Removing inter-subject technical variability in magnetic resonance imaging studies
Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variabili...
Gespeichert in:
| Veröffentlicht in: | NeuroImage (Orlando, Fla.) Jg. 132; S. 198 - 212 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
15.05.2016
Elsevier Limited |
| Schlagworte: | |
| ISSN: | 1053-8119, 1095-9572 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variability associated with imaging site, scanner effect, and other technical artifacts is still present after standard intensity normalization in large multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel Effect by Linear regression), a tool to remove residual technical variability after intensity normalization. As proposed by SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch effect correction tools largely used in genomics, we decompose the voxel intensities of images registered to a template into a biological component and an unwanted variation component. The unwanted variation component is estimated from a control region obtained from the cerebrospinal fluid (CSF), where intensities are known to be unassociated with disease status and other clinical covariates. We perform a singular value decomposition (SVD) of the control voxels to estimate factors of unwanted variation. We then estimate the unwanted factors using linear regression for every voxel of the brain and take the residuals as the RAVEL-corrected intensities. We assess the performance of RAVEL using T1-weighted (T1-w) images from more than 900 subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compare RAVEL to two intensity-normalization-only methods: histogram matching and White Stripe. We show that RAVEL performs best at improving the replicability of the brain regions that are empirically found to be most associated with AD, and that these regions are significantly more present in structures impacted by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area, and fornix stria terminals). In addition, we show that the RAVEL-corrected intensities have the best performance in distinguishing between MCI subjects and healthy subjects using the mean hippocampal intensity (AUC=67%), a marked improvement compared to results from intensity normalization alone (AUC=63% and 59% for histogram matching and White Stripe, respectively). RAVEL is promising for many other imaging modalities.
•Between-scan unwanted variation is still present after intensity normalization.•We propose a scan-effect removal tool for removing post-normalization artifacts.•We model the unwanted variability between MRI T1-w scans using CSF region.•We use a large subset of the ADNI database to showcase our method.•We show that our method improves replicability of the voxels associated with AD.•MRI intensities corrected by our method improves prediction of AD and MCI. |
|---|---|
| AbstractList | Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variability associated with imaging site, scanner effect, and other technical artifacts is still present after standard intensity normalization in large multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel Effect by Linear regression), a tool to remove residual technical variability after intensity normalization. As proposed by SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch effect correction tools largely used in genomics, we decompose the voxel intensities of images registered to a template into a biological component and an unwanted variation component. The unwanted variation component is estimated from a control region obtained from the cerebrospinal fluid (CSF), where intensities are known to be unassociated with disease status and other clinical covariates. We perform a singular value decomposition (SVD) of the control voxels to estimate factors of unwanted variation. We then estimate the unwanted factors using linear regression for every voxel of the brain and take the residuals as the RAVEL-corrected intensities. We assess the performance of RAVEL using T1-weighted (T1-w) images from more than 900 subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compare RAVEL to two intensity-normalization-only methods: histogram matching and White Stripe. We show that RAVEL performs best at improving the replicability of the brain regions that are empirically found to be most associated with AD, and that these regions are significantly more present in structures impacted by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area, and fornix stria terminals). In addition, we show that the RAVEL-corrected intensities have the best performance in distinguishing between MCI subjects and healthy subjects using the mean hippocampal intensity (AUC=67%), a marked improvement compared to results from intensity normalization alone (AUC=63% and 59% for histogram matching and White Stripe, respectively). RAVEL is promising for many other imaging modalities. Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variability associated with imaging site, scanner effect, and other technical artifacts is still present after standard intensity normalization in large multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel Effect by Linear regression), a tool to remove residual technical variability after intensity normalization. As proposed by SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch effect correction tools largely used in genomics, we decompose the voxel intensities of images registered to a template into a biological component and an unwanted variation component. The unwanted variation component is estimated from a control region obtained from the cerebrospinal fluid (CSF), where intensities are known to be unassociated with disease status and other clinical covariates. We perform a singular value decomposition (SVD) of the control voxels to estimate factors of unwanted variation. We then estimate the unwanted factors using linear regression for every voxel of the brain and take the residuals as the RAVEL-corrected intensities. We assess the performance of RAVEL using T1-weighted (T1-w) images from more than 900 subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compare RAVEL to two intensity-normalization-only methods: histogram matching and White Stripe. We show that RAVEL performs best at improving the replicability of the brain regions that are empirically found to be most associated with AD, and that these regions are significantly more present in structures impacted by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area, and fornix stria terminals). In addition, we show that the RAVEL-corrected intensities have the best performance in distinguishing between MCI subjects and healthy subjects using the mean hippocampal intensity (AUC=67%), a marked improvement compared to results from intensity normalization alone (AUC=63% and 59% for histogram matching and White Stripe, respectively). RAVEL is promising for many other imaging modalities. •Between-scan unwanted variation is still present after intensity normalization.•We propose a scan-effect removal tool for removing post-normalization artifacts.•We model the unwanted variability between MRI T1-w scans using CSF region.•We use a large subset of the ADNI database to showcase our method.•We show that our method improves replicability of the voxels associated with AD.•MRI intensities corrected by our method improves prediction of AD and MCI. |
| Author | Crainiceanu, Ciprian M. Sweeney, Elizabeth M. Shinohara, Russell T. Fortin, Jean-Philippe Muschelli, John |
| AuthorAffiliation | 2 Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania 1 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, University of Pennsylvania |
| AuthorAffiliation_xml | – name: 1 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, University of Pennsylvania – name: 2 Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania |
| Author_xml | – sequence: 1 givenname: Jean-Philippe surname: Fortin fullname: Fortin, Jean-Philippe organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA – sequence: 2 givenname: Elizabeth M. surname: Sweeney fullname: Sweeney, Elizabeth M. organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA – sequence: 3 givenname: John surname: Muschelli fullname: Muschelli, John organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA – sequence: 4 givenname: Ciprian M. surname: Crainiceanu fullname: Crainiceanu, Ciprian M. organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA – sequence: 5 givenname: Russell T. surname: Shinohara fullname: Shinohara, Russell T. email: rshi@upenn.edu organization: Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26923370$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhS1URB_wF1AkNmwS_EjsZIOAipdUCamCteU4N9MbMnaxnZHm3-PQlsKsZnUt-9zPx77nnJw474CQgtGKUSbfTJWDJXjcmg1UPO9UlFdUyCfkjNGuKbtG8ZN13YiyZaw7JecxTpTSjtXtM3LKZceFUPSMXF_D1u_QbQp0CUIZl34Cm4oE9sahNXOxMwFNjzOmfdYU-UoHCW0RIHpnnIVitbESYloGhPicPB3NHOHFfb0gPz59_H75pbz69vnr5fur0kopUjnQMVvtO2EaQ-vRtip7atlojJCSUdlb1bCOK56rlBIaBZbBIOUg6r5vB3FB3t5xb5d-C4MFl4KZ9W3IfsJee4P6_xOHN3rjd7ppaipUlwGv7wHB_1ogJr3FaGGejQO_RM1U9iQ5Fc0xUsm4FLXK0lcH0skvweWf0KylXDWioyKrXv5r_q_rh8k8vs4GH2OAUVtMJqFf34KzZlSvUdCTfoyCXqOgKdc5ChnQHgAe7jii9cNdK-Tx7RCCjhYhj3rAkMOhB4_HQN4dQOyMfyL1E_bHIX4Dc0DriQ |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2017_08_047 crossref_primary_10_1002_jmri_27558 crossref_primary_10_1038_s41588_022_01039_6 crossref_primary_10_1002_hbm_25115 crossref_primary_10_1002_hbm_24463 crossref_primary_10_1007_s00330_021_08154_8 crossref_primary_10_1016_j_ejmp_2020_02_007 crossref_primary_10_1111_jon_12673 crossref_primary_10_1016_j_neuroimage_2021_118709 crossref_primary_10_3389_fninf_2019_00002 crossref_primary_10_3390_metabo12030231 crossref_primary_10_1002_jmri_28887 crossref_primary_10_1016_j_neuroimage_2017_11_024 crossref_primary_10_1038_s41598_022_16375_0 crossref_primary_10_1093_gigascience_giaf092 crossref_primary_10_1016_j_bspc_2023_105002 crossref_primary_10_1038_s41598_022_14904_5 crossref_primary_10_3389_fninf_2025_1553035 crossref_primary_10_1016_j_media_2024_103388 crossref_primary_10_3389_fnins_2020_00396 crossref_primary_10_3389_fneur_2022_850642 crossref_primary_10_1007_s10334_020_00892_y crossref_primary_10_1162_imag_a_00522 crossref_primary_10_3389_fnins_2021_708196 crossref_primary_10_3390_diagnostics13050849 crossref_primary_10_1007_s11604_023_01432_z crossref_primary_10_1016_j_neuroimage_2025_121317 crossref_primary_10_1186_s12888_022_04509_7 crossref_primary_10_3389_fnins_2023_1146175 crossref_primary_10_3390_app11041773 crossref_primary_10_1016_j_neuroimage_2023_120125 crossref_primary_10_1016_j_media_2020_101879 crossref_primary_10_1007_s12021_025_09746_1 crossref_primary_10_1016_j_eswa_2025_126659 crossref_primary_10_1016_j_neuroimage_2025_121297 crossref_primary_10_1016_j_neurobiolaging_2023_07_006 crossref_primary_10_1038_s41598_020_61178_w crossref_primary_10_1016_j_ijoes_2025_101050 crossref_primary_10_1016_j_nicl_2022_102972 crossref_primary_10_1016_j_nicl_2022_103148 crossref_primary_10_1002_ima_22768 crossref_primary_10_1038_s41598_024_59014_6 crossref_primary_10_1038_s41598_019_57325_7 crossref_primary_10_1111_acps_12964 crossref_primary_10_3389_fnins_2021_608808 crossref_primary_10_1016_j_neuroimage_2019_116442 crossref_primary_10_1038_s41398_020_0798_6 crossref_primary_10_1093_neuonc_noy021 crossref_primary_10_1162_imag_a_00011 crossref_primary_10_1016_j_compbiomed_2024_109131 crossref_primary_10_1002_hbm_26661 crossref_primary_10_1088_1361_6560_ab5c5b crossref_primary_10_1016_j_nicl_2021_102924 crossref_primary_10_1016_j_media_2023_102799 crossref_primary_10_3349_ymj_2024_0198 crossref_primary_10_1093_biostatistics_kxx068 crossref_primary_10_1002_sim_9604 crossref_primary_10_1016_j_mri_2019_05_041 crossref_primary_10_1038_s44172_023_00140_w crossref_primary_10_1109_TMI_2018_2794918 crossref_primary_10_1002_da_22627 crossref_primary_10_1016_j_inffus_2022_01_001 crossref_primary_10_1088_1741_2552_ad8837 crossref_primary_10_1109_JBHI_2023_3280823 crossref_primary_10_1002_hbm_25724 crossref_primary_10_1016_j_mri_2022_12_004 crossref_primary_10_1002_hbm_25688 crossref_primary_10_1016_j_neuroimage_2020_117242 crossref_primary_10_1016_j_media_2025_103483 crossref_primary_10_1109_TMI_2019_2895020 crossref_primary_10_1016_j_media_2023_102926 crossref_primary_10_1016_j_heliyon_2023_e19038 crossref_primary_10_1016_j_neuroimage_2022_119330 crossref_primary_10_3390_jimaging8110303 crossref_primary_10_1038_s41598_020_72535_0 crossref_primary_10_1038_s41588_019_0516_6 crossref_primary_10_1016_j_neuroimage_2025_121395 crossref_primary_10_1016_j_cortex_2024_09_011 crossref_primary_10_1259_bjr_20170577 crossref_primary_10_1016_j_mri_2021_03_011 crossref_primary_10_1016_j_neuroimage_2021_118703 crossref_primary_10_1016_j_wneu_2024_01_074 crossref_primary_10_1007_s00247_021_05064_1 crossref_primary_10_1016_j_neuroimage_2021_118822 crossref_primary_10_3390_jcdd10090381 crossref_primary_10_1214_20_BA1240 crossref_primary_10_3390_jcm8091287 crossref_primary_10_1002_hbm_25755 crossref_primary_10_1162_imag_a_00157 crossref_primary_10_1038_s41598_023_43874_5 crossref_primary_10_1016_j_neucom_2023_126493 |
| Cites_doi | 10.1002/mrm.22159 10.1523/JNEUROSCI.16-14-04491.1996 10.1212/WNL.55.4.484 10.1109/TMI.2010.2046908 10.1017/S1041610202008281 10.1002/hbm.10062 10.1016/j.neuroimage.2013.05.007 10.1016/j.neurobiolaging.2003.08.006 10.1016/j.jns.2005.02.009 10.1186/s13059-014-0503-2 10.1038/nrg2825 10.1093/biostatistics/kxr034 10.1006/nimg.2000.0582 10.1136/jnnp.63.2.214 10.1007/s004150050387 10.1177/1352458514551594 10.1016/j.neuroimage.2013.03.066 10.1016/j.neurobiolaging.2009.10.006 10.1136/jnnp.71.4.441 10.1002/ana.410320412 10.1002/jmri.21049 10.1016/j.neuroimage.2011.05.038 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M 10.1038/nn.3606 10.1073/pnas.1421412111 10.32614/RJ-2015-013 10.1016/0197-4580(94)90143-0 10.1016/S0197-4580(03)00084-8 10.1016/j.neuroimage.2009.01.054 10.1002/jmri.20658 10.1038/nmeth756 10.1109/42.836373 10.1016/j.neuroimage.2009.12.059 10.1016/j.pscychresns.2006.12.013 10.1093/nar/gku864 10.1016/j.nurt.2007.05.008 10.1016/j.neuroimage.2007.09.073 10.1016/j.neuroimage.2004.07.051 10.1093/bib/bbt054 10.1212/WNL.52.7.1397 10.1016/0730-725X(93)90474-R 10.1111/jon.12129 10.1212/WNL.54.9.1760 10.1016/j.jalz.2012.01.011 10.3233/JAD-2012-102103 10.1016/j.media.2007.06.004 10.1016/j.nicl.2014.08.008 10.1016/j.neuroimage.2009.01.002 10.1016/j.pscychresns.2011.06.014 10.1097/00001756-200210280-00022 10.1016/j.neuroimage.2005.08.009 10.1109/42.906424 10.1109/ISBI.2004.1398484 10.1111/j.1552-6569.2008.00296.x 10.1073/pnas.0808709105 10.1371/journal.pone.0025446 10.1001/archneur.1992.00530310053012 10.1001/archneur.59.1.62 10.1212/WNL.41.3.351 10.1177/1352458515569098 10.1016/j.media.2010.12.003 10.1191/135248506ms1301oa 10.1016/j.neuroimage.2008.06.037 10.1016/j.neuroimage.2005.05.015 10.1016/S1474-4422(06)70550-6 10.1016/j.nicl.2013.03.002 10.1016/j.nicl.2015.10.013 10.1212/WNL.57.9.1669 |
| ContentType | Journal Article |
| Copyright | 2016 Published by Elsevier Inc. Copyright Elsevier Limited May 15, 2016 |
| Copyright_xml | – notice: 2016 – notice: Published by Elsevier Inc. – notice: Copyright Elsevier Limited May 15, 2016 |
| CorporateAuthor | The Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: The Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 5PM |
| DOI | 10.1016/j.neuroimage.2016.02.036 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | MEDLINE ProQuest One Psychology Engineering Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 212 |
| ExternalDocumentID | PMC5540379 4113218161 26923370 10_1016_j_neuroimage_2016_02_036 S1053811916001452 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB017255 – fundername: NINDS NIH HHS grantid: R01 NS085211 – fundername: NIA NIH HHS grantid: T32 AG000247 – fundername: NINDS NIH HHS grantid: R21 NS093349 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G 9DU AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFFHD AFPKN AGQPQ AIGII AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 7QO 5PM |
| ID | FETCH-LOGICAL-c663t-d0f095b93a5a04fc8792381faa366106bc7519272c75666e57ec1ed66d34bb8d3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 107 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374832200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 |
| IngestDate | Tue Nov 04 01:35:32 EST 2025 Tue Oct 07 09:45:10 EDT 2025 Sat Sep 27 19:11:14 EDT 2025 Tue Oct 07 07:16:43 EDT 2025 Mon Jul 21 06:05:46 EDT 2025 Sat Nov 29 04:30:44 EST 2025 Tue Nov 18 20:40:26 EST 2025 Fri Feb 23 02:25:09 EST 2024 Tue Oct 14 19:31:22 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ADNI Normalization MRI Alzheimer's disease Scan effect |
| Language | English |
| License | Published by Elsevier Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c663t-d0f095b93a5a04fc8792381faa366106bc7519272c75666e57ec1ed66d34bb8d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf |
| OpenAccessLink | http://doi.org/10.1016/j.neuroimage.2016.02.036 |
| PMID | 26923370 |
| PQID | 1802753903 |
| PQPubID | 2031077 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5540379 proquest_miscellaneous_1787962035 proquest_miscellaneous_1786126347 proquest_journals_1802753903 pubmed_primary_26923370 crossref_citationtrail_10_1016_j_neuroimage_2016_02_036 crossref_primary_10_1016_j_neuroimage_2016_02_036 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_02_036 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_02_036 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-15 |
| PublicationDateYYYYMMDD | 2016-05-15 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Shinohara, Muschelli (bb0330) 2015 Cameron Craddock, Holtzheimer, Hu, Mayberg (bb0050) 2009; 620 Wolz, Julkunen, Koikkalainen, Niskanen, Zhang, Rueckert, Soininen, Lötjönen (bb0415) 2011; 60 Fox, Warrington, Freeborough, Hartikainen, Kennedy, Stevens, Rossor (bb0110) 1996; 119 Sweeney, Shinohara, Dewey, Schindler, Muschelli, Reich, Crainiceanu, Eloyan (bb0360) 2016; 10 Madabhushi, Udupa, Moonis (bb0230) 2006; 240 Jacob, Gagnon-Bartsch, Speed (bb0170) 2013 Leek (bb0190) 2014; 420 Leung, Clarkson, Bartlett, Clegg, Jack, Weiner, Fox, Ourselin, Alzheimer's Disease Neuroimaging Initiative (bb0215) 2010; 500 Leek, Storey (bb0205) 2008; 1050 Chong, Lim (bb0065) 2009 Mori, Yoneda, Yamashita, Hirono, Ikeda, Yamadori (bb0255) 1997; 630 Vereecken, Vogels, Nieuwenhuys (bb0385) 1994; 150 Gagnon-Bartsch, Speed (bb0115) 2012; 130 Hornek, Petrovický, Hort, Krásenský, Brabec, Bojar, Vanecková, Seidl (bb0145) 2006; 1130 Hartung, Prell, Gaser, Turner, Tietz, Ilse, Bokemeyer, Witte, Grosskreutz (bb0140) 2014 Chételat, Desgranges, De La Sayette, Viader, Eustache, Baron (bb0055) 2002; 130 Weisenfeld, Warfield (bb0395) 2004 Pujol, Junqué, Vendrell, Grau, Mart-Vilalta, Olivé, Gili (bb0295) 1992; 490 Oishi, Faria, Jiang, Li, Akhter, Zhang, Hsu, Miller, van Zijl, Albert, Lyketsos, Woods, Toga, Pike, Rosa-Neto, Evans, Mazziotta, Mori (bb0280) 2009; 460 Bakshi, Benedict, Bermel, Caruthers, Puli, Tjoa, Fabiano, Jacobs (bb0020) 2002; 590 Meier, Weiner, Guttmann (bb0235) 2007; 40 Xu, Jack, O′Brien, Kokmen, Smith, Ivnik, Boeve, Tangalos, Petersen (bb0420) 2000; 540 Tjoa, Benedict, Weinstock-Guttman, Fabiano, Bakshi (bb0365) 2005; 2340 Scott, DeKosky, Scheff (bb0315) 1991; 410 Fortin, Labbe, Lemire, Zanke, Hudson, Fertig, Greenwood, Hansen (bb0105) 2014; 150 Dedeurwaerder, Defrance, Bizet, Calonne, Bontempi, Fuks (bb0085) 2014; 150 Whitwell, Przybelski, Weigand, Knopman, Boeve, Petersen, Jack (bb0405) 2007; 1300 Zhang, Brady, Smith (bb0425) 2001; 200 Callen, Black, Gao, Caldwell, Szalai (bb0045) 2001; 570 Nyúl, Udupa (bb0270) 1999; 420 Bourgon (bb0030) 2006 Avants, Epstein, Grossman, Gee (bb0010) 2008; 120 Mielke, Kozauer, Chan, George, Toroney, Zerrate, Bandeen-Roche, Wang, Vanzijl, Pekar, Mori, Lyketsos, Albert (bb0245) 2009; 46 Chételat, Landeau, Eustache, Mézenge, Viader, de la Sayette, Desgranges, Baron (bb0060) 2005; 270 Gaonkar, Davatzikos (bb0120) 2013; 78 Nyúl, Udupa, Zhang (bb0275) 2000; 190 Braak, Del Tredici (bb0035) 2012; 80 Ashburner, Friston (bb0005) 2000; 110 Shah, Xiao, Subbanna, Francis, Arnold, Collins, Arbel (bb0325) 2011; 150 Whitcher, Schmid, Thornton (bb0400) 2011; 440 Khan, Liu, Provenzano, Berman, Profaci, Sloan, Mayeux, Duff, Small (bb0185) 2014; 170 Vardhan, Prastawa, Vachet, Piven, Gerig (bb0375) 2014 Muschelli, Sweeney, Lindquist, Crainiceanu (bb0260) 2015; 70 Neema, Arora, Healy, Guss, Brass, Duan, Buckle, Glanz, Stazzone, Khoury, Weiner, Guttmann, Bakshi (bb0265) 2009; 190 Pennanen, Kivipelto, Tuomainen, Hartikainen, Hänninen, Laakso, Hallikainen, Vanhanen, Nissinen, Helkala, Vainio, Vanninen, Partanen, Soininen (bb0285) 2004; 250 Visser, Scheltens, Verhey, Schmand, Launer, Jolles, Jonker (bb0390) 1999; 2460 Shinohara, Sweeney, Goldsmith, Shiee, Mateen, Calabresi, Jarso, Pham, Reich, Crainiceanu (bb0340) 2014; 6 Delano-Wood, Stricker, Sorg, Nation, Jak, Woods, Libon, Delis, Frank, Bondi (bb0090) 2012; 290 Gómez-Isla, Price, McKeel, Morris, Growdon, Hyman (bb0135) 1996; 160 Bottino, Castro, Gomes, Buchpiguel, Marchetti, Neto (bb0025) 2002; 140 Mejia, Sweeney, Dewey, Nair, Sati, Shea, Reich, Shinohara (bb0240) 2015 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (bb0350) 2004; 23 Scott, DeKosky, Sparks, Knox, Scheff (bb0320) 1992; 320 Irizarry, Warren, Spencer, Kim, Biswal, Frank, Gabrielson, Garcia, Geoghegan, Germino, Griffin, Hilmer, Hoffman, Jedlicka, Kawasaki, Martnez-Murillo, Morsberger, Lee, Petersen, Quackenbush, Scott, Wilson, Yang, Ye, Yu (bb0150) 2005; 20 Liu, Spulber, Lehtimäki, Könönen, Hallikainen, Gröhn, Kivipelto, Hallikainen, Vanninen, Soininen (bb0220) 2011; 320 Miller, Younes, Ratnanather, Brown, Trinh, Lee, Tward, Mahon, Mori, Albert, BIOCARD Research Team (bb0250) 2015; 36 Reich, White, Cortese, Vuolo, Shea, Collins, Petkau (bb0305) 2015 Brass, Benedict, Weinstock-Guttman, Munschauer, Bakshi (bb0040) 2006; 120 Leek, Storey (bb0200) 2007; 30 Davatzikos, Bhatt, Shaw, Batmanghelich, Trojanowski (bb0075) 2011; 320 Davatzikos, Ruparel, Fan, Shen, Acharyya, Loughead, Gur, Langleben (bb0070) 2005; 280 Leek, Scharpf, Bravo, Simcha, Langmead, Johnson, Geman, Baggerly, Irizarry (bb0210) 2010; 110 R Core Team (bb0300) 2014 Jager, Deuerling-Zheng, Frericks, Wacker, Hornegger (bb0175) 2006 Ghassemi, Brown, Narayanan, Banwell, Nakamura, Arnold (bb0130) 2015; 250 Shinohara, Crainiceanu, Caffo, Gaitán, Reich (bb0335) 2011; 570 Leek, Peng (bb0195) 2015; 1120 Poulin, Dautoff, Morris, Barrett, Dickerson, Alzheimer's Disease Neuroimaging Initiative (bb0290) 2011; 1940 Ridha, Barnes, Bartlett, Godbolt, Pepple, Rossor, Fox (bb0310) 2006; 50 Wolf, Hensel, Kruggel, Riedel-Heller, Arendt, Wahlund, Gertz (bb0410) 2004; 250 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bb0370) 2010; 290 Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward (bb0165) 2008; 270 Sweeney, Shinohara, Shiee, Mateen, Chudgar, Cuzzocreo, Calabresi, Pham, Reich, Crainiceanu (bb0355) 2013; 2 De Martino, Valente, Staeren, Ashburner, Goebel, Formisano (bb0080) 2008; 430 Smith (bb0345) 2002; 170 Vemuri, Gunter, Senjem, Whitwell, Kantarci, Knopman, Boeve, Petersen, Jack (bb0380) 2008; 390 Avants, Kandel, Duda, Cook (bb0015) 2015 Du, Schuff, Amend, Laakso, Hsu, Jagust, Yaffe, Kramer, Reed, Norman, Chui, Weiner (bb0095) 2001; 710 Jack, Petersen, Xu, O′Brien, Smith, Ivnik, Boeve, Waring, Tangalos, Kokmen (bb0155) 1999; 520 Luoma, Raininko, Nummi, Luukkonen (bb0225) 1993; 110 Farrow, Thiyagesh, Wilkinson, Parks, Ingram, Woodruff (bb0100) 2007; 1550 Jack, Petersen, Xu, O′Brien, Smith, Ivnik, Boeve, Tangalos, Kokmen (bb0160) 2000; 550 Jovicich, Marizzoni, Sala-Llonch, Bosch, Bartrés-Faz, Arnold, Benninghoff, Wiltfang, Roccatagliata, Nobili (bb0180) 2013; 83 Ghassemi, Brown, Banwell, Narayanan, Arnold, Canadian Pediatric Demyelinating Disease Study Group (bb0125) 2015; 210 Shinohara (10.1016/j.neuroimage.2016.02.036_bb0340) 2014; 6 Bottino (10.1016/j.neuroimage.2016.02.036_bb0025) 2002; 140 Vardhan (10.1016/j.neuroimage.2016.02.036_bb0375) 2014 Mori (10.1016/j.neuroimage.2016.02.036_bb0255) 1997; 630 Poulin (10.1016/j.neuroimage.2016.02.036_bb0290) 2011; 1940 Miller (10.1016/j.neuroimage.2016.02.036_bb0250) 2015; 36 Khan (10.1016/j.neuroimage.2016.02.036_bb0185) 2014; 170 Oishi (10.1016/j.neuroimage.2016.02.036_bb0280) 2009; 460 Tustison (10.1016/j.neuroimage.2016.02.036_bb0370) 2010; 290 Ghassemi (10.1016/j.neuroimage.2016.02.036_bb0125) 2015; 210 Jack (10.1016/j.neuroimage.2016.02.036_bb0160) 2000; 550 Wolz (10.1016/j.neuroimage.2016.02.036_bb0415) 2011; 60 Jovicich (10.1016/j.neuroimage.2016.02.036_bb0180) 2013; 83 Muschelli (10.1016/j.neuroimage.2016.02.036_bb0260) 2015; 70 Reich (10.1016/j.neuroimage.2016.02.036_bb0305) 2015 Whitcher (10.1016/j.neuroimage.2016.02.036_bb0400) 2011; 440 Hornek (10.1016/j.neuroimage.2016.02.036_bb0145) 2006; 1130 Jack (10.1016/j.neuroimage.2016.02.036_bb0155) 1999; 520 Gómez-Isla (10.1016/j.neuroimage.2016.02.036_bb0135) 1996; 160 Sweeney (10.1016/j.neuroimage.2016.02.036_bb0360) 2016; 10 Shinohara (10.1016/j.neuroimage.2016.02.036_bb0330) Smith (10.1016/j.neuroimage.2016.02.036_bb0350) 2004; 23 Leung (10.1016/j.neuroimage.2016.02.036_bb0215) 2010; 500 Neema (10.1016/j.neuroimage.2016.02.036_bb0265) 2009; 190 Chételat (10.1016/j.neuroimage.2016.02.036_bb0060) 2005; 270 Du (10.1016/j.neuroimage.2016.02.036_bb0095) 2001; 710 Scott (10.1016/j.neuroimage.2016.02.036_bb0315) 1991; 410 Smith (10.1016/j.neuroimage.2016.02.036_bb0345) 2002; 170 Ghassemi (10.1016/j.neuroimage.2016.02.036_bb0130) 2015; 250 Hartung (10.1016/j.neuroimage.2016.02.036_bb0140) 2014 Irizarry (10.1016/j.neuroimage.2016.02.036_bb0150) 2005; 20 Leek (10.1016/j.neuroimage.2016.02.036_bb0205) 2008; 1050 Wolf (10.1016/j.neuroimage.2016.02.036_bb0410) 2004; 250 Bakshi (10.1016/j.neuroimage.2016.02.036_bb0020) 2002; 590 Cameron Craddock (10.1016/j.neuroimage.2016.02.036_bb0050) 2009; 620 Fortin (10.1016/j.neuroimage.2016.02.036_bb0105) 2014; 150 Ridha (10.1016/j.neuroimage.2016.02.036_bb0310) 2006; 50 Mejia (10.1016/j.neuroimage.2016.02.036_bb0240) 2015 Gagnon-Bartsch (10.1016/j.neuroimage.2016.02.036_bb0115) 2012; 130 Shinohara (10.1016/j.neuroimage.2016.02.036_bb0335) 2011; 570 Davatzikos (10.1016/j.neuroimage.2016.02.036_bb0070) 2005; 280 Leek (10.1016/j.neuroimage.2016.02.036_bb0195) 2015; 1120 Zhang (10.1016/j.neuroimage.2016.02.036_bb0425) 2001; 200 Avants (10.1016/j.neuroimage.2016.02.036_bb0010) 2008; 120 Bourgon (10.1016/j.neuroimage.2016.02.036_bb0030) 2006 Chételat (10.1016/j.neuroimage.2016.02.036_bb0055) 2002; 130 Madabhushi (10.1016/j.neuroimage.2016.02.036_bb0230) 2006; 240 Jager (10.1016/j.neuroimage.2016.02.036_bb0175) 2006 Delano-Wood (10.1016/j.neuroimage.2016.02.036_bb0090) 2012; 290 Braak (10.1016/j.neuroimage.2016.02.036_bb0035) 2012; 80 Jacob (10.1016/j.neuroimage.2016.02.036_bb0170) 2013 Fox (10.1016/j.neuroimage.2016.02.036_bb0110) 1996; 119 Weisenfeld (10.1016/j.neuroimage.2016.02.036_bb0395) 2004 Luoma (10.1016/j.neuroimage.2016.02.036_bb0225) 1993; 110 Nyúl (10.1016/j.neuroimage.2016.02.036_bb0275) 2000; 190 Scott (10.1016/j.neuroimage.2016.02.036_bb0320) 1992; 320 Tjoa (10.1016/j.neuroimage.2016.02.036_bb0365) 2005; 2340 Xu (10.1016/j.neuroimage.2016.02.036_bb0420) 2000; 540 Liu (10.1016/j.neuroimage.2016.02.036_bb0220) 2011; 320 Pennanen (10.1016/j.neuroimage.2016.02.036_bb0285) 2004; 250 Sweeney (10.1016/j.neuroimage.2016.02.036_bb0355) 2013; 2 Davatzikos (10.1016/j.neuroimage.2016.02.036_bb0075) 2011; 320 Ashburner (10.1016/j.neuroimage.2016.02.036_bb0005) 2000; 110 Leek (10.1016/j.neuroimage.2016.02.036_bb0200) 2007; 30 Farrow (10.1016/j.neuroimage.2016.02.036_bb0100) 2007; 1550 Vemuri (10.1016/j.neuroimage.2016.02.036_bb0380) 2008; 390 Nyúl (10.1016/j.neuroimage.2016.02.036_bb0270) 1999; 420 Leek (10.1016/j.neuroimage.2016.02.036_bb0210) 2010; 110 Meier (10.1016/j.neuroimage.2016.02.036_bb0235) 2007; 40 Chong (10.1016/j.neuroimage.2016.02.036_bb0065) 2009 Leek (10.1016/j.neuroimage.2016.02.036_bb0190) 2014; 420 Jack (10.1016/j.neuroimage.2016.02.036_bb0165) 2008; 270 Dedeurwaerder (10.1016/j.neuroimage.2016.02.036_bb0085) 2014; 150 Vereecken (10.1016/j.neuroimage.2016.02.036_bb0385) 1994; 150 Gaonkar (10.1016/j.neuroimage.2016.02.036_bb0120) 2013; 78 Pujol (10.1016/j.neuroimage.2016.02.036_bb0295) 1992; 490 Whitwell (10.1016/j.neuroimage.2016.02.036_bb0405) 2007; 1300 R Core Team (10.1016/j.neuroimage.2016.02.036_bb0300) Shah (10.1016/j.neuroimage.2016.02.036_bb0325) 2011; 150 Brass (10.1016/j.neuroimage.2016.02.036_bb0040) 2006; 120 Visser (10.1016/j.neuroimage.2016.02.036_bb0390) 1999; 2460 Avants (10.1016/j.neuroimage.2016.02.036_bb0015) De Martino (10.1016/j.neuroimage.2016.02.036_bb0080) 2008; 430 Callen (10.1016/j.neuroimage.2016.02.036_bb0045) 2001; 570 Mielke (10.1016/j.neuroimage.2016.02.036_bb0245) 2009; 46 |
| References_xml | – volume: 420 year: 1999 ident: bb0270 article-title: On standardizing the mr image intensity scale publication-title: Magn. Reson. Med. – volume: 280 start-page: 663 year: 2005 end-page: 668 ident: bb0070 article-title: Classifying spatial patterns of brain activity with machine learning methods: application to lie detection publication-title: NeuroImage – volume: 78 year: 2013 ident: bb0120 article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification publication-title: NeuroImage – volume: 83 start-page: 472 year: 2013 end-page: 484 ident: bb0180 article-title: Brain morphometry reproducibility in multi-center 3 publication-title: NeuroImage – volume: 46 start-page: 47 year: 2009 end-page: 55 ident: bb0245 article-title: Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease publication-title: NeuroImage – volume: 240 year: 2006 ident: bb0230 article-title: Comparing mr image intensity standardization against tissue characterizability of magnetization transfer ratio imaging publication-title: J. Magn. Reson. Imaging – year: 2014 ident: bb0140 article-title: Voxel-based mri intensitometry reveals extent of cerebral white matter pathology in amyotrophic lateral sclerosis – volume: 190 start-page: 3 year: 2009 end-page: 8 ident: bb0265 article-title: Deep gray matter involvement on brain MRI scans is associated with clinical progression in multiple sclerosis publication-title: J. Neuroimaging – volume: 50 year: 2006 ident: bb0310 article-title: Tracking atrophy progression in familial alzheimer's disease: a serial mri study publication-title: Lancet Neurol. – volume: 120 start-page: 26 year: 2008 end-page: 41 ident: bb0010 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. – volume: 110 start-page: 733 year: 2010 end-page: 739 ident: bb0210 article-title: Tackling the widespread and critical impact of batch effects in high-throughput data publication-title: Nat. Rev. Genet. – volume: 40 start-page: 485 year: 2007 end-page: 498 ident: bb0235 article-title: Time-series modeling of multiple sclerosis disease activity: a promising window on disease progression and repair potential? publication-title: Neurotherapeutics – volume: 110 start-page: 805 year: 2000 end-page: 821 ident: bb0005 article-title: Voxel-based morphometry—the methods publication-title: NeuroImage – volume: 130 start-page: 1939 year: 2002 end-page: 1943 ident: bb0055 article-title: Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment publication-title: Neuroreport – volume: 30 start-page: 1724 year: 2007 end-page: 1735 ident: bb0200 article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis publication-title: PLoS Genet. – volume: 390 year: 2008 ident: bb0380 article-title: Alzheimer's disease diagnosis in individual subjects using structural mr images: validation studies publication-title: NeuroImage – volume: 190 year: 2000 ident: bb0275 article-title: New variants of a method of mri scale standardization publication-title: IEEE Trans. Med. Imaging – volume: 570 year: 2011 ident: bb0335 article-title: Population-wide principal component-based quantification of blood–brain-barrier dynamics in multiple sclerosis publication-title: NeuroImage – volume: 270 start-page: 934 year: 2005 end-page: 946 ident: bb0060 article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal mri study publication-title: NeuroImage – volume: 550 year: 2000 ident: bb0160 article-title: Rates of hippocampal atrophy correlate with change in clinical status in aging and ad publication-title: Neurology – year: 2004 ident: bb0395 article-title: Normalization of joint image-intensity statistics in MRI using the kullback–leibler divergence publication-title: Biomedical Imaging: Nano to Macro, 2004 IEEE International Symposium on (101–104IEEE) – volume: 170 year: 2014 ident: bb0185 article-title: Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease publication-title: Nat. Neurosci. – volume: 250 year: 2004 ident: bb0285 article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early ad publication-title: Neurobiol. Aging – volume: 410 year: 1991 ident: bb0315 article-title: Volumetric atrophy of the amygdala in alzheimer's disease: quantitative serial reconstruction publication-title: Neurology – volume: 620 start-page: 1619 year: 2009 end-page: 1628 ident: bb0050 article-title: Disease state prediction from resting state functional connectivity publication-title: Magn. Reson. Med. – volume: 10 start-page: 1 year: 2016 end-page: 17 ident: bb0360 article-title: Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions publication-title: NeuroImage Clin. – year: 2015 ident: bb0305 article-title: Sample-size calculations for short-term proof-of-concept studies of tissue protection and repair in multiple sclerosis lesions via conventional clinical imaging publication-title: Mult. Scler. J. – volume: 250 year: 2004 ident: bb0410 article-title: Structural correlates of mild cognitive impairment publication-title: Neurobiol. Aging – volume: 120 start-page: 437 year: 2006 end-page: 444 ident: bb0040 article-title: Cognitive impairment is associated with subcortical magnetic resonance imaging grey matter t2 hypointensity in multiple sclerosis publication-title: Mult. Scler. – volume: 1550 year: 2007 ident: bb0100 article-title: Fronto-temporal-lobe atrophy in early-stage alzheimer's disease identified using an improved detection methodology publication-title: Psychiatry Res. – volume: 6 start-page: 9 year: 2014 end-page: 19 ident: bb0340 article-title: Australian imaging biomarkers lifestyle flagship study of ageing, and Alzheimer's disease neuroimaging initiative. Statistical normalization techniques for magnetic resonance imaging publication-title: Neuroimage Clin. – volume: 290 start-page: 589 year: 2012 ident: bb0090 article-title: Posterior cingulum white matter disruption and its associations with verbal memory and stroke risk in mild cognitive impairment publication-title: J. Alzheimers Dis. – volume: 570 year: 2001 ident: bb0045 article-title: Beyond the hippocampus: Mri volumetry confirms widespread limbic atrophy in ad publication-title: Neurology – volume: 630 year: 1997 ident: bb0255 article-title: Medial temporal structures relate to memory impairment in alzheimer's disease: an MRI volumetric study publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 150 start-page: 45 year: 1994 end-page: 54 ident: bb0385 article-title: Neuron loss and shrinkage in the amygdala in alzheimer's disease publication-title: Neurobiol. Aging – start-page: 37 year: 2015 ident: bb0240 article-title: Statistical estimation of t1 relaxation time using conventional magnetic resonance imaging publication-title: UPenn Biostatistics Working Papers, Working Paper – volume: 590 start-page: 62 year: 2002 end-page: 68 ident: bb0020 article-title: T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study publication-title: Arch. Neurol. – start-page: 3 year: 2009 end-page: 15 ident: bb0065 article-title: Neuroimaging biomarkers in alzheimer's disease publication-title: The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes – volume: 150 start-page: 503 year: 2014 ident: bb0105 article-title: Functional normalization of 450 publication-title: Genome Biol. – volume: 2 start-page: 402 year: 2013 end-page: 413 ident: bb0355 article-title: Oasis is automated statistical inference for segmentation, with applications to multiple sclerosis lesion segmentation in mri publication-title: Neuroimage Clin. – year: 2014 ident: bb0375 article-title: Characterizing Growth Patterns in Longitudinal Mri Using Image Contrast publication-title: SPIE Medical Imaging, pages 90340D–90340D. International Society for Optics and Photonics – volume: 1940 start-page: 7 year: 2011 end-page: 13 ident: bb0290 article-title: Amygdala atrophy is prominent in early alzheimer's disease and relates to symptom severity publication-title: Psychiatry Res. – year: 2006 ident: bb0030 article-title: Chromatin Immunoprecipitation and High-Density Tiling Microarrays: A Generative Model, Methods for Analysis, and Methodology Assessment in the Absence of a “Gold Standard” – volume: 2460 year: 1999 ident: bb0390 article-title: Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment publication-title: J. Neurol. – volume: 440 start-page: 1 year: 2011 end-page: 28 ident: bb0400 article-title: Working with the DICOM and NIfTI data standards in R publication-title: J. Stat. Softw. – volume: 200 start-page: 45 year: 2001 end-page: 57 ident: bb0425 article-title: Segmentation of brain mr images through a hidden markov random field model and the expectation–maximization algorithm publication-title: IEEE Trans. Med. Imaging – volume: 520 year: 1999 ident: bb0155 article-title: Prediction of ad with mri-based hippocampal volume in mild cognitive impairment publication-title: Neurology – volume: 420 year: 2014 ident: bb0190 article-title: svaseq: removing batch effects and other unwanted noise from sequencing data publication-title: Nucleic Acids Res. – volume: 290 year: 2010 ident: bb0370 article-title: N4itk: improved n3 bias correction publication-title: IEEE Trans. Med. Imaging – year: 2015 ident: bb0015 article-title: Antsr: Ants in r – volume: 320 start-page: 1558 year: 2011 end-page: 1571 ident: bb0220 article-title: Diffusion tensor imaging and tract-based spatial statistics in alzheimer's disease and mild cognitive impairment publication-title: Neurobiol. Aging – volume: 490 start-page: 711 year: 1992 end-page: 717 ident: bb0295 article-title: Biological significance of iron-related magnetic resonance imaging changes in the brain publication-title: Arch. Neurol. – volume: 70 start-page: 163 year: 2015 end-page: 175 ident: bb0260 article-title: fslr: Connecting the fsl software with r publication-title: The R J. – start-page: 269 year: 2006 end-page: 276 ident: bb0175 article-title: A new method for mri intensity standardization with application to lesion detection in the brain publication-title: Vision Modeling and Visualization – volume: 130 start-page: 539 year: 2012 end-page: 552 ident: bb0115 article-title: Using control genes to correct for unwanted variation in microarray data publication-title: Biostatistics – volume: 2340 start-page: 17 year: 2005 end-page: 24 ident: bb0365 article-title: Mri t2 hypointensity of the dentate nucleus is related to ambulatory impairment in multiple sclerosis publication-title: J. Neurol. Sci. – year: 2015 ident: bb0330 article-title: Whitestripe: White matter normalization for magnetic resonance images using whitestripe – volume: 36 year: 2015 ident: bb0250 article-title: Amygdalar atrophy in symptomatic alzheimer's disease based on diffeomorphometry: the biocard cohort publication-title: Neurobiol. Aging – volume: 80 start-page: 227 year: 2012 end-page: 233 ident: bb0035 article-title: Alzheimer's disease: pathogenesis and prevention publication-title: Alzheimers Dement. – volume: 60 year: 2011 ident: bb0415 article-title: Multi-method analysis of mri images in early diagnostics of alzheimer's disease publication-title: PLoS One – volume: 1050 start-page: 18718 year: 2008 end-page: 18723 ident: bb0205 article-title: A general framework for multiple testing dependence publication-title: Proc. Natl. Acad. Sci. – volume: 160 year: 1996 ident: bb0135 article-title: Profound loss of layer ii entorhinal cortex neurons occurs in very mild alzheimer's disease publication-title: J. Neurosci. – volume: 540 year: 2000 ident: bb0420 article-title: Usefulness of mri measures of entorhinal cortex versus hippocampus in ad publication-title: Neurology – volume: 430 start-page: 44 year: 2008 end-page: 58 ident: bb0080 article-title: Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns publication-title: NeuroImage – volume: 1130 year: 2006 ident: bb0145 article-title: Amygdalar volume and psychiatric symptoms in alzheimer's disease: an mri analysis publication-title: Acta Neurol. Scand. – year: 2014 ident: bb0300 article-title: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria – volume: 250 start-page: 184 year: 2015 end-page: 190 ident: bb0130 article-title: Normalization of white matter intensity on t1-weighted images of patients with acquired central nervous system demyelination publication-title: J. Neuroimaging – volume: 119 year: 1996 ident: bb0110 article-title: Presymptomatic hippocampal atrophy in alzheimer's disease. a longitudinal mri study publication-title: Brain – volume: 170 year: 2002 ident: bb0345 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: bb0350 article-title: Advances in functional and structural mr image analysis and implementation as fsl publication-title: NeuroImage – volume: 320 start-page: e19 year: 2011 end-page: e27 ident: bb0075 article-title: Prediction of mci to ad conversion, via MRI, csf biomarkers, and pattern classification publication-title: Neurobiol. Aging – year: 2013 ident: bb0170 article-title: Correcting Gene Expression Data When Neither the Unwanted Variation Nor the Factor of Interest Are Observed. Tech. Rep. 818 – volume: 150 year: 2011 ident: bb0325 article-title: Evaluating intensity normalization on mris of human brain with multiple sclerosis publication-title: Med. Image Anal. – volume: 1120 year: 2015 ident: bb0195 article-title: Opinion: reproducible research can still be wrong: adopting a prevention approach publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 140 start-page: 59 year: 2002 end-page: 72 ident: bb0025 article-title: Volumetric mri measurements can differentiate Alzheimer's disease, mild cognitive impairment, and normal aging publication-title: Int. Psychogeriatr. – volume: 150 year: 2014 ident: bb0085 article-title: A comprehensive overview of infinium humanmethylation450 data processing publication-title: Brief. Bioinform. – volume: 500 year: 2010 ident: bb0215 article-title: Robust atrophy rate measurement in alzheimer's disease using multi-site serial MRI: tissue-specific intensity normalization and parameter selection publication-title: NeuroImage – volume: 460 year: 2009 ident: bb0280 article-title: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and alzheimer's disease participants publication-title: NeuroImage – volume: 270 start-page: 685 year: 2008 end-page: 691 ident: bb0165 article-title: The alzheimer's disease neuroimaging initiative (adni): Mri methods publication-title: J. Magn. Reson. Imaging – volume: 110 start-page: 549 year: 1993 end-page: 555 ident: bb0225 article-title: Is the signal intensity of cerebrospinal fluid constant? intensity measurements with high and low field magnetic resonance imagers publication-title: Magn. Reson. Imaging – volume: 710 year: 2001 ident: bb0095 article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 210 start-page: 718 year: 2015 end-page: 725 ident: bb0125 article-title: Quantitative measurement of tissue damage and recovery within new t2w lesions in pediatric-and adult-onset multiple sclerosis publication-title: Mult. Scler. J. – volume: 320 year: 1992 ident: bb0320 article-title: Amygdala cell loss and atrophy in alzheimer's disease publication-title: Ann. Neurol. – volume: 20 start-page: 345 year: 2005 end-page: 350 ident: bb0150 article-title: Multiple-laboratory comparison of microarray platforms publication-title: Nat. Methods – volume: 1300 year: 2007 ident: bb0405 article-title: 3d maps from multiple mri illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to alzheimer's disease publication-title: Brain – year: 2013 ident: 10.1016/j.neuroimage.2016.02.036_bb0170 – volume: 620 start-page: 1619 issue: 6 year: 2009 ident: 10.1016/j.neuroimage.2016.02.036_bb0050 article-title: Disease state prediction from resting state functional connectivity publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22159 – volume: 160 issue: 14 year: 1996 ident: 10.1016/j.neuroimage.2016.02.036_bb0135 article-title: Profound loss of layer ii entorhinal cortex neurons occurs in very mild alzheimer's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-14-04491.1996 – volume: 550 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2016.02.036_bb0160 article-title: Rates of hippocampal atrophy correlate with change in clinical status in aging and ad publication-title: Neurology doi: 10.1212/WNL.55.4.484 – volume: 290 issue: 6 year: 2010 ident: 10.1016/j.neuroimage.2016.02.036_bb0370 article-title: N4itk: improved n3 bias correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: 140 start-page: 59 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2016.02.036_bb0025 article-title: Volumetric mri measurements can differentiate Alzheimer's disease, mild cognitive impairment, and normal aging publication-title: Int. Psychogeriatr. doi: 10.1017/S1041610202008281 – volume: 170 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2016.02.036_bb0345 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – volume: 83 start-page: 472 year: 2013 ident: 10.1016/j.neuroimage.2016.02.036_bb0180 article-title: Brain morphometry reproducibility in multi-center 3t mri studies: a comparison of cross-sectional and longitudinal segmentations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.007 – ident: 10.1016/j.neuroimage.2016.02.036_bb0300 – volume: 250 issue: 7 year: 2004 ident: 10.1016/j.neuroimage.2016.02.036_bb0410 article-title: Structural correlates of mild cognitive impairment publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2003.08.006 – volume: 2340 start-page: 17 issue: 1–2 year: 2005 ident: 10.1016/j.neuroimage.2016.02.036_bb0365 article-title: Mri t2 hypointensity of the dentate nucleus is related to ambulatory impairment in multiple sclerosis publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2005.02.009 – volume: 150 start-page: 503 issue: 11 year: 2014 ident: 10.1016/j.neuroimage.2016.02.036_bb0105 article-title: Functional normalization of 450k methylation array data improves replication in large cancer studies publication-title: Genome Biol. doi: 10.1186/s13059-014-0503-2 – volume: 110 start-page: 733 issue: 10 year: 2010 ident: 10.1016/j.neuroimage.2016.02.036_bb0210 article-title: Tackling the widespread and critical impact of batch effects in high-throughput data publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2825 – volume: 130 start-page: 539 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2016.02.036_bb0115 article-title: Using control genes to correct for unwanted variation in microarray data publication-title: Biostatistics doi: 10.1093/biostatistics/kxr034 – volume: 110 start-page: 805 issue: 6 year: 2000 ident: 10.1016/j.neuroimage.2016.02.036_bb0005 article-title: Voxel-based morphometry—the methods publication-title: NeuroImage doi: 10.1006/nimg.2000.0582 – volume: 630 issue: 2 year: 1997 ident: 10.1016/j.neuroimage.2016.02.036_bb0255 article-title: Medial temporal structures relate to memory impairment in alzheimer's disease: an MRI volumetric study publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.63.2.214 – volume: 2460 issue: 6 year: 1999 ident: 10.1016/j.neuroimage.2016.02.036_bb0390 article-title: Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment publication-title: J. Neurol. doi: 10.1007/s004150050387 – volume: 210 start-page: 718 issue: 6 year: 2015 ident: 10.1016/j.neuroimage.2016.02.036_bb0125 article-title: Quantitative measurement of tissue damage and recovery within new t2w lesions in pediatric-and adult-onset multiple sclerosis publication-title: Mult. Scler. J. doi: 10.1177/1352458514551594 – volume: 78 year: 2013 ident: 10.1016/j.neuroimage.2016.02.036_bb0120 article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.066 – volume: 440 start-page: 1 issue: 6 year: 2011 ident: 10.1016/j.neuroimage.2016.02.036_bb0400 article-title: Working with the DICOM and NIfTI data standards in R publication-title: J. Stat. Softw. – volume: 320 start-page: 1558 issue: 9 year: 2011 ident: 10.1016/j.neuroimage.2016.02.036_bb0220 article-title: Diffusion tensor imaging and tract-based spatial statistics in alzheimer's disease and mild cognitive impairment publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2009.10.006 – volume: 710 issue: 4 year: 2001 ident: 10.1016/j.neuroimage.2016.02.036_bb0095 article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.71.4.441 – volume: 320 issue: 4 year: 1992 ident: 10.1016/j.neuroimage.2016.02.036_bb0320 article-title: Amygdala cell loss and atrophy in alzheimer's disease publication-title: Ann. Neurol. doi: 10.1002/ana.410320412 – year: 2006 ident: 10.1016/j.neuroimage.2016.02.036_bb0030 – volume: 270 start-page: 685 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2016.02.036_bb0165 article-title: The alzheimer's disease neuroimaging initiative (adni): Mri methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – ident: 10.1016/j.neuroimage.2016.02.036_bb0015 – volume: 119 issue: Pt 6 year: 1996 ident: 10.1016/j.neuroimage.2016.02.036_bb0110 article-title: Presymptomatic hippocampal atrophy in alzheimer's disease. a longitudinal mri study publication-title: Brain – volume: 570 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2016.02.036_bb0335 article-title: Population-wide principal component-based quantification of blood–brain-barrier dynamics in multiple sclerosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.05.038 – volume: 420 issue: 6 year: 1999 ident: 10.1016/j.neuroimage.2016.02.036_bb0270 article-title: On standardizing the mr image intensity scale publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M – volume: 170 issue: 2 year: 2014 ident: 10.1016/j.neuroimage.2016.02.036_bb0185 article-title: Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease publication-title: Nat. Neurosci. doi: 10.1038/nn.3606 – volume: 1120 issue: 6 year: 2015 ident: 10.1016/j.neuroimage.2016.02.036_bb0195 article-title: Opinion: reproducible research can still be wrong: adopting a prevention approach publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1421412111 – volume: 70 start-page: 163 issue: 1 year: 2015 ident: 10.1016/j.neuroimage.2016.02.036_bb0260 article-title: fslr: Connecting the fsl software with r publication-title: The R J. doi: 10.32614/RJ-2015-013 – volume: 150 start-page: 45 issue: 1 year: 1994 ident: 10.1016/j.neuroimage.2016.02.036_bb0385 article-title: Neuron loss and shrinkage in the amygdala in alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(94)90143-0 – volume: 250 issue: 3 year: 2004 ident: 10.1016/j.neuroimage.2016.02.036_bb0285 article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early ad publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(03)00084-8 – volume: 46 start-page: 47 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2016.02.036_bb0245 article-title: Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.01.054 – start-page: 3 year: 2009 ident: 10.1016/j.neuroimage.2016.02.036_bb0065 article-title: Neuroimaging biomarkers in alzheimer's disease – volume: 240 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2016.02.036_bb0230 article-title: Comparing mr image intensity standardization against tissue characterizability of magnetization transfer ratio imaging publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20658 – start-page: 37 year: 2015 ident: 10.1016/j.neuroimage.2016.02.036_bb0240 article-title: Statistical estimation of t1 relaxation time using conventional magnetic resonance imaging – volume: 20 start-page: 345 issue: 5 year: 2005 ident: 10.1016/j.neuroimage.2016.02.036_bb0150 article-title: Multiple-laboratory comparison of microarray platforms publication-title: Nat. Methods doi: 10.1038/nmeth756 – volume: 190 issue: 2 year: 2000 ident: 10.1016/j.neuroimage.2016.02.036_bb0275 article-title: New variants of a method of mri scale standardization publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.836373 – start-page: 269 year: 2006 ident: 10.1016/j.neuroimage.2016.02.036_bb0175 article-title: A new method for mri intensity standardization with application to lesion detection in the brain – volume: 500 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2016.02.036_bb0215 article-title: Robust atrophy rate measurement in alzheimer's disease using multi-site serial MRI: tissue-specific intensity normalization and parameter selection publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.059 – volume: 1550 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2016.02.036_bb0100 article-title: Fronto-temporal-lobe atrophy in early-stage alzheimer's disease identified using an improved detection methodology publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2006.12.013 – volume: 420 issue: 21 year: 2014 ident: 10.1016/j.neuroimage.2016.02.036_bb0190 article-title: svaseq: removing batch effects and other unwanted noise from sequencing data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku864 – volume: 40 start-page: 485 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2016.02.036_bb0235 article-title: Time-series modeling of multiple sclerosis disease activity: a promising window on disease progression and repair potential? publication-title: Neurotherapeutics doi: 10.1016/j.nurt.2007.05.008 – volume: 390 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2016.02.036_bb0380 article-title: Alzheimer's disease diagnosis in individual subjects using structural mr images: validation studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.09.073 – volume: 23 start-page: S208 year: 2004 ident: 10.1016/j.neuroimage.2016.02.036_bb0350 article-title: Advances in functional and structural mr image analysis and implementation as fsl publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 150 issue: 6 year: 2014 ident: 10.1016/j.neuroimage.2016.02.036_bb0085 article-title: A comprehensive overview of infinium humanmethylation450 data processing publication-title: Brief. Bioinform. doi: 10.1093/bib/bbt054 – volume: 520 issue: 7 year: 1999 ident: 10.1016/j.neuroimage.2016.02.036_bb0155 article-title: Prediction of ad with mri-based hippocampal volume in mild cognitive impairment publication-title: Neurology doi: 10.1212/WNL.52.7.1397 – volume: 110 start-page: 549 issue: 4 year: 1993 ident: 10.1016/j.neuroimage.2016.02.036_bb0225 article-title: Is the signal intensity of cerebrospinal fluid constant? intensity measurements with high and low field magnetic resonance imagers publication-title: Magn. Reson. Imaging doi: 10.1016/0730-725X(93)90474-R – volume: 250 start-page: 184 issue: 2 year: 2015 ident: 10.1016/j.neuroimage.2016.02.036_bb0130 article-title: Normalization of white matter intensity on t1-weighted images of patients with acquired central nervous system demyelination publication-title: J. Neuroimaging doi: 10.1111/jon.12129 – volume: 540 issue: 9 year: 2000 ident: 10.1016/j.neuroimage.2016.02.036_bb0420 article-title: Usefulness of mri measures of entorhinal cortex versus hippocampus in ad publication-title: Neurology doi: 10.1212/WNL.54.9.1760 – volume: 80 start-page: 227 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2016.02.036_bb0035 article-title: Alzheimer's disease: pathogenesis and prevention publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2012.01.011 – volume: 290 start-page: 589 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2016.02.036_bb0090 article-title: Posterior cingulum white matter disruption and its associations with verbal memory and stroke risk in mild cognitive impairment publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2012-102103 – volume: 120 start-page: 26 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2016.02.036_bb0010 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – volume: 6 start-page: 9 year: 2014 ident: 10.1016/j.neuroimage.2016.02.036_bb0340 article-title: Australian imaging biomarkers lifestyle flagship study of ageing, and Alzheimer's disease neuroimaging initiative. Statistical normalization techniques for magnetic resonance imaging publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2014.08.008 – volume: 460 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2016.02.036_bb0280 article-title: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and alzheimer's disease participants publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.01.002 – volume: 1940 start-page: 7 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2016.02.036_bb0290 article-title: Amygdala atrophy is prominent in early alzheimer's disease and relates to symptom severity publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2011.06.014 – volume: 1300 issue: Pt 7 year: 2007 ident: 10.1016/j.neuroimage.2016.02.036_bb0405 article-title: 3d maps from multiple mri illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to alzheimer's disease publication-title: Brain – volume: 130 start-page: 1939 issue: 15 year: 2002 ident: 10.1016/j.neuroimage.2016.02.036_bb0055 article-title: Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment publication-title: Neuroreport doi: 10.1097/00001756-200210280-00022 – volume: 280 start-page: 663 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2016.02.036_bb0070 article-title: Classifying spatial patterns of brain activity with machine learning methods: application to lie detection publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.08.009 – year: 2014 ident: 10.1016/j.neuroimage.2016.02.036_bb0140 – volume: 200 start-page: 45 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2016.02.036_bb0425 article-title: Segmentation of brain mr images through a hidden markov random field model and the expectation–maximization algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906424 – year: 2004 ident: 10.1016/j.neuroimage.2016.02.036_bb0395 article-title: Normalization of joint image-intensity statistics in MRI using the kullback–leibler divergence doi: 10.1109/ISBI.2004.1398484 – volume: 190 start-page: 3 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2016.02.036_bb0265 article-title: Deep gray matter involvement on brain MRI scans is associated with clinical progression in multiple sclerosis publication-title: J. Neuroimaging doi: 10.1111/j.1552-6569.2008.00296.x – volume: 1050 start-page: 18718 issue: 48 year: 2008 ident: 10.1016/j.neuroimage.2016.02.036_bb0205 article-title: A general framework for multiple testing dependence publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0808709105 – volume: 36 issue: Suppl. 1 year: 2015 ident: 10.1016/j.neuroimage.2016.02.036_bb0250 article-title: Amygdalar atrophy in symptomatic alzheimer's disease based on diffeomorphometry: the biocard cohort publication-title: Neurobiol. Aging – volume: 60 issue: 10 year: 2011 ident: 10.1016/j.neuroimage.2016.02.036_bb0415 article-title: Multi-method analysis of mri images in early diagnostics of alzheimer's disease publication-title: PLoS One doi: 10.1371/journal.pone.0025446 – volume: 320 start-page: e19 issue: (12):2322 year: 2011 ident: 10.1016/j.neuroimage.2016.02.036_bb0075 article-title: Prediction of mci to ad conversion, via MRI, csf biomarkers, and pattern classification publication-title: Neurobiol. Aging – volume: 490 start-page: 711 issue: 7 year: 1992 ident: 10.1016/j.neuroimage.2016.02.036_bb0295 article-title: Biological significance of iron-related magnetic resonance imaging changes in the brain publication-title: Arch. Neurol. doi: 10.1001/archneur.1992.00530310053012 – volume: 590 start-page: 62 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2016.02.036_bb0020 article-title: T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study publication-title: Arch. Neurol. doi: 10.1001/archneur.59.1.62 – volume: 410 issue: 3 year: 1991 ident: 10.1016/j.neuroimage.2016.02.036_bb0315 article-title: Volumetric atrophy of the amygdala in alzheimer's disease: quantitative serial reconstruction publication-title: Neurology doi: 10.1212/WNL.41.3.351 – year: 2015 ident: 10.1016/j.neuroimage.2016.02.036_bb0305 article-title: Sample-size calculations for short-term proof-of-concept studies of tissue protection and repair in multiple sclerosis lesions via conventional clinical imaging publication-title: Mult. Scler. J. doi: 10.1177/1352458515569098 – volume: 30 start-page: 1724 issue: 9 year: 2007 ident: 10.1016/j.neuroimage.2016.02.036_bb0200 article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis publication-title: PLoS Genet. – volume: 150 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2016.02.036_bb0325 article-title: Evaluating intensity normalization on mris of human brain with multiple sclerosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.12.003 – volume: 120 start-page: 437 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2016.02.036_bb0040 article-title: Cognitive impairment is associated with subcortical magnetic resonance imaging grey matter t2 hypointensity in multiple sclerosis publication-title: Mult. Scler. doi: 10.1191/135248506ms1301oa – volume: 430 start-page: 44 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2016.02.036_bb0080 article-title: Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.06.037 – volume: 270 start-page: 934 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2016.02.036_bb0060 article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal mri study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.05.015 – volume: 50 issue: 10 year: 2006 ident: 10.1016/j.neuroimage.2016.02.036_bb0310 article-title: Tracking atrophy progression in familial alzheimer's disease: a serial mri study publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(06)70550-6 – volume: 2 start-page: 402 year: 2013 ident: 10.1016/j.neuroimage.2016.02.036_bb0355 article-title: Oasis is automated statistical inference for segmentation, with applications to multiple sclerosis lesion segmentation in mri publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2013.03.002 – volume: 10 start-page: 1 year: 2016 ident: 10.1016/j.neuroimage.2016.02.036_bb0360 article-title: Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2015.10.013 – year: 2014 ident: 10.1016/j.neuroimage.2016.02.036_bb0375 article-title: Characterizing Growth Patterns in Longitudinal Mri Using Image Contrast – ident: 10.1016/j.neuroimage.2016.02.036_bb0330 – volume: 570 issue: 9 year: 2001 ident: 10.1016/j.neuroimage.2016.02.036_bb0045 article-title: Beyond the hippocampus: Mri volumetry confirms widespread limbic atrophy in ad publication-title: Neurology doi: 10.1212/WNL.57.9.1669 – volume: 1130 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2016.02.036_bb0145 article-title: Amygdalar volume and psychiatric symptoms in alzheimer's disease: an mri analysis publication-title: Acta Neurol. Scand. |
| SSID | ssj0009148 |
| Score | 2.5167181 |
| Snippet | Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 198 |
| SubjectTerms | ADNI Algorithms Alzheimer Disease - diagnostic imaging Alzheimer Disease - pathology Alzheimer's disease Biomarkers Brain - anatomy & histology Brain - pathology Datasets Female Gene expression Humans Image Processing, Computer-Assisted Linear Models Magnetic Resonance Imaging - methods Male Medical imaging Methods MRI Neuroimaging - methods NMR Normalization Nuclear magnetic resonance Reproducibility of Results ROC Curve Scan effect Scanners Signal Processing, Computer-Assisted Studies |
| Title | Removing inter-subject technical variability in magnetic resonance imaging studies |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811916001452 https://dx.doi.org/10.1016/j.neuroimage.2016.02.036 https://www.ncbi.nlm.nih.gov/pubmed/26923370 https://www.proquest.com/docview/1802753903 https://www.proquest.com/docview/1786126347 https://www.proquest.com/docview/1787962035 https://pubmed.ncbi.nlm.nih.gov/PMC5540379 |
| Volume | 132 |
| WOSCitedRecordID | wos000374832200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251007 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYhtBe-IYVRhUkXi2cOLFj8YAAbeKlVVWB1Dcr_ojoxNLRtJP477lznJQBmirxkiiKL4p9Z_vn8_l3hLxhosysN5YawMc0r01BTa44rQR6_Z1KfVqFZBNyOi0XCzWLDrc2hlX2Y2IYqN3Koo_8LTKVAbRWjL-_-kExaxTursYUGgfkCFkSeAjdm-1Id9O8OwpXcFqmqYqRPF18V-CLXF5Cr8UALxGYOwNR8z-np7_h559RlL9NS-cP_rdCD8n9CEiTD50FPSJ3fPOY3JvELfcnZD73l8HrkCCzxJq2W4Oum6QjfwUNJ9ew3O7Yvn9CmQTq2uDJyAQW8iuk8_AJ1h-_0HZBi0_J1_OzL58-05iIgVoAJBvqWA1IzCheFRXLa1si6WCZ1lXFYXpnwlgJQDCTGdxhOeQL6W3qnRCO58aUjj8jh82q8SckKZSvJXOZNPAlZZxy1uWG51ntPWCfakRk3_7aRpZyTJbxXffhaBd6pzmNmtMs06C5EUkHyauOqWMPGdWrWPcnUWHs1DCd7CH7bpCNaKVDIXtKn_ZWoeOo0eqdSYzI6-E19HfcxKkav9pCGVkCKBU8l7eWkUpkjBcj8rwz0qFJMgG645JBQ98w36EA8o3ffNMsvwXecUCejEv14vZff0mOsZ4YYZEWp-Rws976V-Suvd4s2_WYHMiFDNdyTI4-nk1nc3iaZJNx6Lq_AAB-TEI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCgSDB0apjJ3EshBACqlbtrlBVpN5M_IhYRLNlH0X9U_xGZvJaCqjaSw-c9hCPtRnP47Mz_gbgBc9y4YJ1zCI-ZklpU2YTLVmR0am_13GIi7rZhBqN8sND_XENfnZ3YaissouJdaD2E0dn5JvEVIbQWnP55vg7o65R9HW1a6HRmMVuOP2BW7bZ6533uL4vhdj6cPBum7VdBZjD7DpnnpcIK6yWRVrwpHQ5MejlcVkUEnMVz6xTiGqEEviL2D6kKrg4-CzzMrE29xLnvQSXE9wJUauIoRguSX7jpLl6l0qWx7FuK4eaerKan3J8hFGCCsqymim0Job-Zzr8G-7-WbX5Wxrcuvm_KfAW3GgBd_S28ZDbsBaqO3B12JYU3IX9_XBUn6pExJwxZbOFpaOpqCG3RQuOTgp00rqG-BTHRKjbim5-RtNA2xh0moj0TTPMmqLMe_DpQt7oPqxXkyo8hCjVoVTcC2VxJm299s4nViaiDAGxXTEA1a23cS0LOzUD-Wa6cruvZmkphizFcGHQUgYQ95LHDRPJCjK6MynT3bTF3GAwXa4g-6qXbdFYg7JWlN7orNC0UXFmliY4gOf9Y4xn9JGqqMJkgWNUjqA7k4k6d4zSmeAyHcCDxil6lYgM104qjoo-4y79AOJTP_ukGn-pedURWXOp9KPz__ozuLZ9MNwzezuj3cdwnd6ZqknidAPW59NFeAJX3Ml8PJs-rYNDBJ8v2pl-Aa1Lo38 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBVVseD8GCgQJllEdO4ljIYQQZURVGI0qkLoz8SNiEM2UyUxRf42v414nmaGAqtl0wSqL-FqJfR8nzvExwDOWF9x6Y2OD-DhOK5PFJlUiLnNa9Xcq8UkZDpuQo1FxeKjGG_Cz3wtDtMo-J4ZE7aaW1sh3SKkMobViYqfqaBHj3eGr4-8xnSBFf1r74zRaF9n3pz_w8615ubeLc_2c8-Hbj2_exd0JA7HFSjuPHasQYhglyqxkaWULUtMrkqosBdYtlhsrEeFwyfGKON9n0tvEuzx3IjWmcAL7vQSXJYmWB9rgeCX4m6TtNrxMxEWSqI5F1HLLglbl5AgzBpHL8qAaGkSi_1ka_4a-fzI4fyuJw-v_82DegGsdEI9et5FzEzZ8fQu2PnRUg9twcOCPwmpLRIoas7hZGFqyilrRW_Ts6KTE4A3c4lNsE-E417QjNJp5-rzBYIpo7KmHpiVr3oFPF_JGd2Gzntb-PkSZ8pVkjkuDPSnjlLMuNSLllfeI-coByH7ute3U2emQkG-6p-F91Suv0eQ1mnGNXjOAZGl53CqUrGGjevfS_Q5crBkay-gati-Wth1Ka9HXmtbbvUfqLls2euWOA3i6vI15jn5elbWfLrCNLBCM5yKV57aRKudMZAO41wbIckh4jnMnJMOBPhM6ywaks372Tj35EvTWEXEzIdWD8x_9CWxhDOn3e6P9h3CVXplIJkm2DZvz2cI_giv2ZD5pZo9Dnojg80XH0i_M4qxQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removing+inter-subject+technical+variability+in+magnetic+resonance+imaging+studies&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=tin%2C+Jean-Philippe&rft.au=Sweeney%2C+Elizabeth+M&rft.au=Muschelli%2C+John&rft.au=Crainiceanu%2C+Ciprian+M&rft.date=2016-05-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=132&rft.spage=198&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.02.036&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4113218161 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |