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01918431$$DView record in HAL
BookMark eNqNkktvEzEQxy1URB_wFZAlLnDY4Me-fEGUqFCkSL2Us-X1ziYOu3awvZHy7etNSgo5RbI8I_s_vxnNzDW6sM4CQpiSGSW0_LyeWRi9M4NawowRWs9IOoS_QleUiCITRcUuJr_gWU2puETXIawJIYLm9Rt0yZMnSFVeITV3w0Z5Y5e4G_t-h9UY3aAitDjEZDLXZXEFmfIRa_DQQN-PA04hOnkqGmdx592AUykWotHYQ3BWWQ14X154i153qg_w7tneoF_f7x7n99ni4cfP-e0i02WZx0wJYIQL0uhOcVboFgrgrG5ZJXiZ7oY1OVFFrjUBnetGAy8Jg7ZpGDCuBL9BXw7czdgM0Gqw0atebnwqw--kU0b-_2PNSi7dVpasonlFE-DTAbA6Cbu_XcjpjVBB65zT7aT9-JzMuz8jhCgHE_YdseDGIBmpKyF4Icok_XAiXbvR29QKyShjOS14PgHf_1v9Mf_fSSVBfRBo70Lw0B0llMhpKeRaviyFnJZCknQIf-nMMVSbuB9d6oPpzwF8OwAgzW9rwMugDaQRt8aDjrJ15hzI1xOI7o01WvW_YXce4gmaSfIT
CitedBy_id crossref_primary_10_1038_s41380_024_02584_8
crossref_primary_10_1038_s41593_023_01321_8
crossref_primary_10_1007_s12311_023_01532_6
crossref_primary_10_1002_mp_13240
crossref_primary_10_1097_NMD_0000000000001064
crossref_primary_10_1111_jon_12672
crossref_primary_10_1111_epi_17881
crossref_primary_10_1016_j_bpsc_2025_05_017
crossref_primary_10_1016_j_nicl_2025_103834
crossref_primary_10_1002_hbm_70317
crossref_primary_10_1007_s12311_023_01569_7
crossref_primary_10_31083_j_jin2101013
crossref_primary_10_1002_hbm_25546
crossref_primary_10_3389_fnagi_2022_881311
crossref_primary_10_1016_j_media_2021_102136
crossref_primary_10_1038_s41598_022_04943_3
crossref_primary_10_1016_j_neuroimage_2020_117062
crossref_primary_10_1007_s00276_023_03108_9
crossref_primary_10_1007_s00415_020_09875_4
crossref_primary_10_1016_j_artmed_2025_103219
crossref_primary_10_1002_acn3_51713
crossref_primary_10_1016_j_nicl_2019_101974
crossref_primary_10_1016_j_nicl_2021_102636
crossref_primary_10_1016_j_media_2020_101639
crossref_primary_10_3390_brainsci15010077
crossref_primary_10_1016_j_cobeha_2023_101328
crossref_primary_10_1016_j_neuroimage_2020_117450
crossref_primary_10_1002_hbm_26348
crossref_primary_10_1007_s00330_022_09170_y
crossref_primary_10_1002_hbm_25572
crossref_primary_10_1007_s12311_023_01572_y
crossref_primary_10_1016_j_jocn_2025_111073
crossref_primary_10_3389_fnins_2019_00440
crossref_primary_10_1016_j_neuroimage_2025_121063
crossref_primary_10_1016_j_compmedimag_2019_101660
crossref_primary_10_1016_j_neuroimage_2022_119703
crossref_primary_10_3389_fnins_2022_821078
crossref_primary_10_3390_s22041345
crossref_primary_10_1038_s44220_024_00297_z
crossref_primary_10_1016_j_bpsgos_2021_05_010
crossref_primary_10_1111_pcn_13707
crossref_primary_10_1007_s12311_020_01227_2
crossref_primary_10_1109_JPROC_2021_3054390
crossref_primary_10_1177_03331024211058205
crossref_primary_10_1002_hbm_25604
crossref_primary_10_3389_fnint_2022_821109
crossref_primary_10_1093_cercor_bhaa020
crossref_primary_10_3389_fneur_2020_00529
crossref_primary_10_3389_fnagi_2024_1359320
crossref_primary_10_26693_jmbs05_05_066
crossref_primary_10_1002_mp_13495
crossref_primary_10_1007_s00429_022_02535_5
crossref_primary_10_1111_acps_13087
crossref_primary_10_1016_j_neuroimage_2020_116819
crossref_primary_10_3389_fnhum_2021_748241
crossref_primary_10_1007_s12311_023_01645_y
crossref_primary_10_1002_hbm_70008
crossref_primary_10_3389_fninf_2022_862805
crossref_primary_10_1007_s12519_019_00255_1
crossref_primary_10_1186_s13229_023_00551_8
crossref_primary_10_1016_j_jns_2023_120726
crossref_primary_10_1111_ner_13098
crossref_primary_10_1002_mds_28044
crossref_primary_10_1109_ACCESS_2020_2998537
crossref_primary_10_1016_j_cobeha_2023_101302
crossref_primary_10_1016_j_dcn_2024_101379
crossref_primary_10_1109_JBHI_2020_2986926
crossref_primary_10_1002_mds_29611
crossref_primary_10_1016_j_bpsgos_2025_100541
Cites_doi 10.1016/j.neuroimage.2010.07.033
10.1016/j.neuroimage.2011.03.045
10.1002/jmri.10163
10.1002/nbm.3413
10.1016/j.media.2008.06.008
10.1007/s12311-014-0627-7
10.1016/j.neuroimage.2007.05.063
10.1080/14734220500348584
10.1016/j.neuroimage.2016.05.030
10.1016/j.neuroimage.2011.02.046
10.1016/j.neuroimage.2012.01.021
10.1016/j.neuroimage.2004.06.018
10.1002/hbm.23595
10.1016/j.media.2014.12.003
10.1016/j.neurobiolaging.2013.02.013
10.1016/j.pscychresns.2008.06.001
10.1212/01.WNL.0000134673.95020.EE
10.1176/appi.ajp.160.2.262
10.1155/2015/813696
10.1016/j.neuroimage.2016.12.064
10.1176/jnp.16.3.367
10.1001/archneur.1991.00530230086029
10.1017/S1355617708080594
10.1109/TMI.2010.2046908
10.1016/j.nicl.2015.02.007
10.1016/S0920-9964(01)00248-1
10.1016/j.neuroimage.2015.07.076
10.1136/jnnp.2003.018093
10.1016/S0006-3223(99)00093-1
10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
10.1176/appi.ajp.160.9.1614
10.1212/WNL.50.1.121
10.1017/S0317167100014232
10.1212/01.wnl.0000196464.47508.00
10.1109/42.906424
10.1016/S1364-6613(98)01211-X
10.1111/j.1365-2990.1997.tb01309.x
10.1109/TPAMI.2012.143
10.1371/journal.pone.0146388
10.1016/j.neuroimage.2007.09.031
10.1016/S0165-0173(99)00040-5
10.1016/j.neuroimage.2005.08.061
10.25080/Majora-92bf1922-003
10.1109/42.811270
10.1212/WNL.44.11.2047
10.1097/00004728-199403000-00005
10.1016/0022-510X(86)90049-3
10.1016/j.media.2016.07.009
10.1097/00004583-200403000-00016
10.1016/j.media.2016.10.004
10.1002/cne.900970204
10.1016/j.neuroimage.2013.04.048
10.1016/j.neuroimage.2008.03.041
10.1093/brain/awh729
10.1016/j.media.2009.06.003
10.3389/fnsys.2014.00092
10.1177/1352458515595132
10.1016/j.neuroimage.2007.07.007
10.1016/j.neuroimage.2004.07.016
10.1016/j.schres.2016.06.028
10.1109/TMI.2015.2393853
10.1109/TMI.2011.2156806
10.2307/3001968
10.1016/j.neuroimage.2006.01.021
10.2214/ajr.162.1.8273650
10.1001/archneur.1959.03840060001001
10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
10.3389/fnsys.2014.00163
10.1016/j.neuroimage.2014.08.047
10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO;2-#
10.1016/j.neuroimage.2012.08.075
10.1016/j.neuroimage.2015.09.032
10.1016/j.neuroimage.2016.11.003
10.1016/S1053-8119(03)00041-7
10.1371/journal.pone.0184661
10.1016/j.neuroimage.2005.02.018
10.1016/S1361-8415(02)00054-3
10.1016/S0306-4522(98)90664-9
10.1146/annurev.neuro.31.060407.125606
10.1002/hbm.22409
10.1002/hbm.22529
10.1016/j.tins.2007.12.005
10.1038/mp.2013.78
10.1016/j.neuroimage.2010.09.018
10.1016/S0896-6273(02)00569-X
10.1016/j.media.2007.06.004
10.1007/s12021-012-9159-9
10.2307/1932409
10.3233/JAD-2010-100156
10.1016/j.neuroimage.2006.05.056
10.1006/nimg.1998.0395
10.1016/j.cviu.2012.10.006
10.1016/j.biopsych.2017.09.029
10.1006/nimg.2000.0730
10.1016/j.neuroimage.2006.02.051
10.1002/jmri.22003
10.1016/j.dib.2017.04.004
10.1016/j.pscychresns.2014.06.006
10.1002/hbm.22894
10.1109/TMI.2009.2013851
10.1016/S0140-6736(86)90837-8
10.1016/j.neubiorev.2007.08.004
10.1016/j.neuroimage.2014.03.037
10.1007/s00429-013-0595-6
10.1109/TMI.2014.2377694
10.1016/j.neuroimage.2009.09.005
10.1016/j.neuroimage.2011.02.076
10.1016/j.neuroimage.2017.04.039
10.1109/JBHI.2015.2439242
10.1177/088307389801300904
10.1016/j.jpsychires.2007.12.002
10.1016/j.neuroimage.2009.01.045
10.1016/j.biopsych.2008.01.003
10.1006/nimg.2002.1207
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
2018. Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: 2018. Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
5PM
DOI 10.1016/j.neuroimage.2018.08.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology

MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1095-9572
EndPage 172
ExternalDocumentID PMC6271471
oai:HAL:hal-01918431v1
30099076
10_1016_j_neuroimage_2018_08_003
S1053811918306906
Genre Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH078160
– fundername: NINDS NIH HHS
  grantid: R01 NS056307
– fundername: NIBIB NIH HHS
  grantid: R21 EB009900
– fundername: NIBIB NIH HHS
  grantid: U54 EB020403
– fundername: NIMH NIH HHS
  grantid: R01 MH085328
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
9DU
AAYXX
AFFHD
CITATION
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
1XC
5PM
ID FETCH-LOGICAL-c664t-a9e20390bcfa325cde5e328d27936d27b2b40a54cc0ec4cbce3602edbb2e23a93
IEDL.DBID M7P
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447750200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Tue Nov 04 01:58:47 EST 2025
Tue Oct 14 20:34:47 EDT 2025
Thu Oct 02 05:08:01 EDT 2025
Tue Oct 07 07:08:33 EDT 2025
Mon Jul 21 06:05:24 EDT 2025
Sat Nov 29 06:55:28 EST 2025
Tue Nov 18 21:57:25 EST 2025
Fri Feb 23 02:45:22 EST 2024
Tue Oct 14 19:31:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Autism
Magnetic resonance imaging
Cerebellar ataxia
Attention deficit hyperactivity disorder
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c664t-a9e20390bcfa325cde5e328d27936d27b2b40a54cc0ec4cbce3602edbb2e23a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMCID: PMC6271471
These authors curated the data and organized the comparison, all others contributed results.
ORCID 0000-0001-5733-2127
0000-0003-2709-3350
0000-0002-9120-8098
OpenAccessLink http://hdl.handle.net/10251/145394
PMID 30099076
PQID 2122415341
PQPubID 2031077
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6271471
hal_primary_oai_HAL_hal_01918431v1
proquest_miscellaneous_2087993596
proquest_journals_2122415341
pubmed_primary_30099076
crossref_primary_10_1016_j_neuroimage_2018_08_003
crossref_citationtrail_10_1016_j_neuroimage_2018_08_003
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_08_003
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_08_003
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Strick, Dum, Fiez (bib126) 2009; 32
Middleton, Strick (bib88) 2000; 31
Brambati, Termine, Ruffino, Stella, Fazio, Cappa, Perani (bib22) 2004; 63
Park, Pipitone, Baer, Winterburn, Shah, Chavez, Schira, Lobaugh, Lerch, Voineskos, Chakravarty (bib98) 2014; 95
Bogovic, Bazin, Ying, Prince (bib19) 2013
Mostofsky, Reiss, Lockhart, Denckla (bib91) 1998; 13
Guo, Kashyap, Sonka, Oguz (bib57) 2017
Yang, Ye, Bogovic, Carass, Jedynak, Ying, Prince (bib146) 2016; 127
Tieleman, Hinton (bib130) 2015; vol. 4
Reuter, Fischl (bib105) 2011; 57
Van Leemput, Maes, Vandermeulen, Suetens (bib137) 1999; 18
van der Lijn, de Bruijne, Hoogendam, Klein, Hameeteman, Breteler, Niessen (bib136) 2009
Carass, Shao, Li, Dewey, Blitz, Roy, Pham, Prince, Ellingsen (bib28) 2017
D'Mello, Crocetti, Mostofsky, Stoodley (bib45) 2015; 7
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib32) 2016
Sauwen, Sima, Van Cauter, Veraart, Leemans, Maes, Himmelreich, Van Huffel (bib110) 2015; 28
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (bib51) 2002; 33
Malacarne (bib81) 1776
Colloby, O'Brien, Taylor (bib36) 2014; 223
Okugawa, Sedvall, Agartz (bib97) 2003; 160
Schmahmann (bib113) 2004; 16
Fonov, Evans, Botteron, McKinstry, Collins, the Brain Development Cooperative Group (bib54) 2010; 54
Schmahmann, Caplan (bib114) 2006; 129
Yang, Abulnaga, Carass, Kansal, Jedynak, Onyike, Ying, Prince (bib145) 2016
Courchesne, Saitoh, Yeung-Courchesne, Press, Lincoln, Haas, Schreibman (bib38) 1994; 162
Weier, Fonov, Lavoie, Doyon, Collins (bib141) 2014; 35
Baker, Harding, Halliday, Kril, Harper (bib10) 1999; 91
Nopoulos, Ceilley, Gailis, Andreasen (bib93) 1999; 46
Price, Cardenas, Fein (bib104) 2014; 103
He, Zhang, Ren, Sun (bib59) 2015
Wang, Suh, Das, Pluta, Craige, Yushkevich (bib139) 2013; 35
Stoodley (bib125) 2014; 8
Cavanagh, Holton, Nolan (bib31) 1997; 23
Styner, Lee, Chin, Chin, Commowick, Tran, Markovic-Plese, Jewells, Warfield (bib127) 2008
Barrett, Workman, Sair, Savonenko, Kraut, Sodums, Joo, Nassery, Marano, Munro, Brandt, Zhou, Wong, Smith (bib13) 2017; 38
Tosun, Rettmann, Naiman, Resnick, Kraut, Prince (bib133) 2006; 29
Bernard, Millman, Mittal (bib17) 2015; 36
Giraud, Ta, Papadakis, Manjón, Collins, Coupé, Alzheimer’s Disease Neuroimaging Initiative (bib55) 2016; 124
Schmahmann (bib112) 1991; 48
Schmahmann, Doyon, Toga, Petrides, Evans (bib115) 2000
Huo, Plassard, Carass, Resnick, Pham, Prince, Landmann (bib65) 2016; 138
Fischl, Salat, van der Kouwe, Makris, Ségonne, Quinn, Dale (bib52) 2004; 23
Kansal, Yang, Fishman, Sair, Ying, Jedynak, Prince, Onyike (bib69) 2016; 140
Li, Ye, Yang, Carass, Ying, Prince (bib76) 2016
Thomann, Schläfer, Seidl, Dos Santos, Essig, Schröder (bib129) 2008; 42
Victor, Adams, Mancall (bib138) 1959; 1
Karas, Burton, Rombouts, van Schijndel, O'Brien, Scheltens, McKeith, Williams, Ballard, Barkhof (bib70) 2003; 18
Shao, Carass, Li, Dewey, Blitz, Prince, Ellingsen (bib117) 2018
Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (bib40) 2006; 31
Andreasen, Pierson (bib4) 2008; 64
Mendrik, Vincken, Kuijf, Breeuwer, Bouvy, de Bresser, Alansary, de Bruijn, Carass, El-Baz, Jog, Katyali, Khan, van der Lijn, Mahmood, Mukherjee, van Opbroek, Paneri, Pereira, Persson, Rajchl, Sarikayan, Smedby, Silva, Vrooman, Vyas, Wang, Zhaon, Biessels, Viergever (bib86) 2015
Lewis, Galley, Johnson, Stevenson, Huang, McKeown (bib75) 2013; 40
Bogovic, Jedynak, Rigg, Du, Landman, Prince, Ying (bib20) 2013; 64
Zhao, Carass, Lee, He, Prince (bib150) 2017
He, Carass, Yun, Zhao, Jedynak, Solomon, Saidha, Calabresi, Prince (bib60) 2017
Shiee, Bazin, Cuzzocreo, Ye, Kishore, Carass, Calabresi, Reich, Prince, Pham (bib122) 2014; 35
Carass, Cuzzocreo, Wheeler, Bazin, Resnick, Prince (bib24) 2010; 56
Diedrichsen (bib43) 2006; 33
Roy, He, Sweeney, Carass, Reich, Prince, Pham (bib109) 2015; 19
Ledig, Heckemann, Hammers, Lopez, Newcombe, Makropoulos, Lotjonen, Menon, Rueckert (bib74) 2015; 21
Romero, Coupé, Giraud, Ta, Fonov, Park, Chakravarty, Voineskos, Manjón (bib106) 2017; 147
Wilcoxon (bib143) 1945; 1
Shattuck, Leahy (bib118) 2002; 6
Desmond, Fiez (bib41) 1998; 2
Carass, Prince (bib25) 2016
Manjón, Coupé, Raniga, Xia, Fripp, Salvado (bib83) 2016
Ashburner, Friston (bib7) 1999; 7
Patenaude, Smith, Kennedy, Jenkinson (bib100) 2011; 56
Powell, Magnotta, Johnson, Jammalamadaka, Pierson, Andreasen (bib103) 2008; 39
Torvik, Torp (bib132) 1986; 75
Ito (bib66) 1984
Hsu, Schuff, Du, Mark, Zhu, Hardin, Weiner (bib63) 2002; 16
Catani, Jones, Daly, Embiricos, Deeley, Pugliese, Curran, Robertson, Murphy (bib30) 2008; 41
Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, Deen, Delmonte, Dinstein, Ertl-Wagner, Fair, Gallagher, Kennedy, Keown, Keysers, Lainhart, Lord, Luna, Menon, Minshew, Monk, Mueller, Müller, Nebel, Nigg, O'Hearn, Pelphrey, Peltier, Rudie, Sunaert, Thioux, Tyszka, Uddin, Verhoeven, Wenderoth, Wiggins, Mostofsky, Milham (bib85) 2014; 19
Banerjee, Mitra, Shankar, Hayashi (bib11) 2016; 11
Shattuck, Mirza, Adisetiyo, Hojatkashani, Salamon, Narr, Poldrack, Bilder, Toga (bib119) 2008; 39
Ashburner, Andersson, Friston (bib6) 2000; 9
Avants, Epstein, Grossman, Gee (bib9) 2008; 12
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menton, Rueckert, Glocker (bib68) 2017; 36
Bland, Altman (bib18) 1986; 327
Mostofsky, Mazzocco, Aakalu, Warsofsky, Denckla, Reiss (bib90) 1998; 50
Zhang, Brady, Smith (bib149) 2001; 20
Gottwald, Wilde, Mihajlovic, Mehdorn (bib56) 2004; 75
Long, Shelhamer, Darrell (bib78) 2015
Carass, Wheeler, Cuzzocreo, Bazin, Bassett, Prince (bib29) 2007
Liu, Bazin, Carass, Prince (bib77) 2012
Shiee, Bazin, Ozturk, Reich, Calabresi, Pham (bib123) 2010; 49
Esteban, Birman, Schaer, Koyejo, Poldrack, Gorgolewski (bib49) 2017; 12
Buckner, Head, Parker, Fotenos, Marcus, Morris, Snyder (bib23) 2004; 23
Maier, Menze, von der Gablentz, Häni, Heinrich, Liebrand, Winzeck, Basit, Bentley, Chen, Christiaens, Dutil, Egger, Feng, Glocker, Götz, Haeck, Halme, Havaei, Iftekharuddin, Jodoin, Kamnitsas, Kellner, Korvenoja, Larochelle, Ledig, Lee, Maes, Mahmood, Maier-Hein, McKinley, Muschelli, Pal, Pei, Rangarajan, Reza, Robben, Rueckert, Salli, Suetens, Wang, Wilms, Kirschke, Krämer, Münte, Schramm, Wiest, Handels, Reyes (bib79) 2017; 35
Amaral, Schumann, Nordahl (bib3) 2008; 31
Zuo, Carass, Han, Prince (bib151) 2018
Fischl (bib50) 2012; 62
Abulnaga, Yang, Carass, Kansal, Jedynak, Onyike, Ying, Prince (bib1) 2016
Nyúl, Udupa (bib94) 1999
Shiee, Bazin, Cuzzocreo, Blitz, Pham (bib121) 2011
Webb, Sparks, Friedman, Shaw, Giedd, Dawson, Dager (bib140) 2009; 172
Bogovic, Prince, Bazin (bib21) 2013; 117
Dolz, Desrosiers, Ayed (bib46) 2018; 170
Durston, Hulshoff Pol, Schnack, Buitelaar, Steenhuis, Minderaa, Kahn, van engeland (bib48) 2004; 43
Ying, Choi, Perlman, Baloh, Zee, Toga (bib148) 2006; 66
Yang, Zhong, Carass, Ying, Prince (bib147) 2014
Carass, Roy, Jog, Cuzzocreo, Magrath, Gherman, Button, Nguyen, Prados, Sudre, Cardoso, Cawley, Ciccarelli, Wheeler-Kingshott, Ourselin, Catanese, Deshpande, Maurel, Commowick, Barillot, Tomas-Fernandez, Warfield, Vaidya, Chunduru, Muthuganapathy, Krishnamurthi, Jesson, Arbel, Maier, Handels, Iheme, Unay, Jain, Sima, Smeets, Ghafoorian, Platel, Birenbaum, Greenspan, Bazin, Calabresi, Crainiceanu, Ellingsen, Reich, Prince, Pham (bib27) 2017; 148
Schaap, Metz, van Walsum, van der Giessen, Weustink, Mollet, Bauer, Bogunović, Castro, Deng, Dikici, O'Donnell, Frenay, Friman, Hoyos, Kitslaar, Krissian, Kühnel, Luengo-Oroz, Orkisz, Smedby, Styner, Szymczak, Tek, Wang, Warfield, Zambal, Zhang, Krestin, Niessen (bib111) 2009; 13
Tomas-Fernandez, Warfield (bib131) 2015; 34
Bazin, Pham (bib15) 2008; 12
Manjón, Coupé, Martí-Bonmatí, Collins, Robles (bib82) 2010; 31
Ta, Giraud, Collins, Coupé (bib128) 2014
Huo, Carass, Resnick, Pham, Prince, Landmann (bib64) 2016
Henle (bib62) 1879
Manto, Schmahmann, Koibuchi, Rossi (bib84) 2013
Ronneberger, Fischer, Brox (bib107) 2015
Rousseau, Habas, Studholme (bib108) 2011; 30
Schutter, Van Honk (bib116) 2005; 4
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib135) 2010; 29
Dale, Fischl, Sereno (bib39) 1999; 9
Weier, Till, Fonov, Yeh, Arnold, Banwell, Collins (bib142) 2016; 22
Plassard, Yang, Rane, Prince, Claassen, Landman (bib102) 2016
Nyúl, Udupa (bib95) 1999; 42
Ashburner (bib5) 2007; 38
Chen, Qi, Yu, Heng (bib33) 2016
Silveri, Leggeio, Molinari (bib124) 1994; 44
Coupe, Manjon, Fonov, Pruessner, Robles, Collins (bib37) 2011; 54
Heimann, van Ginneken, Styner, Arzhaeva, Aurich, Bauer, Beck, Becker, Beichel, Bekes, Bello, Binnig, Bischof, Bornik, Cashman, Ying, Cordova, Dawant, Fidrich, Furst, Furukawa, Grenacher, Hornegger, Kainmuller, Kitney, Kobatake, Lamecker, Lange, Lee, Lennon, Li, Li, Meinzer, Nemeth, Raicu, Rau, van Rikxoort, Rousson, Rusko, Saddi, Schmidt, Seghers, Shimizu, Slagmolen, Sorantin, Soza, Susomboon, Waite, Wimmer, Wolf (bib61) 2009; 28
Jednoróg, Gawron, Marchewka, Heim, Grabowska (bib67) 2013; 219
Dice (bib42) 1945; 26
Diedrichsen, Balsters, Flavell, Cussans, Ramnani (bib44) 2009; 46
Han, Jovicich, Salat, van der Kouwe, Quinn, Czanner, Busa, Pacheco, Albert, Killiany, Maguire, Rosas, Makris, Dale, Dickerson, Fischl (bib58) 2006; 32
Carass, Roy, Jog, Cuzzocreo, Magrath, Gherman, Button, Nguyen, Bazin, Calabresi, Crainiceanu, Ellingsen, Reich, Prince, Pham (bib26) 2017; 12
Allen, Courchesne (bib2) 2003; 160
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest, Lanczi, Gerstner, Weber, Arbel, Avants, Ayache, Buendia, Collins, Cordier, Corso, Criminisi, Das, Delingette, Demiralp, Durst, Dojat, Doyle, Festa, Forbes, Geremia, Glocker, Golland, Guo, Hamamci, Iftekharuddin, Jena, John, Konukoglu, Lashkari, Mariz, Meier, Pereira, Precup, Price, Riklin-Raviv, Reza, Ryan, Sarikaya, Schwartz, Shin, Shotton, Silva, Sousa, Subbanna, Székely, Taylor, Thomas, Tustison, Unal, Vasseur, Wintermark, Ye, Zhao, Zhao, Zikic, Prastawa, Reyes, Van Leemput (bib87) 2015; 34
Ashburner, Friston (bib8) 2005; 26
Parker, Narayanan, Andreasen (bib99) 2014; 8
Cleavinger,
Silveri (10.1016/j.neuroimage.2018.08.003_bib124) 1994; 44
Wang (10.1016/j.neuroimage.2018.08.003_bib139) 2013; 35
Tieleman (10.1016/j.neuroimage.2018.08.003_bib130) 2015; vol. 4
Allen (10.1016/j.neuroimage.2018.08.003_bib2) 2003; 160
Mostofsky (10.1016/j.neuroimage.2018.08.003_bib91) 1998; 13
Nopoulos (10.1016/j.neuroimage.2018.08.003_bib93) 1999; 46
Ta (10.1016/j.neuroimage.2018.08.003_bib128) 2014
Shao (10.1016/j.neuroimage.2018.08.003_bib117) 2018
Fischl (10.1016/j.neuroimage.2018.08.003_bib50) 2012; 62
Shiee (10.1016/j.neuroimage.2018.08.003_bib123) 2010; 49
Avants (10.1016/j.neuroimage.2018.08.003_bib9) 2008; 12
Liu (10.1016/j.neuroimage.2018.08.003_bib77) 2012
Dale (10.1016/j.neuroimage.2018.08.003_bib39) 1999; 9
Dice (10.1016/j.neuroimage.2018.08.003_bib42) 1945; 26
Kamnitsas (10.1016/j.neuroimage.2018.08.003_bib68) 2017; 36
Maier (10.1016/j.neuroimage.2018.08.003_bib79) 2017; 35
Ashburner (10.1016/j.neuroimage.2018.08.003_bib8) 2005; 26
van der Lijn (10.1016/j.neuroimage.2018.08.003_bib136) 2009
Karas (10.1016/j.neuroimage.2018.08.003_bib70) 2003; 18
Courchesne (10.1016/j.neuroimage.2018.08.003_bib38) 1994; 162
He (10.1016/j.neuroimage.2018.08.003_bib60) 2017
Patenaude (10.1016/j.neuroimage.2018.08.003_bib100) 2011; 56
Romero (10.1016/j.neuroimage.2018.08.003_bib106) 2017; 147
Henle (10.1016/j.neuroimage.2018.08.003_bib62) 1879
Webb (10.1016/j.neuroimage.2018.08.003_bib140) 2009; 172
Sauwen (10.1016/j.neuroimage.2018.08.003_bib110) 2015; 28
Durston (10.1016/j.neuroimage.2018.08.003_bib48) 2004; 43
Carass (10.1016/j.neuroimage.2018.08.003_bib24) 2010; 56
Menze (10.1016/j.neuroimage.2018.08.003_bib87) 2015; 34
Fischl (10.1016/j.neuroimage.2018.08.003_bib52) 2004; 23
Parker (10.1016/j.neuroimage.2018.08.003_bib99) 2014; 8
Weier (10.1016/j.neuroimage.2018.08.003_bib141) 2014; 35
Powell (10.1016/j.neuroimage.2018.08.003_bib103) 2008; 39
Dos Santos (10.1016/j.neuroimage.2018.08.003_bib47) 2011; 23
Ito (10.1016/j.neuroimage.2018.08.003_bib66) 1984
Victor (10.1016/j.neuroimage.2018.08.003_bib138) 1959; 1
Cavanagh (10.1016/j.neuroimage.2018.08.003_bib31) 1997; 23
Okugawa (10.1016/j.neuroimage.2018.08.003_bib96) 2002; 55
Torvik (10.1016/j.neuroimage.2018.08.003_bib132) 1986; 75
Manto (10.1016/j.neuroimage.2018.08.003_bib84) 2013
Ashburner (10.1016/j.neuroimage.2018.08.003_bib7) 1999; 7
Baker (10.1016/j.neuroimage.2018.08.003_bib10) 1999; 91
Gottwald (10.1016/j.neuroimage.2018.08.003_bib56) 2004; 75
Chen (10.1016/j.neuroimage.2018.08.003_bib33) 2016
Schaap (10.1016/j.neuroimage.2018.08.003_bib111) 2009; 13
Amaral (10.1016/j.neuroimage.2018.08.003_bib3) 2008; 31
Collins (10.1016/j.neuroimage.2018.08.003_bib35) 1994; 18
Shattuck (10.1016/j.neuroimage.2018.08.003_bib120) 2001; 13
Nyúl (10.1016/j.neuroimage.2018.08.003_bib94) 1999
Schutter (10.1016/j.neuroimage.2018.08.003_bib116) 2005; 4
Lewis (10.1016/j.neuroimage.2018.08.003_bib75) 2013; 40
Diedrichsen (10.1016/j.neuroimage.2018.08.003_bib44) 2009; 46
Stoodley (10.1016/j.neuroimage.2018.08.003_bib125) 2014; 8
Kingma (10.1016/j.neuroimage.2018.08.003_bib71) 2014
Maier-Hein (10.1016/j.neuroimage.2018.08.003_bib80) 2018
Plassard (10.1016/j.neuroimage.2018.08.003_bib102) 2016
Carass (10.1016/j.neuroimage.2018.08.003_bib25) 2016
Möller (10.1016/j.neuroimage.2018.08.003_bib89) 2013; 34
Mostofsky (10.1016/j.neuroimage.2018.08.003_bib90) 1998; 50
Park (10.1016/j.neuroimage.2018.08.003_bib98) 2014; 95
Fonov (10.1016/j.neuroimage.2018.08.003_bib54) 2010; 54
Ronneberger (10.1016/j.neuroimage.2018.08.003_bib107) 2015
Yang (10.1016/j.neuroimage.2018.08.003_bib146) 2016; 127
Ying (10.1016/j.neuroimage.2018.08.003_bib148) 2006; 66
Guo (10.1016/j.neuroimage.2018.08.003_bib57) 2017
Zhao (10.1016/j.neuroimage.2018.08.003_bib150) 2017
Barrett (10.1016/j.neuroimage.2018.08.003_bib13) 2017; 38
Shattuck (10.1016/j.neuroimage.2018.08.003_bib119) 2008; 39
Brambati (10.1016/j.neuroimage.2018.08.003_bib22) 2004; 63
Mendrik (10.1016/j.neuroimage.2018.08.003_bib86) 2015
Carass (10.1016/j.neuroimage.2018.08.003_bib27) 2017; 148
Yang (10.1016/j.neuroimage.2018.08.003_bib145) 2016
Bogovic (10.1016/j.neuroimage.2018.08.003_bib21) 2013; 117
Ashburner (10.1016/j.neuroimage.2018.08.003_bib5) 2007; 38
Murphy (10.1016/j.neuroimage.2018.08.003_bib92) 2013; 78
Banerjee (10.1016/j.neuroimage.2018.08.003_bib11) 2016; 11
Huo (10.1016/j.neuroimage.2018.08.003_bib65) 2016; 138
Schmahmann (10.1016/j.neuroimage.2018.08.003_bib114) 2006; 129
Tosun (10.1016/j.neuroimage.2018.08.003_bib133) 2006; 29
Martino (10.1016/j.neuroimage.2018.08.003_bib85) 2014; 19
Carass (10.1016/j.neuroimage.2018.08.003_bib26) 2017; 12
Coupe (10.1016/j.neuroimage.2018.08.003_bib37) 2011; 54
Bazin (10.1016/j.neuroimage.2018.08.003_bib15) 2008; 12
Desmond (10.1016/j.neuroimage.2018.08.003_bib41) 1998; 2
Thomann (10.1016/j.neuroimage.2018.08.003_bib129) 2008; 42
Manjón (10.1016/j.neuroimage.2018.08.003_bib82) 2010; 31
Weier (10.1016/j.neuroimage.2018.08.003_bib142) 2016; 22
Fischl (10.1016/j.neuroimage.2018.08.003_bib51) 2002; 33
Han (10.1016/j.neuroimage.2018.08.003_bib58) 2006; 32
Huo (10.1016/j.neuroimage.2018.08.003_bib64) 2016
Bogovic (10.1016/j.neuroimage.2018.08.003_bib19) 2013
Manjón (10.1016/j.neuroimage.2018.08.003_bib83) 2016
Styner (10.1016/j.neuroimage.2018.08.003_bib127) 2008
Carass (10.1016/j.neuroimage.2018.08.003_bib29) 2007
Bergstra (10.1016/j.neuroimage.2018.08.003_bib16) 2010
Carass (10.1016/j.neuroimage.2018.08.003_bib28) 2017
Price (10.1016/j.neuroimage.2018.08.003_bib104) 2014; 103
Baumann (10.1016/j.neuroimage.2018.08.003_bib14) 2015; 14
Okugawa (10.1016/j.neuroimage.2018.08.003_bib97) 2003; 160
Schmahmann (10.1016/j.neuroimage.2018.08.003_bib113) 2004; 16
Traut (10.1016/j.neuroimage.2018.08.003_bib134) 2018; 83
Colloby (10.1016/j.neuroimage.2018.08.003_bib36) 2014; 223
Strick (10.1016/j.neuroimage.2018.08.003_bib126) 2009; 32
Barnes (10.1016/j.neuroimage.2018.08.003_bib12) 2010
Çiçek (10.1016/j.neuroimage.2018.08.003_bib32) 2016
Diedrichsen (10.1016/j.neuroimage.2018.08.003_bib43) 2006; 33
He (10.1016/j.neuroimage.2018.08.003_bib59) 2015
Bernard (10.1016/j.neuroimage.2018.08.003_bib17) 2015; 36
Bogovic (10.1016/j.neuroimage.2018.08.003_bib20) 2013; 64
Yang (10.1016/j.neuroimage.2018.08.003_bib147) 2014
Cleavinger (10.1016/j.neuroimage.2018.08.003_bib34) 2008; 14
Pierson (10.1016/j.neuroimage.2018.08.003_bib101) 2002; 17
Catani (10.1016/j.neuroimage.2018.08.003_bib30) 2008; 41
Shiee (10.1016/j.neuroimage.2018.08.003_bib122) 2014; 35
Larsell (10.1016/j.neuroimage.2018.08.003_bib73) 1952; 97
Roy (10.1016/j.neuroimage.2018.08.003_bib109) 2015; 19
Van Leemput (10.1016/j.neuroimage.2018.08.003_bib137) 1999; 18
Dolz (10.1016/j.neuroimage.2018.08.003_bib46) 2018; 170
Zuo (10.1016/j.neuroimage.2018.08.003_bib151) 2018
Desikan (10.1016/j.neuroimage.2018.08.003_bib40) 2006; 31
Giraud (10.1016/j.neuroimage.2018.08.003_bib55) 2016; 124
Hsu (10.1016/j.neuroimage.2018.08.003_bib63) 2002; 16
Middleton (10.1016/j.neuroimage.2018.08.003_bib88) 2000; 31
Rousseau (10.1016/j.neuroimage.2018.08.003_bib108) 2011; 30
Zhang (10.1016/j.neuroimage.2018.08.003_bib149) 2001; 20
Jednoróg (10.1016/j.neuroimage.2018.08.003_bib67) 2013; 219
Ashburner (10.1016/j.neuroimage.2018.08.003_bib6) 2000; 9
Tustison (10.1016/j.neuroimage.2018.08.003_bib135) 2010; 29
Malacarne (10.1016/j.neuroimage.2018.08.003_bib81) 1776
Heimann (10.1016/j.neuroimage.2018.08.003_bib61) 2009; 28
Li (10.1016/j.neuroimage.2018.08.003_bib76) 2016
D'Mello (10.1016/j.neuroimage.2018.08.003_bib45) 2015; 7
Wilcoxon (10.1016/j.neuroimage.2018.08.003_bib143) 1945; 1
Esteban (10.1016/j.neuroimage.2018.08.003_bib49) 2017; 12
Ledig (10.1016/j.neuroimage.2018.08.003_bib74) 2015; 21
Long (10.1016/j.neuroimage.2018.08.003_bib78) 2015
Reuter (10.1016/j.neuroimage.2018.08.003_bib105) 2011; 57
Andreasen (10.1016/j.neuroimage.2018.08.003_bib4) 2008; 64
Nyúl (10.1016/j.neuroimage.2018.08.003_bib95) 1999; 42
Bland (10.1016/j.neuroimage.2018.08.003_bib18) 1986; 327
Buckner (10.1016/j.neuroimage.2018.08.003_bib23) 2004; 23
Tomas-Fernandez (10.1016/j.neuroimage.2018.08.003_bib131) 2015; 34
Shiee (10.1016/j.neuroimage.2018.08.003_bib121) 2011
Kansal (10.1016/j.neuroimage.2018.08.003_bib69) 2016; 140
Abulnaga (10.1016/j.neuroimage.2018.08.003_bib1) 2016
Schmahmann (10.1016/j.neuroimage.2018.08.003_bib115) 2000
Landman (10.1016/j.neuroimage.2018.08.003_bib72) 2013; 11
Schmahmann (10.1016/j.neuroimage.2018.08.003_bib112) 1991; 48
Shattuck (10.1016/j.neuroimage.2018.08.003_bib118) 2002; 6
Fitzpatrick (10.1016/j.neuroimage.2018.08.003_bib53) 2008; 32
Womer (10.1016/j.neuroimage.2018.08.003_bib144) 2016; 176
References_xml – volume: 31
  start-page: 192
  year: 2010
  end-page: 203
  ident: bib82
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: Magn. Reson. Imag.
– volume: 8
  start-page: 92
  year: 2014
  ident: bib125
  article-title: Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia
  publication-title: Front. Syst. Neurosci.
– volume: 31
  start-page: 137
  year: 2008
  end-page: 145
  ident: bib3
  article-title: Neuroanatomy of autism
  publication-title: Trends Neurosci.
– volume: vol. 4
  start-page: 26
  year: 2015
  end-page: 31
  ident: bib130
  article-title: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA: Neural Networks for Machine Learning
– volume: 117
  start-page: 145
  year: 2013
  end-page: 157
  ident: bib21
  article-title: A multiple object geometric deformable model for image segmentation
  publication-title: Comput. Vis. Image Understand.
– volume: 14
  start-page: 401
  year: 2008
  end-page: 413
  ident: bib34
  article-title: Quantitative magnetic resonance image analysis of the cerebellum in macrocephalic and normocephalic children and adults with autism
  publication-title: J. Int. Neuropsychol. Soc.
– volume: 23
  start-page: S69
  year: 2004
  end-page: s84
  ident: bib52
  article-title: Sequence-independent segmentation of magnetic resonance images
  publication-title: Neuroimage
– volume: 32
  start-page: 180
  year: 2006
  end-page: 194
  ident: bib58
  article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer
  publication-title: Neuroimage
– volume: 18
  start-page: 192
  year: 1994
  end-page: 205
  ident: bib35
  article-title: Automatic 3-D intersubject registration of MR volumetric data in standardized Talairach space
  publication-title: J. Comput. Assist. Tomogr.
– volume: 55
  start-page: 61
  year: 2002
  end-page: 67
  ident: bib96
  article-title: Selective reduction of the posterior superior vermis in men with chronic schizophrenia
  publication-title: Schizophr. Res.
– volume: 160
  start-page: 1614
  year: 2003
  end-page: 1617
  ident: bib97
  article-title: Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia
  publication-title: Am. J. Psychiatr.
– year: 2016
  ident: bib1
  article-title: A toolbox to visually explore cerebellar sub-structure shape changes in cerebellar ataxia
  publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA
– volume: 13
  start-page: 434
  year: 1998
  end-page: 439
  ident: bib91
  article-title: Evaluation of cerebellar size in attention-deficit hyperactivity disorder
  publication-title: J. Child Neurol.
– volume: 95
  start-page: 217
  year: 2014
  end-page: 231
  ident: bib98
  article-title: Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates
  publication-title: Neuroimage
– volume: 57
  start-page: 19
  year: 2011
  end-page: 21
  ident: bib105
  article-title: Avoiding asymmetry-induced bias in longitudinal image processing
  publication-title: Neuroimage
– volume: 33
  start-page: 127
  year: 2006
  end-page: 138
  ident: bib43
  article-title: A spatially unbiased atlas template of the human cerebellum
  publication-title: Neuroimage
– volume: 48
  start-page: 1178
  year: 1991
  end-page: 1187
  ident: bib112
  article-title: An emerging concept. The cerebellar contribution to higher function
  publication-title: Arch. Neurol.
– volume: 43
  start-page: 332
  year: 2004
  end-page: 340
  ident: bib48
  article-title: Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings
  publication-title: J. Am. Acad. Child Adolesc. Psychiatr.
– volume: 28
  start-page: 1599
  year: 2015
  end-page: 1624
  ident: bib110
  article-title: Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI
  publication-title: NMR Biomed.
– volume: 39
  start-page: 1064
  year: 2008
  end-page: 1080
  ident: bib119
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: Neuroimage
– volume: 56
  start-page: 907
  year: 2011
  end-page: 922
  ident: bib100
  article-title: Bayesian model of shape and appearance for subcortical brain segmentation
  publication-title: Neuroimage
– volume: 12
  start-page: 346
  year: 2017
  end-page: 350
  ident: bib26
  article-title: Longitudinal multiple sclerosis lesion segmentation data resource
  publication-title: Data in Brief
– year: 2018
  ident: bib80
  article-title: Is the winner really the best? A critical analysis of common research practice in biomedical image analysis competitions
  publication-title: Nat. Commun.
– start-page: 1
  year: 2008
  end-page: 6
  ident: bib127
  article-title: 3D segmentation in the clinic: a Grand challenge II: MS lesion segmentation
  publication-title: 11
– volume: 35
  start-page: 3385
  year: 2014
  end-page: 3401
  ident: bib122
  article-title: Reconstruction of the human cerebral cortex robust to white matter lesions: method and validation
  publication-title: Hum. Brain Mapp.
– volume: 91
  start-page: 429
  year: 1999
  end-page: 438
  ident: bib10
  article-title: Neuronal loss in functional zones of the cerebellum of chronic alcoholics with and without Wernicke's encephalopathy
  publication-title: Neuroscience
– start-page: 424
  year: 2016
  end-page: 432
  ident: bib32
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
  publication-title: 19th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2016)
– volume: 13
  start-page: 701
  year: 2009
  end-page: 714
  ident: bib111
  article-title: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms
  publication-title: Med. Image Anal.
– volume: 23
  start-page: 355
  year: 1997
  end-page: 363
  ident: bib31
  article-title: Selective damage to the cerebellar vermis in chronic alcoholism: a contribution from neurotoxicology to an old problem of selective vulnerability
  publication-title: Neuropathol. Appl. Neurobiol.
– volume: 18
  start-page: 895
  year: 2003
  end-page: 907
  ident: bib70
  article-title: A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry
  publication-title: Neuroimage
– start-page: 9784
  year: 2016
  end-page: 9784 – 7
  ident: bib76
  article-title: Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles
  publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA
– start-page: 92
  year: 2016
  end-page: 99
  ident: bib83
  article-title: HIST: HyperIntensity segmentation tool
  publication-title: Patch-MI 2016: Patch-based Techniques in Medical Imaging
– volume: 34
  start-page: 2014
  year: 2013
  end-page: 2022
  ident: bib89
  article-title: Different patterns of gray matter atrophy in early- and late-onset Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 44
  start-page: 2047
  year: 1994
  ident: bib124
  article-title: The cerebellum contributes to linguistic production
  publication-title: Neurology
– start-page: 490
  year: 1999
  end-page: 495
  ident: bib94
  article-title: New variants of a method of MRI scale normalization
  publication-title: 16th Inf. Proc. in Med. Imaging (IPMI 1999)
– year: 1776
  ident: bib81
  article-title: Nuova esposizione della vera struttura del cervelletto umano
– volume: 219
  start-page: 1697
  year: 2013
  end-page: 1707
  ident: bib67
  article-title: Cognitive subtypes of dyslexia are characterized by distinct patterns of grey matter volume
  publication-title: Brain Struct. Funct.
– volume: 1
  start-page: 579
  year: 1959
  end-page: 688
  ident: bib138
  article-title: A restricted form of cerebellar cortical degeneration occurring in alcoholic patients
  publication-title: AMA Arch. Neurol.
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  ident: bib40
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– year: 2017
  ident: bib57
  article-title: Machine learning in a graph framework for subcortical segmentation
  publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2017), Orlando, FL
– start-page: 291
  year: 2017
  end-page: 298
  ident: bib150
  article-title: Whole brain segmentation and labeling from CT using synthetic MR images
  publication-title: Machine Learning in Medical Imaging (MLMI 2017)
– volume: 41
  start-page: 1184
  year: 2008
  end-page: 1191
  ident: bib30
  article-title: Altered cerebellar feedback projections in Asperger syndrome
  publication-title: Neuroimage
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib59
  article-title: Delving deep into rectifiers: surpassing humanlevel performance on imagenet classification
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV)
– volume: 75
  start-page: 1524
  year: 2004
  end-page: 1531
  ident: bib56
  article-title: Evidence for distinct cognitive deficits after focal cerebellar lesions
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 14
  start-page: 197
  year: 2015
  end-page: 220
  ident: bib14
  article-title: Consensus paper: the role of the cerebellum in perceptual processes
  publication-title: Cerebellum
– year: 1984
  ident: bib66
  article-title: The Cerebellum and Neural Control
– volume: 35
  start-page: 250
  year: 2017
  end-page: 269
  ident: bib79
  article-title: ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  publication-title: Med. Image Anal.
– volume: 64
  start-page: 81
  year: 2008
  end-page: 88
  ident: bib4
  article-title: The role of the cerebellum in schizophrenia
  publication-title: Biol. Psychiatr.
– volume: 16
  start-page: 305
  year: 2002
  end-page: 310
  ident: bib63
  article-title: Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia
  publication-title: Jrnl. of Magnetic Resonance Imaging
– start-page: 656
  year: 2007
  end-page: 659
  ident: bib29
  article-title: A joint registration and segmentation approach to skull stripping
  publication-title: 4
– volume: 7
  start-page: 631
  year: 2015
  end-page: 639
  ident: bib45
  article-title: Cerebellar gray matter and lobular volumes correlate with core autism symptoms
  publication-title: Neuroimage: Clinical
– volume: 66
  start-page: 424
  year: 2006
  end-page: 426
  ident: bib148
  article-title: Pontine and cerebellar atrophy correlate with clinical disability in SCA2
  publication-title: Neurology
– volume: 162
  start-page: 123
  year: 1994
  end-page: 130
  ident: bib38
  article-title: Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic with MR imaging
  publication-title: Am. J. Roentgenol.
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: bib39
  article-title: Cortical surface-based analysis I: segmentation and surface reconstruction
  publication-title: Neuroimage
– volume: 39
  start-page: 238
  year: 2008
  end-page: 247
  ident: bib103
  article-title: Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures
  publication-title: Neuroimage
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bib42
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– year: 2016
  ident: bib102
  article-title: Improving cerebellar segmentation with statistical fusion
  publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  ident: bib149
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the Expectation-Maximization algorithm
  publication-title: IEEE Trans. Med. Imag.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib107
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: 18th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2015)
– volume: 97
  start-page: 281
  year: 1952
  end-page: 356
  ident: bib73
  article-title: The morphogenesis and adult pattern of the lobules and tissues of the cerebellum of the white rat
  publication-title: J. Comp. Neuol.
– volume: 32
  start-page: 466
  year: 2008
  end-page: 485
  ident: bib53
  article-title: The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning
  publication-title: Neurosci. Biobehav. Rev.
– volume: 11
  start-page: 91
  year: 2013
  end-page: 103
  ident: bib72
  article-title: System for integrated neuroimaging analysis and processing of structure
  publication-title: Neuroinformatics
– start-page: 29
  year: 2010
  end-page: 43
  ident: bib12
  article-title: The generalized patchmatch correspondence algorithm
  publication-title: 2010 European Conference on Computer Vision (ECCV 2010)
– volume: 46
  start-page: 39
  year: 2009
  end-page: 46
  ident: bib44
  article-title: A probabilistic MR atlas of the human cerebellum
  publication-title: Neuroimage
– volume: 129
  start-page: 290
  year: 2006
  end-page: 292
  ident: bib114
  article-title: Cognition, emotion and the cerebellum
  publication-title: Brain
– start-page: 1
  year: 2010
  end-page: 7
  ident: bib16
  article-title: Theano: a CPU and GPU math compiler in Python
  publication-title: Proc. 9
– volume: 54
  start-page: 313
  year: 2010
  end-page: 327
  ident: bib54
  article-title: Unbiased average age-appropriate atlases for pediatric studies
  publication-title: Neuroimage
– volume: 49
  start-page: 1524
  year: 2010
  end-page: 1535
  ident: bib123
  article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions
  publication-title: Neuroimage
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: bib68
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
– volume: 16
  start-page: 367
  year: 2004
  end-page: 378
  ident: bib113
  article-title: Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome
  publication-title: J. Neuropsychiatry Clin. Neurosci.
– volume: 35
  start-page: 5026
  year: 2014
  end-page: 5039
  ident: bib141
  article-title: Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)–Implementation and application of the patch-based label-fusion technique with a template library to segment the human cerebellum
  publication-title: Hum. Brain Mapp.
– volume: 327
  start-page: 307
  year: 1986
  end-page: 310
  ident: bib18
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
– volume: 148
  start-page: 77
  year: 2017
  end-page: 102
  ident: bib27
  article-title: Longitudinal multiple sclerosis lesion segmentation: resource & challenge
  publication-title: Neuroimage
– volume: 7
  start-page: 254
  year: 1999
  end-page: 266
  ident: bib7
  article-title: Nonlinear spatial normalization using basis functions
  publication-title: Hum. Brain Mapp.
– start-page: 185
  year: 2012
  end-page: 190
  ident: bib77
  article-title: Topology preserving brain tissue segmentation using graph cuts
  publication-title: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis
– volume: 35
  start-page: 611
  year: 2013
  end-page: 623
  ident: bib139
  article-title: Multi-atlas segmentation with joint label fusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 46
  start-page: 703
  year: 1999
  end-page: 711
  ident: bib93
  article-title: An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept
  publication-title: Biol. Psychiatr.
– volume: 223
  start-page: 187
  year: 2014
  end-page: 191
  ident: bib36
  article-title: Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer's disease: a VBM-DARTEL study
  publication-title: Psychiatr. Res. Neuroimaging
– volume: 140
  start-page: 707
  year: 2016
  end-page: 720
  ident: bib69
  article-title: Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration
  publication-title: Brain
– volume: 147
  start-page: 916
  year: 2017
  end-page: 924
  ident: bib106
  article-title: CERES: a new cerebellum lobule segmentation method
  publication-title: Neuroimage
– volume: 50
  start-page: 121
  year: 1998
  end-page: 130
  ident: bib90
  article-title: Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance
  publication-title: Neurology
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: bib8
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib135
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imag.
– volume: 18
  start-page: 897
  year: 1999
  end-page: 908
  ident: bib137
  article-title: Automated model-based tissue classification of MR images of the brain
  publication-title: IEEE Trans. Med. Imag.
– year: 2000
  ident: bib115
  article-title: MRI atlas of the Human Cerebellum
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: bib9
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
– volume: 34
  start-page: 1993
  year: 2015
  end-page: 2024
  ident: bib87
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imag.
– volume: 54
  start-page: 940
  year: 2011
  end-page: 954
  ident: bib37
  article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation
  publication-title: Neuroimage
– start-page: 1
  year: 2011
  end-page: 12
  ident: bib121
  article-title: Segmentation of brain images using adaptive atlases with application to ventriculomegaly
  publication-title: 22
– volume: 63
  start-page: 742
  year: 2004
  end-page: 745
  ident: bib22
  article-title: Regional reductions of gray matter volume in familial dyslexia
  publication-title: Neurology
– volume: 12
  year: 2017
  ident: bib49
  article-title: MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites
  publication-title: PLoS One
– volume: 9
  start-page: 212
  year: 2000
  end-page: 225
  ident: bib6
  article-title: Image registration using a symmetric prior - in three-dimensions
  publication-title: Hum. Brain Mapp.
– volume: 78
  start-page: 474
  year: 2013
  end-page: 480
  ident: bib92
  article-title: Mapping the effects of ApoE4, age and cognitive status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and growth
  publication-title: Neuroimage
– volume: 172
  start-page: 61
  year: 2009
  end-page: 67
  ident: bib140
  article-title: Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder
  publication-title: Psychiatr. Res. Neuroimaging
– volume: 56
  start-page: 1982
  year: 2010
  end-page: 1992
  ident: bib24
  article-title: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis
  publication-title: Neuroimage
– year: 2015
  ident: bib86
  article-title: MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans
  publication-title: Comput. Intell. Neurosci.
– volume: 12
  start-page: 616
  year: 2008
  end-page: 625
  ident: bib15
  article-title: Homeomorphic brain image segmentation with topological and statistical atlases
  publication-title: Med. Image Anal.
– start-page: 62
  year: 2013
  end-page: 73
  ident: bib19
  article-title: Automated segmentation of the cerebellar lobules using boundary specific classification and evolution
  publication-title: 23rd Inf. Proc. in Med. Imaging (IPMI 2013)
– volume: 176
  start-page: 164
  year: 2016
  end-page: 170
  ident: bib144
  article-title: Sexual dimorphism of the cerebellar vermis in schizophrenia
  publication-title: Schizophr. Res.
– volume: 75
  start-page: 43
  year: 1986
  end-page: 51
  ident: bib132
  article-title: The prevalence of alcoholic cerebellar atrophy: a morphometric and histological study of an autopsy material
  publication-title: J. Neurol. Sci.
– volume: 42
  start-page: 1072
  year: 1999
  end-page: 1081
  ident: bib95
  article-title: On standardizing the MR image intensity scale
  publication-title: Magn. Reson. Med.
– volume: 38
  start-page: 3391
  year: 2017
  end-page: 3401
  ident: bib13
  article-title: Association between serotonin denervation and resting-state functional connectivity in mild cognitive impairment
  publication-title: Hum. Brain Mapp.
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: bib51
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib78
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 20
  year: 2017
  end-page: 28
  ident: bib28
  article-title: Whole brain parcellation with pathology: validation on ventriculomegaly patients
  publication-title: Patch-MI 2017: Patch-based Techniques in Medical Imaging
– year: 2016
  ident: bib145
  article-title: Landmark based shape analysis for cerebellar ataxia classification and structural change pattern visualization
  publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA
– volume: 17
  start-page: 61
  year: 2002
  end-page: 76
  ident: bib101
  article-title: Manual and semiautomated measurement of cerebellar subregions on MR images
  publication-title: Neuroimage
– volume: 64
  start-page: 616
  year: 2013
  end-page: 629
  ident: bib20
  article-title: Approaching expert results using a hierarchical cerebellum parcellation protocol for multiple inexpert human raters
  publication-title: Neuroimage
– volume: 42
  start-page: 1198
  year: 2008
  end-page: 1202
  ident: bib129
  article-title: The cerebellum in mild cognitive impairment and Alzheimer's disease - a structural MRI study
  publication-title: J. Psychiatr. Res.
– year: 2013
  ident: bib84
  article-title: Handbook of the Cerebellum and Cerebellar Disorders
– volume: 11
  year: 2016
  ident: bib11
  article-title: A novel GBM saliency detection model using multi-channel MRI
  publication-title: PLoS One
– year: 2014
  ident: bib71
  article-title: Adam: a Method for Stochastic Optimization
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: bib85
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatr.
– volume: 4
  start-page: 290
  year: 2005
  end-page: 294
  ident: bib116
  article-title: The cerebellum on the rise in human emotion
  publication-title: Cerebellum
– volume: 22
  start-page: 599
  year: 2016
  end-page: 607
  ident: bib142
  article-title: Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis
  publication-title: Multiple Sclerosis Journal
– volume: 13
  start-page: 856
  year: 2001
  end-page: 876
  ident: bib120
  article-title: Magnetic resonance image tissue classification using a partial volume model
  publication-title: Neuroimage
– volume: 103
  start-page: 511
  year: 2014
  end-page: 521
  ident: bib104
  article-title: Automated MRI cerebellar size measurements using active appearance modeling
  publication-title: Neuroimage
– volume: 32
  start-page: 413
  year: 2009
  end-page: 434
  ident: bib126
  article-title: Cerebellum and nonmotor function
  publication-title: Annu. Rev. Neurosci.
– volume: 31
  start-page: 236
  year: 2000
  end-page: 250
  ident: bib88
  article-title: Basal ganglia and cerebellar loops: motor and cognitive circuits
  publication-title: Brain Res. Rev.
– volume: 21
  start-page: 40
  year: 2015
  end-page: 58
  ident: bib74
  article-title: Robust whole-brain segmentation: application to traumatic brain injury
  publication-title: Med. Image Anal.
– volume: 34
  start-page: 1349
  year: 2015
  end-page: 1361
  ident: bib131
  article-title: A model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation
  publication-title: IEEE Trans. Med. Imag.
– volume: 127
  start-page: 435
  year: 2016
  end-page: 444
  ident: bib146
  article-title: Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease
  publication-title: Neuroimage
– start-page: 221
  year: 2009
  end-page: 224
  ident: bib136
  article-title: Cerebellum segmentation in MRI using atlas registration and local multi-scale image descriptors
  publication-title: 6th International Symposium on Biomedical Imaging (ISBI 2009)fp
– volume: 83
  start-page: 579
  year: 2018
  end-page: 588
  ident: bib134
  article-title: Cerebellar volume in autism: literature meta-analysis and analysis of the autism brain imaging data exchange cohort
  publication-title: Biol. Psychiatr.
– volume: 23
  start-page: 724
  year: 2004
  end-page: 738
  ident: bib23
  article-title: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume
  publication-title: Neuroimage
– volume: 23
  start-page: 411
  year: 2011
  end-page: 420
  ident: bib47
  article-title: Morphological cerebral correlates of CERAD test performance in mild cognitive impairment and Alzheimer's disease
  publication-title: Jrnl. Alzheimer’s Disease
– start-page: 202
  year: 2017
  end-page: 209
  ident: bib60
  article-title: Towards topological correct segmentation of macular OCT from cascaded FCNs
  publication-title: Fetal, Infant and Ophthalmic Medical Image Analysis: International Workshop, FIFI 2017, and 4th International Workshop, OMIA 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings
– year: 2018
  ident: bib117
  article-title: Multi-atlas segmentation of the hydrocephalus brain using an adaptive ventricle atlas
  publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2018), Houstan, TX
– start-page: 259
  year: 2016
  end-page: 279
  ident: bib25
  article-title: An overview of the multi-object geometric deformable model approach in biomedical imaging
  publication-title: Medical Image Recognition, Segmentation and Parsing
– start-page: 105
  year: 2014
  end-page: 112
  ident: bib128
  article-title: Optimized patchMatch for near real time and accurate label fusion
  publication-title: 17
– volume: 28
  start-page: 1251
  year: 2009
  end-page: 1265
  ident: bib61
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imag.
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib50
  article-title: FreeSurfer
  publication-title: Neuroimage
– volume: 124
  start-page: 770
  year: 2016
  end-page: 782
  ident: bib55
  article-title: An optimized patchmatch for multi-scale and multi-feature label fusion
  publication-title: Neuroimage
– volume: 6
  start-page: 129
  year: 2002
  end-page: 142
  ident: bib118
  article-title: BrainSuite: an automated cortical surface identification tool
  publication-title: Med. Image Anal.
– volume: 29
  start-page: 838
  year: 2006
  end-page: 852
  ident: bib133
  article-title: Cortical reconstruction using implicit surface evolution: accuracy and precision analysis
  publication-title: Neuroimage
– volume: 40
  start-page: 299
  year: 2013
  end-page: 306
  ident: bib75
  article-title: The role of the cerebellum in the pathophysiology of Parkinson's disease
  publication-title: Can. J. Neurol. Sci./J. Can. Sci. Neurol.
– volume: 36
  start-page: 4016
  year: 2015
  end-page: 4030
  ident: bib17
  article-title: Beat and metaphoric gestures are differentially associated with regional cerebellar and cortical volumes
  publication-title: Hum. Brain Mapp.
– year: 1879
  ident: bib62
  article-title: Handbuch der Nervenlehre des Menschen
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  ident: bib5
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– volume: 170
  start-page: 456
  year: 2018
  end-page: 470
  ident: bib46
  article-title: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study
  publication-title: Neuroimage
– year: 2016
  ident: bib64
  article-title: Combining multi-atlas segmentation with brain surface estimation
  publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA
– start-page: 2487
  year: 2016
  end-page: 2496
  ident: bib33
  article-title: DCAN: deep contour-aware networks for accurate gland segmentation
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 138
  start-page: 197
  year: 2016
  end-page: 210
  ident: bib65
  article-title: Consistent cortical reconstruction and multi-atlas brain segmentation
  publication-title: Neuroimage
– volume: 19
  start-page: 1598
  year: 2015
  end-page: 1609
  ident: bib109
  article-title: Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 2
  start-page: 355
  year: 1998
  end-page: 362
  ident: bib41
  article-title: Neuroimaging studies of the cerebellum: language, learning and memory
  publication-title: Trends Cognit. Sci.
– start-page: 68
  year: 2014
  end-page: 76
  ident: bib147
  article-title: Deep learning for cerebellar ataxia classification and functional score regression
  publication-title: Machine Learning in Medical Imaging
– volume: 30
  start-page: 1852
  year: 2011
  end-page: 1862
  ident: bib108
  article-title: A supervised patch-based approach for human brain labeling
  publication-title: IEEE Trans. Med. Imag.
– year: 2018
  ident: bib151
  article-title: Automatic outlier detection using hidden Markov model for cerebellar lobule segmentation
  publication-title: Proceedings of SPIE Medical Imaging (SPIE-MI 2018), Houstan, TX
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: bib143
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics Bull.
– volume: 8
  start-page: 163
  year: 2014
  ident: bib99
  article-title: The therapeutic potential of the cerebellum in schizophrenia
  publication-title: Front. Syst. Neurosci.
– volume: 160
  start-page: 262
  year: 2003
  end-page: 273
  ident: bib2
  article-title: Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of Autism
  publication-title: Am. J. Psychiatr.
– volume: 54
  start-page: 313
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.003_bib54
  article-title: Unbiased average age-appropriate atlases for pediatric studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.033
– volume: 56
  start-page: 1982
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.003_bib24
  article-title: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.03.045
– start-page: 656
  year: 2007
  ident: 10.1016/j.neuroimage.2018.08.003_bib29
  article-title: A joint registration and segmentation approach to skull stripping
– volume: 16
  start-page: 305
  year: 2002
  ident: 10.1016/j.neuroimage.2018.08.003_bib63
  article-title: Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia
  publication-title: Jrnl. of Magnetic Resonance Imaging
  doi: 10.1002/jmri.10163
– volume: 28
  start-page: 1599
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib110
  article-title: Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3413
– volume: 12
  start-page: 616
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.003_bib15
  article-title: Homeomorphic brain image segmentation with topological and statistical atlases
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2008.06.008
– volume: 14
  start-page: 197
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib14
  article-title: Consensus paper: the role of the cerebellum in perceptual processes
  publication-title: Cerebellum
  doi: 10.1007/s12311-014-0627-7
– volume: 39
  start-page: 238
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.003_bib103
  article-title: Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.05.063
– start-page: 259
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib25
  article-title: An overview of the multi-object geometric deformable model approach in biomedical imaging
– start-page: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.003_bib127
  article-title: 3D segmentation in the clinic: a Grand challenge II: MS lesion segmentation
– volume: 4
  start-page: 290
  year: 2005
  ident: 10.1016/j.neuroimage.2018.08.003_bib116
  article-title: The cerebellum on the rise in human emotion
  publication-title: Cerebellum
  doi: 10.1080/14734220500348584
– start-page: 3431
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib78
  article-title: Fully convolutional networks for semantic segmentation
– volume: 138
  start-page: 197
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib65
  article-title: Consistent cortical reconstruction and multi-atlas brain segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.05.030
– volume: 56
  start-page: 907
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.003_bib100
  article-title: Bayesian model of shape and appearance for subcortical brain segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.046
– year: 2018
  ident: 10.1016/j.neuroimage.2018.08.003_bib80
  article-title: Is the winner really the best? A critical analysis of common research practice in biomedical image analysis competitions
  publication-title: Nat. Commun.
– volume: 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.neuroimage.2018.08.003_bib50
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 23
  start-page: 724
  year: 2004
  ident: 10.1016/j.neuroimage.2018.08.003_bib23
  article-title: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.06.018
– volume: 38
  start-page: 3391
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.003_bib13
  article-title: Association between serotonin denervation and resting-state functional connectivity in mild cognitive impairment
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23595
– volume: 21
  start-page: 40
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib74
  article-title: Robust whole-brain segmentation: application to traumatic brain injury
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.12.003
– volume: 34
  start-page: 2014
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.003_bib89
  article-title: Different patterns of gray matter atrophy in early- and late-onset Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2013.02.013
– year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib64
  article-title: Combining multi-atlas segmentation with brain surface estimation
– volume: 172
  start-page: 61
  year: 2009
  ident: 10.1016/j.neuroimage.2018.08.003_bib140
  article-title: Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder
  publication-title: Psychiatr. Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2008.06.001
– volume: 63
  start-page: 742
  year: 2004
  ident: 10.1016/j.neuroimage.2018.08.003_bib22
  article-title: Regional reductions of gray matter volume in familial dyslexia
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000134673.95020.EE
– volume: 160
  start-page: 262
  year: 2003
  ident: 10.1016/j.neuroimage.2018.08.003_bib2
  article-title: Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of Autism
  publication-title: Am. J. Psychiatr.
  doi: 10.1176/appi.ajp.160.2.262
– start-page: 29
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.003_bib12
  article-title: The generalized patchmatch correspondence algorithm
– start-page: 424
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib32
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
– year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib86
  article-title: MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2015/813696
– start-page: 490
  year: 1999
  ident: 10.1016/j.neuroimage.2018.08.003_bib94
  article-title: New variants of a method of MRI scale normalization
– volume: 148
  start-page: 77
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.003_bib27
  article-title: Longitudinal multiple sclerosis lesion segmentation: resource & challenge
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.064
– volume: 16
  start-page: 367
  year: 2004
  ident: 10.1016/j.neuroimage.2018.08.003_bib113
  article-title: Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome
  publication-title: J. Neuropsychiatry Clin. Neurosci.
  doi: 10.1176/jnp.16.3.367
– volume: 48
  start-page: 1178
  year: 1991
  ident: 10.1016/j.neuroimage.2018.08.003_bib112
  article-title: An emerging concept. The cerebellar contribution to higher function
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.1991.00530230086029
– volume: 14
  start-page: 401
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.003_bib34
  article-title: Quantitative magnetic resonance image analysis of the cerebellum in macrocephalic and normocephalic children and adults with autism
  publication-title: J. Int. Neuropsychol. Soc.
  doi: 10.1017/S1355617708080594
– volume: 29
  start-page: 1310
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.003_bib135
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2010.2046908
– volume: 7
  start-page: 631
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib45
  article-title: Cerebellar gray matter and lobular volumes correlate with core autism symptoms
  publication-title: Neuroimage: Clinical
  doi: 10.1016/j.nicl.2015.02.007
– volume: vol. 4
  start-page: 26
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib130
  article-title: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude
– volume: 55
  start-page: 61
  year: 2002
  ident: 10.1016/j.neuroimage.2018.08.003_bib96
  article-title: Selective reduction of the posterior superior vermis in men with chronic schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/S0920-9964(01)00248-1
– year: 2000
  ident: 10.1016/j.neuroimage.2018.08.003_bib115
– volume: 124
  start-page: 770
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib55
  article-title: An optimized patchmatch for multi-scale and multi-feature label fusion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.076
– volume: 75
  start-page: 1524
  year: 2004
  ident: 10.1016/j.neuroimage.2018.08.003_bib56
  article-title: Evidence for distinct cognitive deficits after focal cerebellar lesions
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2003.018093
– volume: 46
  start-page: 703
  year: 1999
  ident: 10.1016/j.neuroimage.2018.08.003_bib93
  article-title: An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept
  publication-title: Biol. Psychiatr.
  doi: 10.1016/S0006-3223(99)00093-1
– volume: 42
  start-page: 1072
  year: 1999
  ident: 10.1016/j.neuroimage.2018.08.003_bib95
  article-title: On standardizing the MR image intensity scale
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
– volume: 160
  start-page: 1614
  year: 2003
  ident: 10.1016/j.neuroimage.2018.08.003_bib97
  article-title: Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia
  publication-title: Am. J. Psychiatr.
  doi: 10.1176/appi.ajp.160.9.1614
– year: 2014
  ident: 10.1016/j.neuroimage.2018.08.003_bib71
– volume: 50
  start-page: 121
  year: 1998
  ident: 10.1016/j.neuroimage.2018.08.003_bib90
  article-title: Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance
  publication-title: Neurology
  doi: 10.1212/WNL.50.1.121
– volume: 40
  start-page: 299
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.003_bib75
  article-title: The role of the cerebellum in the pathophysiology of Parkinson's disease
  publication-title: Can. J. Neurol. Sci./J. Can. Sci. Neurol.
  doi: 10.1017/S0317167100014232
– volume: 66
  start-page: 424
  year: 2006
  ident: 10.1016/j.neuroimage.2018.08.003_bib148
  article-title: Pontine and cerebellar atrophy correlate with clinical disability in SCA2
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000196464.47508.00
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.neuroimage.2018.08.003_bib149
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the Expectation-Maximization algorithm
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.906424
– volume: 2
  start-page: 355
  year: 1998
  ident: 10.1016/j.neuroimage.2018.08.003_bib41
  article-title: Neuroimaging studies of the cerebellum: language, learning and memory
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/S1364-6613(98)01211-X
– year: 1776
  ident: 10.1016/j.neuroimage.2018.08.003_bib81
– volume: 23
  start-page: 355
  year: 1997
  ident: 10.1016/j.neuroimage.2018.08.003_bib31
  article-title: Selective damage to the cerebellar vermis in chronic alcoholism: a contribution from neurotoxicology to an old problem of selective vulnerability
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/j.1365-2990.1997.tb01309.x
– volume: 35
  start-page: 611
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.003_bib139
  article-title: Multi-atlas segmentation with joint label fusion
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.143
– volume: 11
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib11
  article-title: A novel GBM saliency detection model using multi-channel MRI
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0146388
– start-page: 105
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.003_bib128
  article-title: Optimized patchMatch for near real time and accurate label fusion
– volume: 39
  start-page: 1064
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.003_bib119
  article-title: Construction of a 3D probabilistic atlas of human cortical structures
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.031
– volume: 31
  start-page: 236
  year: 2000
  ident: 10.1016/j.neuroimage.2018.08.003_bib88
  article-title: Basal ganglia and cerebellar loops: motor and cognitive circuits
  publication-title: Brain Res. Rev.
  doi: 10.1016/S0165-0173(99)00040-5
– volume: 29
  start-page: 838
  year: 2006
  ident: 10.1016/j.neuroimage.2018.08.003_bib133
  article-title: Cortical reconstruction using implicit surface evolution: accuracy and precision analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.08.061
– start-page: 221
  year: 2009
  ident: 10.1016/j.neuroimage.2018.08.003_bib136
  article-title: Cerebellum segmentation in MRI using atlas registration and local multi-scale image descriptors
– start-page: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.003_bib16
  article-title: Theano: a CPU and GPU math compiler in Python
  doi: 10.25080/Majora-92bf1922-003
– year: 2013
  ident: 10.1016/j.neuroimage.2018.08.003_bib84
– start-page: 234
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib107
  article-title: U-net: convolutional networks for biomedical image segmentation
– year: 2017
  ident: 10.1016/j.neuroimage.2018.08.003_bib57
  article-title: Machine learning in a graph framework for subcortical segmentation
– volume: 18
  start-page: 897
  year: 1999
  ident: 10.1016/j.neuroimage.2018.08.003_bib137
  article-title: Automated model-based tissue classification of MR images of the brain
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.811270
– volume: 44
  start-page: 2047
  year: 1994
  ident: 10.1016/j.neuroimage.2018.08.003_bib124
  article-title: The cerebellum contributes to linguistic production
  publication-title: Neurology
  doi: 10.1212/WNL.44.11.2047
– volume: 18
  start-page: 192
  year: 1994
  ident: 10.1016/j.neuroimage.2018.08.003_bib35
  article-title: Automatic 3-D intersubject registration of MR volumetric data in standardized Talairach space
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199403000-00005
– start-page: 185
  year: 2012
  ident: 10.1016/j.neuroimage.2018.08.003_bib77
  article-title: Topology preserving brain tissue segmentation using graph cuts
– volume: 75
  start-page: 43
  year: 1986
  ident: 10.1016/j.neuroimage.2018.08.003_bib132
  article-title: The prevalence of alcoholic cerebellar atrophy: a morphometric and histological study of an autopsy material
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(86)90049-3
– start-page: 291
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.003_bib150
  article-title: Whole brain segmentation and labeling from CT using synthetic MR images
– volume: 35
  start-page: 250
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.003_bib79
  article-title: ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.07.009
– volume: 43
  start-page: 332
  year: 2004
  ident: 10.1016/j.neuroimage.2018.08.003_bib48
  article-title: Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings
  publication-title: J. Am. Acad. Child Adolesc. Psychiatr.
  doi: 10.1097/00004583-200403000-00016
– start-page: 202
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.003_bib60
  article-title: Towards topological correct segmentation of macular OCT from cascaded FCNs
– year: 1984
  ident: 10.1016/j.neuroimage.2018.08.003_bib66
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.003_bib68
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 97
  start-page: 281
  year: 1952
  ident: 10.1016/j.neuroimage.2018.08.003_bib73
  article-title: The morphogenesis and adult pattern of the lobules and tissues of the cerebellum of the white rat
  publication-title: J. Comp. Neuol.
  doi: 10.1002/cne.900970204
– volume: 78
  start-page: 474
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.003_bib92
  article-title: Mapping the effects of ApoE4, age and cognitive status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and growth
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.048
– volume: 41
  start-page: 1184
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.003_bib30
  article-title: Altered cerebellar feedback projections in Asperger syndrome
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.041
– volume: 129
  start-page: 290
  year: 2006
  ident: 10.1016/j.neuroimage.2018.08.003_bib114
  article-title: Cognition, emotion and the cerebellum
  publication-title: Brain
  doi: 10.1093/brain/awh729
– volume: 13
  start-page: 701
  year: 2009
  ident: 10.1016/j.neuroimage.2018.08.003_bib111
  article-title: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.06.003
– volume: 8
  start-page: 92
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.003_bib125
  article-title: Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2014.00092
– volume: 22
  start-page: 599
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib142
  article-title: Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis
  publication-title: Multiple Sclerosis Journal
  doi: 10.1177/1352458515595132
– volume: 38
  start-page: 95
  year: 2007
  ident: 10.1016/j.neuroimage.2018.08.003_bib5
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.007
– volume: 23
  start-page: S69
  year: 2004
  ident: 10.1016/j.neuroimage.2018.08.003_bib52
  article-title: Sequence-independent segmentation of magnetic resonance images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.016
– volume: 176
  start-page: 164
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib144
  article-title: Sexual dimorphism of the cerebellar vermis in schizophrenia
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2016.06.028
– volume: 34
  start-page: 1349
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib131
  article-title: A model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2015.2393853
– volume: 140
  start-page: 707
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib69
  article-title: Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration
  publication-title: Brain
– volume: 30
  start-page: 1852
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.003_bib108
  article-title: A supervised patch-based approach for human brain labeling
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2011.2156806
– year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib1
  article-title: A toolbox to visually explore cerebellar sub-structure shape changes in cerebellar ataxia
– volume: 1
  start-page: 80
  year: 1945
  ident: 10.1016/j.neuroimage.2018.08.003_bib143
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics Bull.
  doi: 10.2307/3001968
– volume: 31
  start-page: 968
  year: 2006
  ident: 10.1016/j.neuroimage.2018.08.003_bib40
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– start-page: 1026
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib59
  article-title: Delving deep into rectifiers: surpassing humanlevel performance on imagenet classification
– volume: 162
  start-page: 123
  year: 1994
  ident: 10.1016/j.neuroimage.2018.08.003_bib38
  article-title: Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic with MR imaging
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.162.1.8273650
– volume: 1
  start-page: 579
  year: 1959
  ident: 10.1016/j.neuroimage.2018.08.003_bib138
  article-title: A restricted form of cerebellar cortical degeneration occurring in alcoholic patients
  publication-title: AMA Arch. Neurol.
  doi: 10.1001/archneur.1959.03840060001001
– volume: 7
  start-page: 254
  year: 1999
  ident: 10.1016/j.neuroimage.2018.08.003_bib7
  article-title: Nonlinear spatial normalization using basis functions
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
– volume: 8
  start-page: 163
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.003_bib99
  article-title: The therapeutic potential of the cerebellum in schizophrenia
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2014.00163
– volume: 103
  start-page: 511
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.003_bib104
  article-title: Automated MRI cerebellar size measurements using active appearance modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.08.047
– volume: 9
  start-page: 212
  year: 2000
  ident: 10.1016/j.neuroimage.2018.08.003_bib6
  article-title: Image registration using a symmetric prior - in three-dimensions
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO;2-#
– start-page: 92
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib83
  article-title: HIST: HyperIntensity segmentation tool
– volume: 64
  start-page: 616
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.003_bib20
  article-title: Approaching expert results using a hierarchical cerebellum parcellation protocol for multiple inexpert human raters
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.08.075
– volume: 127
  start-page: 435
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib146
  article-title: Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.09.032
– volume: 147
  start-page: 916
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.003_bib106
  article-title: CERES: a new cerebellum lobule segmentation method
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.003
– volume: 18
  start-page: 895
  year: 2003
  ident: 10.1016/j.neuroimage.2018.08.003_bib70
  article-title: A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00041-7
– volume: 12
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.003_bib49
  article-title: MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0184661
– volume: 26
  start-page: 839
  year: 2005
  ident: 10.1016/j.neuroimage.2018.08.003_bib8
  article-title: Unified segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 6
  start-page: 129
  year: 2002
  ident: 10.1016/j.neuroimage.2018.08.003_bib118
  article-title: BrainSuite: an automated cortical surface identification tool
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(02)00054-3
– volume: 91
  start-page: 429
  year: 1999
  ident: 10.1016/j.neuroimage.2018.08.003_bib10
  article-title: Neuronal loss in functional zones of the cerebellum of chronic alcoholics with and without Wernicke's encephalopathy
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(98)90664-9
– year: 2018
  ident: 10.1016/j.neuroimage.2018.08.003_bib151
  article-title: Automatic outlier detection using hidden Markov model for cerebellar lobule segmentation
– start-page: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.003_bib121
  article-title: Segmentation of brain images using adaptive atlases with application to ventriculomegaly
– volume: 32
  start-page: 413
  year: 2009
  ident: 10.1016/j.neuroimage.2018.08.003_bib126
  article-title: Cerebellum and nonmotor function
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.31.060407.125606
– volume: 35
  start-page: 3385
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.003_bib122
  article-title: Reconstruction of the human cerebral cortex robust to white matter lesions: method and validation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22409
– volume: 35
  start-page: 5026
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.003_bib141
  article-title: Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)–Implementation and application of the patch-based label-fusion technique with a template library to segment the human cerebellum
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22529
– volume: 31
  start-page: 137
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.003_bib3
  article-title: Neuroanatomy of autism
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.12.005
– volume: 19
  start-page: 659
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.003_bib85
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatr.
  doi: 10.1038/mp.2013.78
– volume: 54
  start-page: 940
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.003_bib37
  article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.018
– volume: 33
  start-page: 341
  year: 2002
  ident: 10.1016/j.neuroimage.2018.08.003_bib51
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 12
  start-page: 26
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.003_bib9
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– volume: 11
  start-page: 91
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.003_bib72
  article-title: System for integrated neuroimaging analysis and processing of structure
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-012-9159-9
– volume: 26
  start-page: 297
  year: 1945
  ident: 10.1016/j.neuroimage.2018.08.003_bib42
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 23
  start-page: 411
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.003_bib47
  article-title: Morphological cerebral correlates of CERAD test performance in mild cognitive impairment and Alzheimer's disease
  publication-title: Jrnl. Alzheimer’s Disease
  doi: 10.3233/JAD-2010-100156
– volume: 33
  start-page: 127
  year: 2006
  ident: 10.1016/j.neuroimage.2018.08.003_bib43
  article-title: A spatially unbiased atlas template of the human cerebellum
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.05.056
– volume: 9
  start-page: 179
  year: 1999
  ident: 10.1016/j.neuroimage.2018.08.003_bib39
  article-title: Cortical surface-based analysis I: segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 117
  start-page: 145
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.003_bib21
  article-title: A multiple object geometric deformable model for image segmentation
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1016/j.cviu.2012.10.006
– volume: 83
  start-page: 579
  year: 2018
  ident: 10.1016/j.neuroimage.2018.08.003_bib134
  article-title: Cerebellar volume in autism: literature meta-analysis and analysis of the autism brain imaging data exchange cohort
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2017.09.029
– year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib102
  article-title: Improving cerebellar segmentation with statistical fusion
– start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.003_bib19
  article-title: Automated segmentation of the cerebellar lobules using boundary specific classification and evolution
– volume: 13
  start-page: 856
  year: 2001
  ident: 10.1016/j.neuroimage.2018.08.003_bib120
  article-title: Magnetic resonance image tissue classification using a partial volume model
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0730
– volume: 32
  start-page: 180
  year: 2006
  ident: 10.1016/j.neuroimage.2018.08.003_bib58
  article-title: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.02.051
– volume: 31
  start-page: 192
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.003_bib82
  article-title: Adaptive non-local means denoising of MR images with spatially varying noise levels
  publication-title: Magn. Reson. Imag.
  doi: 10.1002/jmri.22003
– volume: 12
  start-page: 346
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.003_bib26
  article-title: Longitudinal multiple sclerosis lesion segmentation data resource
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2017.04.004
– volume: 223
  start-page: 187
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.003_bib36
  article-title: Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer's disease: a VBM-DARTEL study
  publication-title: Psychiatr. Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2014.06.006
– volume: 36
  start-page: 4016
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib17
  article-title: Beat and metaphoric gestures are differentially associated with regional cerebellar and cortical volumes
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22894
– start-page: 20
  year: 2017
  ident: 10.1016/j.neuroimage.2018.08.003_bib28
  article-title: Whole brain parcellation with pathology: validation on ventriculomegaly patients
– year: 2018
  ident: 10.1016/j.neuroimage.2018.08.003_bib117
  article-title: Multi-atlas segmentation of the hydrocephalus brain using an adaptive ventricle atlas
– volume: 28
  start-page: 1251
  year: 2009
  ident: 10.1016/j.neuroimage.2018.08.003_bib61
  article-title: Comparison and evaluation of methods for liver segmentation from CT datasets
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2009.2013851
– start-page: 68
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.003_bib147
  article-title: Deep learning for cerebellar ataxia classification and functional score regression
– volume: 327
  start-page: 307
  year: 1986
  ident: 10.1016/j.neuroimage.2018.08.003_bib18
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)90837-8
– year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib145
  article-title: Landmark based shape analysis for cerebellar ataxia classification and structural change pattern visualization
– volume: 32
  start-page: 466
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.003_bib53
  article-title: The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2007.08.004
– volume: 95
  start-page: 217
  year: 2014
  ident: 10.1016/j.neuroimage.2018.08.003_bib98
  article-title: Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.037
– volume: 219
  start-page: 1697
  year: 2013
  ident: 10.1016/j.neuroimage.2018.08.003_bib67
  article-title: Cognitive subtypes of dyslexia are characterized by distinct patterns of grey matter volume
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0595-6
– volume: 34
  start-page: 1993
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib87
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2014.2377694
– volume: 49
  start-page: 1524
  year: 2010
  ident: 10.1016/j.neuroimage.2018.08.003_bib123
  article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.005
– year: 1879
  ident: 10.1016/j.neuroimage.2018.08.003_bib62
– volume: 57
  start-page: 19
  year: 2011
  ident: 10.1016/j.neuroimage.2018.08.003_bib105
  article-title: Avoiding asymmetry-induced bias in longitudinal image processing
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.076
– volume: 170
  start-page: 456
  year: 2018
  ident: 10.1016/j.neuroimage.2018.08.003_bib46
  article-title: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.04.039
– volume: 19
  start-page: 1598
  year: 2015
  ident: 10.1016/j.neuroimage.2018.08.003_bib109
  article-title: Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2015.2439242
– volume: 13
  start-page: 434
  year: 1998
  ident: 10.1016/j.neuroimage.2018.08.003_bib91
  article-title: Evaluation of cerebellar size in attention-deficit hyperactivity disorder
  publication-title: J. Child Neurol.
  doi: 10.1177/088307389801300904
– start-page: 2487
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib33
  article-title: DCAN: deep contour-aware networks for accurate gland segmentation
– volume: 42
  start-page: 1198
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.003_bib129
  article-title: The cerebellum in mild cognitive impairment and Alzheimer's disease - a structural MRI study
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2007.12.002
– volume: 46
  start-page: 39
  year: 2009
  ident: 10.1016/j.neuroimage.2018.08.003_bib44
  article-title: A probabilistic MR atlas of the human cerebellum
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.045
– start-page: 9784
  year: 2016
  ident: 10.1016/j.neuroimage.2018.08.003_bib76
  article-title: Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles
– volume: 64
  start-page: 81
  year: 2008
  ident: 10.1016/j.neuroimage.2018.08.003_bib4
  article-title: The role of the cerebellum in schizophrenia
  publication-title: Biol. Psychiatr.
  doi: 10.1016/j.biopsych.2008.01.003
– volume: 17
  start-page: 61
  year: 2002
  ident: 10.1016/j.neuroimage.2018.08.003_bib101
  article-title: Manual and semiautomated measurement of cerebellar subregions on MR images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1207
SSID ssj0009148
Score 2.5676432
Snippet The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 150
SubjectTerms Adult
Algorithms
Alzheimer's disease
Attention Deficit Disorder with Hyperactivity - diagnostic imaging
Attention deficit hyperactivity disorder
Autism
Autism Spectrum Disorder - diagnostic imaging
Automation
Cerebellar ataxia
Cerebellar Ataxia - diagnostic imaging
Cerebellum
Cerebellum - diagnostic imaging
Child
Cognitive ability
Cohort Studies
Computer Science
Dementia
Female
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Learning algorithms
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
Male
Medical Imaging
Mental disorders
Motor task performance
Neuroimaging - methods
Neuroimaging - standards
Neurological diseases
Pediatrics
Schizophrenia
Short term memory
Teams
Title Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918306906
https://dx.doi.org/10.1016/j.neuroimage.2018.08.003
https://www.ncbi.nlm.nih.gov/pubmed/30099076
https://www.proquest.com/docview/2122415341
https://www.proquest.com/docview/2087993596
https://hal.science/hal-01918431
https://pubmed.ncbi.nlm.nih.gov/PMC6271471
Volume 183
WOSCitedRecordID wos000447750200014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELboLkJceD8KS2UQVwvHdpxEHFBZdbUgWlUIpN6i2HHZIjYpfazEv2fGcVLKSqgSl1SNa9XJjMefPd_MEPJaWi3UvIBNDqw_DBBxxAxs4JjSBtEpd6kxvthEMpmks1k2DQdu60CrbG2iN9RlbfGM_I3wLqAYjO675U-GVaPQuxpKaPTIMWZJEJ66N90l3Y1UEwoXS5ZGURaYPA2_y-eLXFzCrEWCV-oTebals64vT70L5EleB6F_cyn_WJzO7v7vY90jdwIspcNGj-6TG656QG6Ng-P9ISlOm3qF1TeKB_a_aLHd1AB2XUl9SBKr5wygJPLsqHUrh-6M7SVdFt4z4KVPMZKFwpuoMG6Swja_xmQfjvq3s35Evp6Nvpyes1CdgVmt1YYVmRNcZtzYeSFFbEsXOynSUsCM13A1wihexMpa7qyyxjqpuXClMcIJWWTyMTmq6so9JVSJIuFGa6e1UaXl8E0JW0alVHYuoqJPklYouQ2py7GCxo-85ah9z3fizFGcORbX5LJPoq7nsknfcUCfrJV73oangkHNYY05oO_brm-AMA00ObD3K1CzbqCY-ft8-CnHe4DEsTJPdBX1yUmrSXmwN-t8p0Z98rJrBkvhhVy5egu_4WmSYSC27pMnjdJ2fyVxp8ATaEn21HlvLPst1eLCZyPXIokA4Tz797Cek9v4oA0R6IQcbVZb94LctFebxXo1IL1klvhrOiDHww-j2Uf4fD-aTD_D3bEYD_zE_g3_ElSm
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCF9yNQwCA4Wk0cx0mEEKoK1VbdXXEoUm_Gdrx0qzZZ9lHUP8VvZMZ5LEsltJceuKyU9Y7ixPPc-WaGkLexlVyMNAQ5YH8YeMQRMxDAMSENeqehy4zxwybS4TA7Osq_bJBfbS0MwipbnegVdVFZ_I98m_sUUAJK9-PkB8OpUZhdbUdo1Gxx4C5-Qsg2-7D_Cc73Hed7nw93e6yZKsCslGLOdO54CJG-sSMd88QWLnExzwoOnCrh03AjQp0Ia0NnhTXWxTLkrjCGOx5rbL4EKv-6wJJRhArywbLJbyTq0rskZlkU5Q1yqMaT-f6U4zPQEggoy3zj0HZU12VzeO0YcZmXnd6_sZt_GMO9u__ba7xH7jRuN92p5eQ-2XDlA3Jz0AALHhK9W89jLL9TTEhcUL2YV-DMu4L6kitWjRi4yogjpNZNHaZrFmd0on3mw3M3xUodCm--xLpQOnUY5IBIUX8as0fk65U84GOyWVale0qo4DoNjZROSiMKG8KV4LaIiljYEY90QNKWCZRtWrPjhJBT1WLwTtSSfRSyj8LhoWEckKijnNTtSdagyVs-U235LRgMBTZ0Ddr3HW3jotWu15rUb4Ctu41iZ_PeTl_hdxBp4OSh6DwKyFbLuarRpzO1ZNuAvO6WQRP6Qy5dtYDfhFmaY6G5DMiTWki6W8UYCYUprKQr4rOyl9WVcnzsu61LnkbgwT3797ZekVu9w0Ff9feHB8_JbXzoGvS0RTbn04V7QW7Y8_l4Nn3pVQYl365auH4DBOytxw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDk174fujMMAgeIyWOI6TCiE0tlWbNqoKgbQ3YzsO68TS0o-h_Wv8ddw5SUuZhPqyB14qtc6pTnx3_l38uzuA17GVXBQagxzcfwJExFFgMIALhDSETkOXGeObTaS9XnZy0umvwa8mF4ZolY1P9I46H1p6R77N_RFQgk53u6hpEf297vvRj4A6SNFJa9NOo1KRI3f5E8O3ybvDPVzrN5x39z_vHgR1h4HASimmge44HmLUb2yhY57Y3CUu5lnOUWslfhpuRKgTYW3orLDGuliG3OXGcMdjTYWY0P2vpwgyRAvWP-z3-p8WJX8jUSXiJXGQRVGn5hFV7DJfrXJwjj6D6GWZLyPaNO66ujneOCWW5lUI_DeT84-tsXv7f36od-BWDcjZTmVBd2HNlfdg42NNObgPerfq1Fh-YzT5S6Zn0yHCfJczn4wVDIsAQTQxDJl1Y0cHObNzNtL-TMTrPaMcHoarUFLGKBs7Cn_Q2JhfmckD-HItN_gQWuWwdI-BCa7T0EjppDQityF-E9zmUR4LW_BItyFtFELZumg79Q75rhp23plaqJIiVVLUVjSM2xDNJUdV4ZIVZDqNzqkmMRe3EoW76wqyb-eyNXirQNmK0q9QxecTpZrnBzvHin7DGIR6EkUXURu2Gi1WtaedqIUKt-HlfBh9pF_k0g1neE2YpR1KQZdteFQZzPyvYoqRwhRH0iVTWprL8kg5OPV12CVPI8R2T_49rRewgTaljg97R09hk-65YkNtQWs6nrlncNNeTAeT8fPafzD4et3W9RvjJ7fh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+fully+automated+state-of-the-art+cerebellum+parcellation+from+magnetic+resonance+images&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Carass%2C+Aaron&rft.au=Cuzzocreo%2C+Jennifer+L&rft.au=Han%2C+Shuo&rft.au=Hernandez-Castillo%2C+Carlos+R&rft.date=2018-12-01&rft.eissn=1095-9572&rft.volume=183&rft.spage=150&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.08.003&rft_id=info%3Apmid%2F30099076&rft.externalDocID=30099076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon