Removing inter-subject technical variability in magnetic resonance imaging studies

Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variabili...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Vol. 132; pp. 198 - 212
Main Authors: Fortin, Jean-Philippe, Sweeney, Elizabeth M., Muschelli, John, Crainiceanu, Ciprian M., Shinohara, Russell T.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 15.05.2016
Elsevier Limited
Subjects:
ISSN:1053-8119, 1095-9572
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variability associated with imaging site, scanner effect, and other technical artifacts is still present after standard intensity normalization in large multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel Effect by Linear regression), a tool to remove residual technical variability after intensity normalization. As proposed by SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch effect correction tools largely used in genomics, we decompose the voxel intensities of images registered to a template into a biological component and an unwanted variation component. The unwanted variation component is estimated from a control region obtained from the cerebrospinal fluid (CSF), where intensities are known to be unassociated with disease status and other clinical covariates. We perform a singular value decomposition (SVD) of the control voxels to estimate factors of unwanted variation. We then estimate the unwanted factors using linear regression for every voxel of the brain and take the residuals as the RAVEL-corrected intensities. We assess the performance of RAVEL using T1-weighted (T1-w) images from more than 900 subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compare RAVEL to two intensity-normalization-only methods: histogram matching and White Stripe. We show that RAVEL performs best at improving the replicability of the brain regions that are empirically found to be most associated with AD, and that these regions are significantly more present in structures impacted by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area, and fornix stria terminals). In addition, we show that the RAVEL-corrected intensities have the best performance in distinguishing between MCI subjects and healthy subjects using the mean hippocampal intensity (AUC=67%), a marked improvement compared to results from intensity normalization alone (AUC=63% and 59% for histogram matching and White Stripe, respectively). RAVEL is promising for many other imaging modalities. •Between-scan unwanted variation is still present after intensity normalization.•We propose a scan-effect removal tool for removing post-normalization artifacts.•We model the unwanted variability between MRI T1-w scans using CSF region.•We use a large subset of the ADNI database to showcase our method.•We show that our method improves replicability of the voxels associated with AD.•MRI intensities corrected by our method improves prediction of AD and MCI.
AbstractList Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variability associated with imaging site, scanner effect, and other technical artifacts is still present after standard intensity normalization in large multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel Effect by Linear regression), a tool to remove residual technical variability after intensity normalization. As proposed by SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch effect correction tools largely used in genomics, we decompose the voxel intensities of images registered to a template into a biological component and an unwanted variation component. The unwanted variation component is estimated from a control region obtained from the cerebrospinal fluid (CSF), where intensities are known to be unassociated with disease status and other clinical covariates. We perform a singular value decomposition (SVD) of the control voxels to estimate factors of unwanted variation. We then estimate the unwanted factors using linear regression for every voxel of the brain and take the residuals as the RAVEL-corrected intensities. We assess the performance of RAVEL using T1-weighted (T1-w) images from more than 900 subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compare RAVEL to two intensity-normalization-only methods: histogram matching and White Stripe. We show that RAVEL performs best at improving the replicability of the brain regions that are empirically found to be most associated with AD, and that these regions are significantly more present in structures impacted by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area, and fornix stria terminals). In addition, we show that the RAVEL-corrected intensities have the best performance in distinguishing between MCI subjects and healthy subjects using the mean hippocampal intensity (AUC=67%), a marked improvement compared to results from intensity normalization alone (AUC=63% and 59% for histogram matching and White Stripe, respectively). RAVEL is promising for many other imaging modalities.
Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity normalization is a first step for the improvement of comparability of the images across subjects. However, we show that unwanted inter-scan variability associated with imaging site, scanner effect, and other technical artifacts is still present after standard intensity normalization in large multi-site neuroimaging studies. We propose RAVEL (Removal of Artificial Voxel Effect by Linear regression), a tool to remove residual technical variability after intensity normalization. As proposed by SVA and RUV [Leek and Storey, 2007, 2008, Gagnon-Bartsch and Speed, 2012], two batch effect correction tools largely used in genomics, we decompose the voxel intensities of images registered to a template into a biological component and an unwanted variation component. The unwanted variation component is estimated from a control region obtained from the cerebrospinal fluid (CSF), where intensities are known to be unassociated with disease status and other clinical covariates. We perform a singular value decomposition (SVD) of the control voxels to estimate factors of unwanted variation. We then estimate the unwanted factors using linear regression for every voxel of the brain and take the residuals as the RAVEL-corrected intensities. We assess the performance of RAVEL using T1-weighted (T1-w) images from more than 900 subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compare RAVEL to two intensity-normalization-only methods: histogram matching and White Stripe. We show that RAVEL performs best at improving the replicability of the brain regions that are empirically found to be most associated with AD, and that these regions are significantly more present in structures impacted by AD (hippocampus, amygdala, parahippocampal gyrus, enthorinal area, and fornix stria terminals). In addition, we show that the RAVEL-corrected intensities have the best performance in distinguishing between MCI subjects and healthy subjects using the mean hippocampal intensity (AUC=67%), a marked improvement compared to results from intensity normalization alone (AUC=63% and 59% for histogram matching and White Stripe, respectively). RAVEL is promising for many other imaging modalities. •Between-scan unwanted variation is still present after intensity normalization.•We propose a scan-effect removal tool for removing post-normalization artifacts.•We model the unwanted variability between MRI T1-w scans using CSF region.•We use a large subset of the ADNI database to showcase our method.•We show that our method improves replicability of the voxels associated with AD.•MRI intensities corrected by our method improves prediction of AD and MCI.
Author Crainiceanu, Ciprian M.
Sweeney, Elizabeth M.
Shinohara, Russell T.
Fortin, Jean-Philippe
Muschelli, John
AuthorAffiliation 2 Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania
1 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, University of Pennsylvania
AuthorAffiliation_xml – name: 1 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, University of Pennsylvania
– name: 2 Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania
Author_xml – sequence: 1
  givenname: Jean-Philippe
  surname: Fortin
  fullname: Fortin, Jean-Philippe
  organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
– sequence: 2
  givenname: Elizabeth M.
  surname: Sweeney
  fullname: Sweeney, Elizabeth M.
  organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
– sequence: 3
  givenname: John
  surname: Muschelli
  fullname: Muschelli, John
  organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
– sequence: 4
  givenname: Ciprian M.
  surname: Crainiceanu
  fullname: Crainiceanu, Ciprian M.
  organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
– sequence: 5
  givenname: Russell T.
  surname: Shinohara
  fullname: Shinohara, Russell T.
  email: rshi@upenn.edu
  organization: Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26923370$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB_wF1AkNmwS_EjsZIOAipdUCamCteU4N9MbMnaxnZHm3-PQlsKsZnUt-9zPx77nnJw474CQgtGKUSbfTJWDJXjcmg1UPO9UlFdUyCfkjNGuKbtG8ZN13YiyZaw7JecxTpTSjtXtM3LKZceFUPSMXF_D1u_QbQp0CUIZl34Cm4oE9sahNXOxMwFNjzOmfdYU-UoHCW0RIHpnnIVitbESYloGhPicPB3NHOHFfb0gPz59_H75pbz69vnr5fur0kopUjnQMVvtO2EaQ-vRtip7atlojJCSUdlb1bCOK56rlBIaBZbBIOUg6r5vB3FB3t5xb5d-C4MFl4KZ9W3IfsJee4P6_xOHN3rjd7ppaipUlwGv7wHB_1ogJr3FaGGejQO_RM1U9iQ5Fc0xUsm4FLXK0lcH0skvweWf0KylXDWioyKrXv5r_q_rh8k8vs4GH2OAUVtMJqFf34KzZlSvUdCTfoyCXqOgKdc5ChnQHgAe7jii9cNdK-Tx7RCCjhYhj3rAkMOhB4_HQN4dQOyMfyL1E_bHIX4Dc0DriQ
CitedBy_id crossref_primary_10_1016_j_neuroimage_2017_08_047
crossref_primary_10_1002_jmri_27558
crossref_primary_10_1038_s41588_022_01039_6
crossref_primary_10_1002_hbm_25115
crossref_primary_10_1002_hbm_24463
crossref_primary_10_1007_s00330_021_08154_8
crossref_primary_10_1016_j_ejmp_2020_02_007
crossref_primary_10_1111_jon_12673
crossref_primary_10_1016_j_neuroimage_2021_118709
crossref_primary_10_3389_fninf_2019_00002
crossref_primary_10_3390_metabo12030231
crossref_primary_10_1002_jmri_28887
crossref_primary_10_1016_j_neuroimage_2017_11_024
crossref_primary_10_1038_s41598_022_16375_0
crossref_primary_10_1093_gigascience_giaf092
crossref_primary_10_1016_j_bspc_2023_105002
crossref_primary_10_1038_s41598_022_14904_5
crossref_primary_10_3389_fninf_2025_1553035
crossref_primary_10_1016_j_media_2024_103388
crossref_primary_10_3389_fnins_2020_00396
crossref_primary_10_3389_fneur_2022_850642
crossref_primary_10_1007_s10334_020_00892_y
crossref_primary_10_1162_imag_a_00522
crossref_primary_10_3389_fnins_2021_708196
crossref_primary_10_3390_diagnostics13050849
crossref_primary_10_1007_s11604_023_01432_z
crossref_primary_10_1016_j_neuroimage_2025_121317
crossref_primary_10_1186_s12888_022_04509_7
crossref_primary_10_3389_fnins_2023_1146175
crossref_primary_10_3390_app11041773
crossref_primary_10_1016_j_neuroimage_2023_120125
crossref_primary_10_1016_j_media_2020_101879
crossref_primary_10_1007_s12021_025_09746_1
crossref_primary_10_1016_j_eswa_2025_126659
crossref_primary_10_1016_j_neuroimage_2025_121297
crossref_primary_10_1016_j_neurobiolaging_2023_07_006
crossref_primary_10_1038_s41598_020_61178_w
crossref_primary_10_1016_j_ijoes_2025_101050
crossref_primary_10_1016_j_nicl_2022_102972
crossref_primary_10_1016_j_nicl_2022_103148
crossref_primary_10_1002_ima_22768
crossref_primary_10_1038_s41598_024_59014_6
crossref_primary_10_1038_s41598_019_57325_7
crossref_primary_10_1111_acps_12964
crossref_primary_10_3389_fnins_2021_608808
crossref_primary_10_1016_j_neuroimage_2019_116442
crossref_primary_10_1038_s41398_020_0798_6
crossref_primary_10_1093_neuonc_noy021
crossref_primary_10_1162_imag_a_00011
crossref_primary_10_1016_j_compbiomed_2024_109131
crossref_primary_10_1002_hbm_26661
crossref_primary_10_1088_1361_6560_ab5c5b
crossref_primary_10_1016_j_nicl_2021_102924
crossref_primary_10_1016_j_media_2023_102799
crossref_primary_10_3349_ymj_2024_0198
crossref_primary_10_1093_biostatistics_kxx068
crossref_primary_10_1002_sim_9604
crossref_primary_10_1016_j_mri_2019_05_041
crossref_primary_10_1038_s44172_023_00140_w
crossref_primary_10_1109_TMI_2018_2794918
crossref_primary_10_1002_da_22627
crossref_primary_10_1016_j_inffus_2022_01_001
crossref_primary_10_1088_1741_2552_ad8837
crossref_primary_10_1109_JBHI_2023_3280823
crossref_primary_10_1002_hbm_25724
crossref_primary_10_1016_j_mri_2022_12_004
crossref_primary_10_1002_hbm_25688
crossref_primary_10_1016_j_neuroimage_2020_117242
crossref_primary_10_1016_j_media_2025_103483
crossref_primary_10_1109_TMI_2019_2895020
crossref_primary_10_1016_j_media_2023_102926
crossref_primary_10_1016_j_heliyon_2023_e19038
crossref_primary_10_1016_j_neuroimage_2022_119330
crossref_primary_10_3390_jimaging8110303
crossref_primary_10_1038_s41598_020_72535_0
crossref_primary_10_1038_s41588_019_0516_6
crossref_primary_10_1016_j_neuroimage_2025_121395
crossref_primary_10_1016_j_cortex_2024_09_011
crossref_primary_10_1259_bjr_20170577
crossref_primary_10_1016_j_mri_2021_03_011
crossref_primary_10_1016_j_neuroimage_2021_118703
crossref_primary_10_1016_j_wneu_2024_01_074
crossref_primary_10_1007_s00247_021_05064_1
crossref_primary_10_1016_j_neuroimage_2021_118822
crossref_primary_10_3390_jcdd10090381
crossref_primary_10_1214_20_BA1240
crossref_primary_10_3390_jcm8091287
crossref_primary_10_1002_hbm_25755
crossref_primary_10_1162_imag_a_00157
crossref_primary_10_1038_s41598_023_43874_5
crossref_primary_10_1016_j_neucom_2023_126493
Cites_doi 10.1002/mrm.22159
10.1523/JNEUROSCI.16-14-04491.1996
10.1212/WNL.55.4.484
10.1109/TMI.2010.2046908
10.1017/S1041610202008281
10.1002/hbm.10062
10.1016/j.neuroimage.2013.05.007
10.1016/j.neurobiolaging.2003.08.006
10.1016/j.jns.2005.02.009
10.1186/s13059-014-0503-2
10.1038/nrg2825
10.1093/biostatistics/kxr034
10.1006/nimg.2000.0582
10.1136/jnnp.63.2.214
10.1007/s004150050387
10.1177/1352458514551594
10.1016/j.neuroimage.2013.03.066
10.1016/j.neurobiolaging.2009.10.006
10.1136/jnnp.71.4.441
10.1002/ana.410320412
10.1002/jmri.21049
10.1016/j.neuroimage.2011.05.038
10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
10.1038/nn.3606
10.1073/pnas.1421412111
10.32614/RJ-2015-013
10.1016/0197-4580(94)90143-0
10.1016/S0197-4580(03)00084-8
10.1016/j.neuroimage.2009.01.054
10.1002/jmri.20658
10.1038/nmeth756
10.1109/42.836373
10.1016/j.neuroimage.2009.12.059
10.1016/j.pscychresns.2006.12.013
10.1093/nar/gku864
10.1016/j.nurt.2007.05.008
10.1016/j.neuroimage.2007.09.073
10.1016/j.neuroimage.2004.07.051
10.1093/bib/bbt054
10.1212/WNL.52.7.1397
10.1016/0730-725X(93)90474-R
10.1111/jon.12129
10.1212/WNL.54.9.1760
10.1016/j.jalz.2012.01.011
10.3233/JAD-2012-102103
10.1016/j.media.2007.06.004
10.1016/j.nicl.2014.08.008
10.1016/j.neuroimage.2009.01.002
10.1016/j.pscychresns.2011.06.014
10.1097/00001756-200210280-00022
10.1016/j.neuroimage.2005.08.009
10.1109/42.906424
10.1109/ISBI.2004.1398484
10.1111/j.1552-6569.2008.00296.x
10.1073/pnas.0808709105
10.1371/journal.pone.0025446
10.1001/archneur.1992.00530310053012
10.1001/archneur.59.1.62
10.1212/WNL.41.3.351
10.1177/1352458515569098
10.1016/j.media.2010.12.003
10.1191/135248506ms1301oa
10.1016/j.neuroimage.2008.06.037
10.1016/j.neuroimage.2005.05.015
10.1016/S1474-4422(06)70550-6
10.1016/j.nicl.2013.03.002
10.1016/j.nicl.2015.10.013
10.1212/WNL.57.9.1669
ContentType Journal Article
Copyright 2016
Published by Elsevier Inc.
Copyright Elsevier Limited May 15, 2016
Copyright_xml – notice: 2016
– notice: Published by Elsevier Inc.
– notice: Copyright Elsevier Limited May 15, 2016
CorporateAuthor The Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: The Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
5PM
DOI 10.1016/j.neuroimage.2016.02.036
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE
ProQuest One Psychology


Engineering Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 212
ExternalDocumentID PMC5540379
4113218161
26923370
10_1016_j_neuroimage_2016_02_036
S1053811916001452
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB017255
– fundername: NINDS NIH HHS
  grantid: R01 NS085211
– fundername: NIA NIH HHS
  grantid: T32 AG000247
– fundername: NINDS NIH HHS
  grantid: R21 NS093349
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
9DU
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFFHD
AFPKN
AGQPQ
AIGII
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
7QO
5PM
ID FETCH-LOGICAL-c663t-d0f095b93a5a04fc8792381faa366106bc7519272c75666e57ec1ed66d34bb8d3
IEDL.DBID M7P
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374832200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
IngestDate Tue Nov 04 01:35:32 EST 2025
Tue Oct 07 09:45:10 EDT 2025
Sat Sep 27 19:11:14 EDT 2025
Tue Oct 07 07:16:43 EDT 2025
Mon Jul 21 06:05:46 EDT 2025
Sat Nov 29 04:30:44 EST 2025
Tue Nov 18 20:40:26 EST 2025
Fri Feb 23 02:25:09 EST 2024
Tue Oct 14 19:31:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ADNI
Normalization
MRI
Alzheimer's disease
Scan effect
Language English
License Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c663t-d0f095b93a5a04fc8792381faa366106bc7519272c75666e57ec1ed66d34bb8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
OpenAccessLink http://doi.org/10.1016/j.neuroimage.2016.02.036
PMID 26923370
PQID 1802753903
PQPubID 2031077
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5540379
proquest_miscellaneous_1787962035
proquest_miscellaneous_1786126347
proquest_journals_1802753903
pubmed_primary_26923370
crossref_citationtrail_10_1016_j_neuroimage_2016_02_036
crossref_primary_10_1016_j_neuroimage_2016_02_036
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2016_02_036
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2016_02_036
PublicationCentury 2000
PublicationDate 2016-05-15
PublicationDateYYYYMMDD 2016-05-15
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2016
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Shinohara, Muschelli (bb0330) 2015
Cameron Craddock, Holtzheimer, Hu, Mayberg (bb0050) 2009; 620
Wolz, Julkunen, Koikkalainen, Niskanen, Zhang, Rueckert, Soininen, Lötjönen (bb0415) 2011; 60
Fox, Warrington, Freeborough, Hartikainen, Kennedy, Stevens, Rossor (bb0110) 1996; 119
Sweeney, Shinohara, Dewey, Schindler, Muschelli, Reich, Crainiceanu, Eloyan (bb0360) 2016; 10
Madabhushi, Udupa, Moonis (bb0230) 2006; 240
Jacob, Gagnon-Bartsch, Speed (bb0170) 2013
Leek (bb0190) 2014; 420
Leung, Clarkson, Bartlett, Clegg, Jack, Weiner, Fox, Ourselin, Alzheimer's Disease Neuroimaging Initiative (bb0215) 2010; 500
Leek, Storey (bb0205) 2008; 1050
Chong, Lim (bb0065) 2009
Mori, Yoneda, Yamashita, Hirono, Ikeda, Yamadori (bb0255) 1997; 630
Vereecken, Vogels, Nieuwenhuys (bb0385) 1994; 150
Gagnon-Bartsch, Speed (bb0115) 2012; 130
Hornek, Petrovický, Hort, Krásenský, Brabec, Bojar, Vanecková, Seidl (bb0145) 2006; 1130
Hartung, Prell, Gaser, Turner, Tietz, Ilse, Bokemeyer, Witte, Grosskreutz (bb0140) 2014
Chételat, Desgranges, De La Sayette, Viader, Eustache, Baron (bb0055) 2002; 130
Weisenfeld, Warfield (bb0395) 2004
Pujol, Junqué, Vendrell, Grau, Mart-Vilalta, Olivé, Gili (bb0295) 1992; 490
Oishi, Faria, Jiang, Li, Akhter, Zhang, Hsu, Miller, van Zijl, Albert, Lyketsos, Woods, Toga, Pike, Rosa-Neto, Evans, Mazziotta, Mori (bb0280) 2009; 460
Bakshi, Benedict, Bermel, Caruthers, Puli, Tjoa, Fabiano, Jacobs (bb0020) 2002; 590
Meier, Weiner, Guttmann (bb0235) 2007; 40
Xu, Jack, O′Brien, Kokmen, Smith, Ivnik, Boeve, Tangalos, Petersen (bb0420) 2000; 540
Tjoa, Benedict, Weinstock-Guttman, Fabiano, Bakshi (bb0365) 2005; 2340
Scott, DeKosky, Scheff (bb0315) 1991; 410
Fortin, Labbe, Lemire, Zanke, Hudson, Fertig, Greenwood, Hansen (bb0105) 2014; 150
Dedeurwaerder, Defrance, Bizet, Calonne, Bontempi, Fuks (bb0085) 2014; 150
Whitwell, Przybelski, Weigand, Knopman, Boeve, Petersen, Jack (bb0405) 2007; 1300
Zhang, Brady, Smith (bb0425) 2001; 200
Callen, Black, Gao, Caldwell, Szalai (bb0045) 2001; 570
Nyúl, Udupa (bb0270) 1999; 420
Bourgon (bb0030) 2006
Avants, Epstein, Grossman, Gee (bb0010) 2008; 120
Mielke, Kozauer, Chan, George, Toroney, Zerrate, Bandeen-Roche, Wang, Vanzijl, Pekar, Mori, Lyketsos, Albert (bb0245) 2009; 46
Chételat, Landeau, Eustache, Mézenge, Viader, de la Sayette, Desgranges, Baron (bb0060) 2005; 270
Gaonkar, Davatzikos (bb0120) 2013; 78
Nyúl, Udupa, Zhang (bb0275) 2000; 190
Braak, Del Tredici (bb0035) 2012; 80
Ashburner, Friston (bb0005) 2000; 110
Shah, Xiao, Subbanna, Francis, Arnold, Collins, Arbel (bb0325) 2011; 150
Whitcher, Schmid, Thornton (bb0400) 2011; 440
Khan, Liu, Provenzano, Berman, Profaci, Sloan, Mayeux, Duff, Small (bb0185) 2014; 170
Vardhan, Prastawa, Vachet, Piven, Gerig (bb0375) 2014
Muschelli, Sweeney, Lindquist, Crainiceanu (bb0260) 2015; 70
Neema, Arora, Healy, Guss, Brass, Duan, Buckle, Glanz, Stazzone, Khoury, Weiner, Guttmann, Bakshi (bb0265) 2009; 190
Pennanen, Kivipelto, Tuomainen, Hartikainen, Hänninen, Laakso, Hallikainen, Vanhanen, Nissinen, Helkala, Vainio, Vanninen, Partanen, Soininen (bb0285) 2004; 250
Visser, Scheltens, Verhey, Schmand, Launer, Jolles, Jonker (bb0390) 1999; 2460
Shinohara, Sweeney, Goldsmith, Shiee, Mateen, Calabresi, Jarso, Pham, Reich, Crainiceanu (bb0340) 2014; 6
Delano-Wood, Stricker, Sorg, Nation, Jak, Woods, Libon, Delis, Frank, Bondi (bb0090) 2012; 290
Gómez-Isla, Price, McKeel, Morris, Growdon, Hyman (bb0135) 1996; 160
Bottino, Castro, Gomes, Buchpiguel, Marchetti, Neto (bb0025) 2002; 140
Mejia, Sweeney, Dewey, Nair, Sati, Shea, Reich, Shinohara (bb0240) 2015
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney (bb0350) 2004; 23
Scott, DeKosky, Sparks, Knox, Scheff (bb0320) 1992; 320
Irizarry, Warren, Spencer, Kim, Biswal, Frank, Gabrielson, Garcia, Geoghegan, Germino, Griffin, Hilmer, Hoffman, Jedlicka, Kawasaki, Martnez-Murillo, Morsberger, Lee, Petersen, Quackenbush, Scott, Wilson, Yang, Ye, Yu (bb0150) 2005; 20
Liu, Spulber, Lehtimäki, Könönen, Hallikainen, Gröhn, Kivipelto, Hallikainen, Vanninen, Soininen (bb0220) 2011; 320
Miller, Younes, Ratnanather, Brown, Trinh, Lee, Tward, Mahon, Mori, Albert, BIOCARD Research Team (bb0250) 2015; 36
Reich, White, Cortese, Vuolo, Shea, Collins, Petkau (bb0305) 2015
Brass, Benedict, Weinstock-Guttman, Munschauer, Bakshi (bb0040) 2006; 120
Leek, Storey (bb0200) 2007; 30
Davatzikos, Bhatt, Shaw, Batmanghelich, Trojanowski (bb0075) 2011; 320
Davatzikos, Ruparel, Fan, Shen, Acharyya, Loughead, Gur, Langleben (bb0070) 2005; 280
Leek, Scharpf, Bravo, Simcha, Langmead, Johnson, Geman, Baggerly, Irizarry (bb0210) 2010; 110
R Core Team (bb0300) 2014
Jager, Deuerling-Zheng, Frericks, Wacker, Hornegger (bb0175) 2006
Ghassemi, Brown, Narayanan, Banwell, Nakamura, Arnold (bb0130) 2015; 250
Shinohara, Crainiceanu, Caffo, Gaitán, Reich (bb0335) 2011; 570
Leek, Peng (bb0195) 2015; 1120
Poulin, Dautoff, Morris, Barrett, Dickerson, Alzheimer's Disease Neuroimaging Initiative (bb0290) 2011; 1940
Ridha, Barnes, Bartlett, Godbolt, Pepple, Rossor, Fox (bb0310) 2006; 50
Wolf, Hensel, Kruggel, Riedel-Heller, Arendt, Wahlund, Gertz (bb0410) 2004; 250
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bb0370) 2010; 290
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward (bb0165) 2008; 270
Sweeney, Shinohara, Shiee, Mateen, Chudgar, Cuzzocreo, Calabresi, Pham, Reich, Crainiceanu (bb0355) 2013; 2
De Martino, Valente, Staeren, Ashburner, Goebel, Formisano (bb0080) 2008; 430
Smith (bb0345) 2002; 170
Vemuri, Gunter, Senjem, Whitwell, Kantarci, Knopman, Boeve, Petersen, Jack (bb0380) 2008; 390
Avants, Kandel, Duda, Cook (bb0015) 2015
Du, Schuff, Amend, Laakso, Hsu, Jagust, Yaffe, Kramer, Reed, Norman, Chui, Weiner (bb0095) 2001; 710
Jack, Petersen, Xu, O′Brien, Smith, Ivnik, Boeve, Waring, Tangalos, Kokmen (bb0155) 1999; 520
Luoma, Raininko, Nummi, Luukkonen (bb0225) 1993; 110
Farrow, Thiyagesh, Wilkinson, Parks, Ingram, Woodruff (bb0100) 2007; 1550
Jack, Petersen, Xu, O′Brien, Smith, Ivnik, Boeve, Tangalos, Kokmen (bb0160) 2000; 550
Jovicich, Marizzoni, Sala-Llonch, Bosch, Bartrés-Faz, Arnold, Benninghoff, Wiltfang, Roccatagliata, Nobili (bb0180) 2013; 83
Ghassemi, Brown, Banwell, Narayanan, Arnold, Canadian Pediatric Demyelinating Disease Study Group (bb0125) 2015; 210
Shinohara (10.1016/j.neuroimage.2016.02.036_bb0340) 2014; 6
Bottino (10.1016/j.neuroimage.2016.02.036_bb0025) 2002; 140
Vardhan (10.1016/j.neuroimage.2016.02.036_bb0375) 2014
Mori (10.1016/j.neuroimage.2016.02.036_bb0255) 1997; 630
Poulin (10.1016/j.neuroimage.2016.02.036_bb0290) 2011; 1940
Miller (10.1016/j.neuroimage.2016.02.036_bb0250) 2015; 36
Khan (10.1016/j.neuroimage.2016.02.036_bb0185) 2014; 170
Oishi (10.1016/j.neuroimage.2016.02.036_bb0280) 2009; 460
Tustison (10.1016/j.neuroimage.2016.02.036_bb0370) 2010; 290
Ghassemi (10.1016/j.neuroimage.2016.02.036_bb0125) 2015; 210
Jack (10.1016/j.neuroimage.2016.02.036_bb0160) 2000; 550
Wolz (10.1016/j.neuroimage.2016.02.036_bb0415) 2011; 60
Jovicich (10.1016/j.neuroimage.2016.02.036_bb0180) 2013; 83
Muschelli (10.1016/j.neuroimage.2016.02.036_bb0260) 2015; 70
Reich (10.1016/j.neuroimage.2016.02.036_bb0305) 2015
Whitcher (10.1016/j.neuroimage.2016.02.036_bb0400) 2011; 440
Hornek (10.1016/j.neuroimage.2016.02.036_bb0145) 2006; 1130
Jack (10.1016/j.neuroimage.2016.02.036_bb0155) 1999; 520
Gómez-Isla (10.1016/j.neuroimage.2016.02.036_bb0135) 1996; 160
Sweeney (10.1016/j.neuroimage.2016.02.036_bb0360) 2016; 10
Shinohara (10.1016/j.neuroimage.2016.02.036_bb0330)
Smith (10.1016/j.neuroimage.2016.02.036_bb0350) 2004; 23
Leung (10.1016/j.neuroimage.2016.02.036_bb0215) 2010; 500
Neema (10.1016/j.neuroimage.2016.02.036_bb0265) 2009; 190
Chételat (10.1016/j.neuroimage.2016.02.036_bb0060) 2005; 270
Du (10.1016/j.neuroimage.2016.02.036_bb0095) 2001; 710
Scott (10.1016/j.neuroimage.2016.02.036_bb0315) 1991; 410
Smith (10.1016/j.neuroimage.2016.02.036_bb0345) 2002; 170
Ghassemi (10.1016/j.neuroimage.2016.02.036_bb0130) 2015; 250
Hartung (10.1016/j.neuroimage.2016.02.036_bb0140) 2014
Irizarry (10.1016/j.neuroimage.2016.02.036_bb0150) 2005; 20
Leek (10.1016/j.neuroimage.2016.02.036_bb0205) 2008; 1050
Wolf (10.1016/j.neuroimage.2016.02.036_bb0410) 2004; 250
Bakshi (10.1016/j.neuroimage.2016.02.036_bb0020) 2002; 590
Cameron Craddock (10.1016/j.neuroimage.2016.02.036_bb0050) 2009; 620
Fortin (10.1016/j.neuroimage.2016.02.036_bb0105) 2014; 150
Ridha (10.1016/j.neuroimage.2016.02.036_bb0310) 2006; 50
Mejia (10.1016/j.neuroimage.2016.02.036_bb0240) 2015
Gagnon-Bartsch (10.1016/j.neuroimage.2016.02.036_bb0115) 2012; 130
Shinohara (10.1016/j.neuroimage.2016.02.036_bb0335) 2011; 570
Davatzikos (10.1016/j.neuroimage.2016.02.036_bb0070) 2005; 280
Leek (10.1016/j.neuroimage.2016.02.036_bb0195) 2015; 1120
Zhang (10.1016/j.neuroimage.2016.02.036_bb0425) 2001; 200
Avants (10.1016/j.neuroimage.2016.02.036_bb0010) 2008; 120
Bourgon (10.1016/j.neuroimage.2016.02.036_bb0030) 2006
Chételat (10.1016/j.neuroimage.2016.02.036_bb0055) 2002; 130
Madabhushi (10.1016/j.neuroimage.2016.02.036_bb0230) 2006; 240
Jager (10.1016/j.neuroimage.2016.02.036_bb0175) 2006
Delano-Wood (10.1016/j.neuroimage.2016.02.036_bb0090) 2012; 290
Braak (10.1016/j.neuroimage.2016.02.036_bb0035) 2012; 80
Jacob (10.1016/j.neuroimage.2016.02.036_bb0170) 2013
Fox (10.1016/j.neuroimage.2016.02.036_bb0110) 1996; 119
Weisenfeld (10.1016/j.neuroimage.2016.02.036_bb0395) 2004
Luoma (10.1016/j.neuroimage.2016.02.036_bb0225) 1993; 110
Nyúl (10.1016/j.neuroimage.2016.02.036_bb0275) 2000; 190
Scott (10.1016/j.neuroimage.2016.02.036_bb0320) 1992; 320
Tjoa (10.1016/j.neuroimage.2016.02.036_bb0365) 2005; 2340
Xu (10.1016/j.neuroimage.2016.02.036_bb0420) 2000; 540
Liu (10.1016/j.neuroimage.2016.02.036_bb0220) 2011; 320
Pennanen (10.1016/j.neuroimage.2016.02.036_bb0285) 2004; 250
Sweeney (10.1016/j.neuroimage.2016.02.036_bb0355) 2013; 2
Davatzikos (10.1016/j.neuroimage.2016.02.036_bb0075) 2011; 320
Ashburner (10.1016/j.neuroimage.2016.02.036_bb0005) 2000; 110
Leek (10.1016/j.neuroimage.2016.02.036_bb0200) 2007; 30
Farrow (10.1016/j.neuroimage.2016.02.036_bb0100) 2007; 1550
Vemuri (10.1016/j.neuroimage.2016.02.036_bb0380) 2008; 390
Nyúl (10.1016/j.neuroimage.2016.02.036_bb0270) 1999; 420
Leek (10.1016/j.neuroimage.2016.02.036_bb0210) 2010; 110
Meier (10.1016/j.neuroimage.2016.02.036_bb0235) 2007; 40
Chong (10.1016/j.neuroimage.2016.02.036_bb0065) 2009
Leek (10.1016/j.neuroimage.2016.02.036_bb0190) 2014; 420
Jack (10.1016/j.neuroimage.2016.02.036_bb0165) 2008; 270
Dedeurwaerder (10.1016/j.neuroimage.2016.02.036_bb0085) 2014; 150
Vereecken (10.1016/j.neuroimage.2016.02.036_bb0385) 1994; 150
Gaonkar (10.1016/j.neuroimage.2016.02.036_bb0120) 2013; 78
Pujol (10.1016/j.neuroimage.2016.02.036_bb0295) 1992; 490
Whitwell (10.1016/j.neuroimage.2016.02.036_bb0405) 2007; 1300
R Core Team (10.1016/j.neuroimage.2016.02.036_bb0300)
Shah (10.1016/j.neuroimage.2016.02.036_bb0325) 2011; 150
Brass (10.1016/j.neuroimage.2016.02.036_bb0040) 2006; 120
Visser (10.1016/j.neuroimage.2016.02.036_bb0390) 1999; 2460
Avants (10.1016/j.neuroimage.2016.02.036_bb0015)
De Martino (10.1016/j.neuroimage.2016.02.036_bb0080) 2008; 430
Callen (10.1016/j.neuroimage.2016.02.036_bb0045) 2001; 570
Mielke (10.1016/j.neuroimage.2016.02.036_bb0245) 2009; 46
References_xml – volume: 420
  year: 1999
  ident: bb0270
  article-title: On standardizing the mr image intensity scale
  publication-title: Magn. Reson. Med.
– volume: 280
  start-page: 663
  year: 2005
  end-page: 668
  ident: bb0070
  article-title: Classifying spatial patterns of brain activity with machine learning methods: application to lie detection
  publication-title: NeuroImage
– volume: 78
  year: 2013
  ident: bb0120
  article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
  publication-title: NeuroImage
– volume: 83
  start-page: 472
  year: 2013
  end-page: 484
  ident: bb0180
  article-title: Brain morphometry reproducibility in multi-center 3
  publication-title: NeuroImage
– volume: 46
  start-page: 47
  year: 2009
  end-page: 55
  ident: bb0245
  article-title: Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease
  publication-title: NeuroImage
– volume: 240
  year: 2006
  ident: bb0230
  article-title: Comparing mr image intensity standardization against tissue characterizability of magnetization transfer ratio imaging
  publication-title: J. Magn. Reson. Imaging
– year: 2014
  ident: bb0140
  article-title: Voxel-based mri intensitometry reveals extent of cerebral white matter pathology in amyotrophic lateral sclerosis
– volume: 190
  start-page: 3
  year: 2009
  end-page: 8
  ident: bb0265
  article-title: Deep gray matter involvement on brain MRI scans is associated with clinical progression in multiple sclerosis
  publication-title: J. Neuroimaging
– volume: 50
  year: 2006
  ident: bb0310
  article-title: Tracking atrophy progression in familial alzheimer's disease: a serial mri study
  publication-title: Lancet Neurol.
– volume: 120
  start-page: 26
  year: 2008
  end-page: 41
  ident: bb0010
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
– volume: 110
  start-page: 733
  year: 2010
  end-page: 739
  ident: bb0210
  article-title: Tackling the widespread and critical impact of batch effects in high-throughput data
  publication-title: Nat. Rev. Genet.
– volume: 40
  start-page: 485
  year: 2007
  end-page: 498
  ident: bb0235
  article-title: Time-series modeling of multiple sclerosis disease activity: a promising window on disease progression and repair potential?
  publication-title: Neurotherapeutics
– volume: 110
  start-page: 805
  year: 2000
  end-page: 821
  ident: bb0005
  article-title: Voxel-based morphometry—the methods
  publication-title: NeuroImage
– volume: 130
  start-page: 1939
  year: 2002
  end-page: 1943
  ident: bb0055
  article-title: Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment
  publication-title: Neuroreport
– volume: 30
  start-page: 1724
  year: 2007
  end-page: 1735
  ident: bb0200
  article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis
  publication-title: PLoS Genet.
– volume: 390
  year: 2008
  ident: bb0380
  article-title: Alzheimer's disease diagnosis in individual subjects using structural mr images: validation studies
  publication-title: NeuroImage
– volume: 190
  year: 2000
  ident: bb0275
  article-title: New variants of a method of mri scale standardization
  publication-title: IEEE Trans. Med. Imaging
– volume: 570
  year: 2011
  ident: bb0335
  article-title: Population-wide principal component-based quantification of blood–brain-barrier dynamics in multiple sclerosis
  publication-title: NeuroImage
– volume: 270
  start-page: 934
  year: 2005
  end-page: 946
  ident: bb0060
  article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal mri study
  publication-title: NeuroImage
– volume: 550
  year: 2000
  ident: bb0160
  article-title: Rates of hippocampal atrophy correlate with change in clinical status in aging and ad
  publication-title: Neurology
– year: 2004
  ident: bb0395
  article-title: Normalization of joint image-intensity statistics in MRI using the kullback–leibler divergence
  publication-title: Biomedical Imaging: Nano to Macro, 2004 IEEE International Symposium on (101–104IEEE)
– volume: 170
  year: 2014
  ident: bb0185
  article-title: Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease
  publication-title: Nat. Neurosci.
– volume: 250
  year: 2004
  ident: bb0285
  article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early ad
  publication-title: Neurobiol. Aging
– volume: 410
  year: 1991
  ident: bb0315
  article-title: Volumetric atrophy of the amygdala in alzheimer's disease: quantitative serial reconstruction
  publication-title: Neurology
– volume: 620
  start-page: 1619
  year: 2009
  end-page: 1628
  ident: bb0050
  article-title: Disease state prediction from resting state functional connectivity
  publication-title: Magn. Reson. Med.
– volume: 10
  start-page: 1
  year: 2016
  end-page: 17
  ident: bb0360
  article-title: Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions
  publication-title: NeuroImage Clin.
– year: 2015
  ident: bb0305
  article-title: Sample-size calculations for short-term proof-of-concept studies of tissue protection and repair in multiple sclerosis lesions via conventional clinical imaging
  publication-title: Mult. Scler. J.
– volume: 250
  year: 2004
  ident: bb0410
  article-title: Structural correlates of mild cognitive impairment
  publication-title: Neurobiol. Aging
– volume: 120
  start-page: 437
  year: 2006
  end-page: 444
  ident: bb0040
  article-title: Cognitive impairment is associated with subcortical magnetic resonance imaging grey matter t2 hypointensity in multiple sclerosis
  publication-title: Mult. Scler.
– volume: 1550
  year: 2007
  ident: bb0100
  article-title: Fronto-temporal-lobe atrophy in early-stage alzheimer's disease identified using an improved detection methodology
  publication-title: Psychiatry Res.
– volume: 6
  start-page: 9
  year: 2014
  end-page: 19
  ident: bb0340
  article-title: Australian imaging biomarkers lifestyle flagship study of ageing, and Alzheimer's disease neuroimaging initiative. Statistical normalization techniques for magnetic resonance imaging
  publication-title: Neuroimage Clin.
– volume: 290
  start-page: 589
  year: 2012
  ident: bb0090
  article-title: Posterior cingulum white matter disruption and its associations with verbal memory and stroke risk in mild cognitive impairment
  publication-title: J. Alzheimers Dis.
– volume: 570
  year: 2001
  ident: bb0045
  article-title: Beyond the hippocampus: Mri volumetry confirms widespread limbic atrophy in ad
  publication-title: Neurology
– volume: 630
  year: 1997
  ident: bb0255
  article-title: Medial temporal structures relate to memory impairment in alzheimer's disease: an MRI volumetric study
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 150
  start-page: 45
  year: 1994
  end-page: 54
  ident: bb0385
  article-title: Neuron loss and shrinkage in the amygdala in alzheimer's disease
  publication-title: Neurobiol. Aging
– start-page: 37
  year: 2015
  ident: bb0240
  article-title: Statistical estimation of t1 relaxation time using conventional magnetic resonance imaging
  publication-title: UPenn Biostatistics Working Papers, Working Paper
– volume: 590
  start-page: 62
  year: 2002
  end-page: 68
  ident: bb0020
  article-title: T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study
  publication-title: Arch. Neurol.
– start-page: 3
  year: 2009
  end-page: 15
  ident: bb0065
  article-title: Neuroimaging biomarkers in alzheimer's disease
  publication-title: The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes
– volume: 150
  start-page: 503
  year: 2014
  ident: bb0105
  article-title: Functional normalization of 450
  publication-title: Genome Biol.
– volume: 2
  start-page: 402
  year: 2013
  end-page: 413
  ident: bb0355
  article-title: Oasis is automated statistical inference for segmentation, with applications to multiple sclerosis lesion segmentation in mri
  publication-title: Neuroimage Clin.
– year: 2014
  ident: bb0375
  article-title: Characterizing Growth Patterns in Longitudinal Mri Using Image Contrast
  publication-title: SPIE Medical Imaging, pages 90340D–90340D. International Society for Optics and Photonics
– volume: 1940
  start-page: 7
  year: 2011
  end-page: 13
  ident: bb0290
  article-title: Amygdala atrophy is prominent in early alzheimer's disease and relates to symptom severity
  publication-title: Psychiatry Res.
– year: 2006
  ident: bb0030
  article-title: Chromatin Immunoprecipitation and High-Density Tiling Microarrays: A Generative Model, Methods for Analysis, and Methodology Assessment in the Absence of a “Gold Standard”
– volume: 2460
  year: 1999
  ident: bb0390
  article-title: Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment
  publication-title: J. Neurol.
– volume: 440
  start-page: 1
  year: 2011
  end-page: 28
  ident: bb0400
  article-title: Working with the DICOM and NIfTI data standards in R
  publication-title: J. Stat. Softw.
– volume: 200
  start-page: 45
  year: 2001
  end-page: 57
  ident: bb0425
  article-title: Segmentation of brain mr images through a hidden markov random field model and the expectation–maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
– volume: 520
  year: 1999
  ident: bb0155
  article-title: Prediction of ad with mri-based hippocampal volume in mild cognitive impairment
  publication-title: Neurology
– volume: 420
  year: 2014
  ident: bb0190
  article-title: svaseq: removing batch effects and other unwanted noise from sequencing data
  publication-title: Nucleic Acids Res.
– volume: 290
  year: 2010
  ident: bb0370
  article-title: N4itk: improved n3 bias correction
  publication-title: IEEE Trans. Med. Imaging
– year: 2015
  ident: bb0015
  article-title: Antsr: Ants in r
– volume: 320
  start-page: 1558
  year: 2011
  end-page: 1571
  ident: bb0220
  article-title: Diffusion tensor imaging and tract-based spatial statistics in alzheimer's disease and mild cognitive impairment
  publication-title: Neurobiol. Aging
– volume: 490
  start-page: 711
  year: 1992
  end-page: 717
  ident: bb0295
  article-title: Biological significance of iron-related magnetic resonance imaging changes in the brain
  publication-title: Arch. Neurol.
– volume: 70
  start-page: 163
  year: 2015
  end-page: 175
  ident: bb0260
  article-title: fslr: Connecting the fsl software with r
  publication-title: The R J.
– start-page: 269
  year: 2006
  end-page: 276
  ident: bb0175
  article-title: A new method for mri intensity standardization with application to lesion detection in the brain
  publication-title: Vision Modeling and Visualization
– volume: 130
  start-page: 539
  year: 2012
  end-page: 552
  ident: bb0115
  article-title: Using control genes to correct for unwanted variation in microarray data
  publication-title: Biostatistics
– volume: 2340
  start-page: 17
  year: 2005
  end-page: 24
  ident: bb0365
  article-title: Mri t2 hypointensity of the dentate nucleus is related to ambulatory impairment in multiple sclerosis
  publication-title: J. Neurol. Sci.
– year: 2015
  ident: bb0330
  article-title: Whitestripe: White matter normalization for magnetic resonance images using whitestripe
– volume: 36
  year: 2015
  ident: bb0250
  article-title: Amygdalar atrophy in symptomatic alzheimer's disease based on diffeomorphometry: the biocard cohort
  publication-title: Neurobiol. Aging
– volume: 80
  start-page: 227
  year: 2012
  end-page: 233
  ident: bb0035
  article-title: Alzheimer's disease: pathogenesis and prevention
  publication-title: Alzheimers Dement.
– volume: 60
  year: 2011
  ident: bb0415
  article-title: Multi-method analysis of mri images in early diagnostics of alzheimer's disease
  publication-title: PLoS One
– volume: 1050
  start-page: 18718
  year: 2008
  end-page: 18723
  ident: bb0205
  article-title: A general framework for multiple testing dependence
  publication-title: Proc. Natl. Acad. Sci.
– volume: 160
  year: 1996
  ident: bb0135
  article-title: Profound loss of layer ii entorhinal cortex neurons occurs in very mild alzheimer's disease
  publication-title: J. Neurosci.
– volume: 540
  year: 2000
  ident: bb0420
  article-title: Usefulness of mri measures of entorhinal cortex versus hippocampus in ad
  publication-title: Neurology
– volume: 430
  start-page: 44
  year: 2008
  end-page: 58
  ident: bb0080
  article-title: Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns
  publication-title: NeuroImage
– volume: 1130
  year: 2006
  ident: bb0145
  article-title: Amygdalar volume and psychiatric symptoms in alzheimer's disease: an mri analysis
  publication-title: Acta Neurol. Scand.
– year: 2014
  ident: bb0300
  article-title: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
– volume: 250
  start-page: 184
  year: 2015
  end-page: 190
  ident: bb0130
  article-title: Normalization of white matter intensity on t1-weighted images of patients with acquired central nervous system demyelination
  publication-title: J. Neuroimaging
– volume: 119
  year: 1996
  ident: bb0110
  article-title: Presymptomatic hippocampal atrophy in alzheimer's disease. a longitudinal mri study
  publication-title: Brain
– volume: 170
  year: 2002
  ident: bb0345
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: bb0350
  article-title: Advances in functional and structural mr image analysis and implementation as fsl
  publication-title: NeuroImage
– volume: 320
  start-page: e19
  year: 2011
  end-page: e27
  ident: bb0075
  article-title: Prediction of mci to ad conversion, via MRI, csf biomarkers, and pattern classification
  publication-title: Neurobiol. Aging
– year: 2013
  ident: bb0170
  article-title: Correcting Gene Expression Data When Neither the Unwanted Variation Nor the Factor of Interest Are Observed. Tech. Rep. 818
– volume: 150
  year: 2011
  ident: bb0325
  article-title: Evaluating intensity normalization on mris of human brain with multiple sclerosis
  publication-title: Med. Image Anal.
– volume: 1120
  year: 2015
  ident: bb0195
  article-title: Opinion: reproducible research can still be wrong: adopting a prevention approach
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 140
  start-page: 59
  year: 2002
  end-page: 72
  ident: bb0025
  article-title: Volumetric mri measurements can differentiate Alzheimer's disease, mild cognitive impairment, and normal aging
  publication-title: Int. Psychogeriatr.
– volume: 150
  year: 2014
  ident: bb0085
  article-title: A comprehensive overview of infinium humanmethylation450 data processing
  publication-title: Brief. Bioinform.
– volume: 500
  year: 2010
  ident: bb0215
  article-title: Robust atrophy rate measurement in alzheimer's disease using multi-site serial MRI: tissue-specific intensity normalization and parameter selection
  publication-title: NeuroImage
– volume: 460
  year: 2009
  ident: bb0280
  article-title: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and alzheimer's disease participants
  publication-title: NeuroImage
– volume: 270
  start-page: 685
  year: 2008
  end-page: 691
  ident: bb0165
  article-title: The alzheimer's disease neuroimaging initiative (adni): Mri methods
  publication-title: J. Magn. Reson. Imaging
– volume: 110
  start-page: 549
  year: 1993
  end-page: 555
  ident: bb0225
  article-title: Is the signal intensity of cerebrospinal fluid constant? intensity measurements with high and low field magnetic resonance imagers
  publication-title: Magn. Reson. Imaging
– volume: 710
  year: 2001
  ident: bb0095
  article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 210
  start-page: 718
  year: 2015
  end-page: 725
  ident: bb0125
  article-title: Quantitative measurement of tissue damage and recovery within new t2w lesions in pediatric-and adult-onset multiple sclerosis
  publication-title: Mult. Scler. J.
– volume: 320
  year: 1992
  ident: bb0320
  article-title: Amygdala cell loss and atrophy in alzheimer's disease
  publication-title: Ann. Neurol.
– volume: 20
  start-page: 345
  year: 2005
  end-page: 350
  ident: bb0150
  article-title: Multiple-laboratory comparison of microarray platforms
  publication-title: Nat. Methods
– volume: 1300
  year: 2007
  ident: bb0405
  article-title: 3d maps from multiple mri illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to alzheimer's disease
  publication-title: Brain
– year: 2013
  ident: 10.1016/j.neuroimage.2016.02.036_bb0170
– volume: 620
  start-page: 1619
  issue: 6
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.036_bb0050
  article-title: Disease state prediction from resting state functional connectivity
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22159
– volume: 160
  issue: 14
  year: 1996
  ident: 10.1016/j.neuroimage.2016.02.036_bb0135
  article-title: Profound loss of layer ii entorhinal cortex neurons occurs in very mild alzheimer's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-14-04491.1996
– volume: 550
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2016.02.036_bb0160
  article-title: Rates of hippocampal atrophy correlate with change in clinical status in aging and ad
  publication-title: Neurology
  doi: 10.1212/WNL.55.4.484
– volume: 290
  issue: 6
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.036_bb0370
  article-title: N4itk: improved n3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 140
  start-page: 59
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2016.02.036_bb0025
  article-title: Volumetric mri measurements can differentiate Alzheimer's disease, mild cognitive impairment, and normal aging
  publication-title: Int. Psychogeriatr.
  doi: 10.1017/S1041610202008281
– volume: 170
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2016.02.036_bb0345
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 83
  start-page: 472
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.036_bb0180
  article-title: Brain morphometry reproducibility in multi-center 3t mri studies: a comparison of cross-sectional and longitudinal segmentations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.007
– ident: 10.1016/j.neuroimage.2016.02.036_bb0300
– volume: 250
  issue: 7
  year: 2004
  ident: 10.1016/j.neuroimage.2016.02.036_bb0410
  article-title: Structural correlates of mild cognitive impairment
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2003.08.006
– volume: 2340
  start-page: 17
  issue: 1–2
  year: 2005
  ident: 10.1016/j.neuroimage.2016.02.036_bb0365
  article-title: Mri t2 hypointensity of the dentate nucleus is related to ambulatory impairment in multiple sclerosis
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2005.02.009
– volume: 150
  start-page: 503
  issue: 11
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.036_bb0105
  article-title: Functional normalization of 450k methylation array data improves replication in large cancer studies
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0503-2
– volume: 110
  start-page: 733
  issue: 10
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.036_bb0210
  article-title: Tackling the widespread and critical impact of batch effects in high-throughput data
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2825
– volume: 130
  start-page: 539
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.036_bb0115
  article-title: Using control genes to correct for unwanted variation in microarray data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxr034
– volume: 110
  start-page: 805
  issue: 6
  year: 2000
  ident: 10.1016/j.neuroimage.2016.02.036_bb0005
  article-title: Voxel-based morphometry—the methods
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0582
– volume: 630
  issue: 2
  year: 1997
  ident: 10.1016/j.neuroimage.2016.02.036_bb0255
  article-title: Medial temporal structures relate to memory impairment in alzheimer's disease: an MRI volumetric study
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.63.2.214
– volume: 2460
  issue: 6
  year: 1999
  ident: 10.1016/j.neuroimage.2016.02.036_bb0390
  article-title: Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment
  publication-title: J. Neurol.
  doi: 10.1007/s004150050387
– volume: 210
  start-page: 718
  issue: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.036_bb0125
  article-title: Quantitative measurement of tissue damage and recovery within new t2w lesions in pediatric-and adult-onset multiple sclerosis
  publication-title: Mult. Scler. J.
  doi: 10.1177/1352458514551594
– volume: 78
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.036_bb0120
  article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.03.066
– volume: 440
  start-page: 1
  issue: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.036_bb0400
  article-title: Working with the DICOM and NIfTI data standards in R
  publication-title: J. Stat. Softw.
– volume: 320
  start-page: 1558
  issue: 9
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.036_bb0220
  article-title: Diffusion tensor imaging and tract-based spatial statistics in alzheimer's disease and mild cognitive impairment
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2009.10.006
– volume: 710
  issue: 4
  year: 2001
  ident: 10.1016/j.neuroimage.2016.02.036_bb0095
  article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.71.4.441
– volume: 320
  issue: 4
  year: 1992
  ident: 10.1016/j.neuroimage.2016.02.036_bb0320
  article-title: Amygdala cell loss and atrophy in alzheimer's disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410320412
– year: 2006
  ident: 10.1016/j.neuroimage.2016.02.036_bb0030
– volume: 270
  start-page: 685
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.036_bb0165
  article-title: The alzheimer's disease neuroimaging initiative (adni): Mri methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– ident: 10.1016/j.neuroimage.2016.02.036_bb0015
– volume: 119
  issue: Pt 6
  year: 1996
  ident: 10.1016/j.neuroimage.2016.02.036_bb0110
  article-title: Presymptomatic hippocampal atrophy in alzheimer's disease. a longitudinal mri study
  publication-title: Brain
– volume: 570
  issue: 4
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.036_bb0335
  article-title: Population-wide principal component-based quantification of blood–brain-barrier dynamics in multiple sclerosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.05.038
– volume: 420
  issue: 6
  year: 1999
  ident: 10.1016/j.neuroimage.2016.02.036_bb0270
  article-title: On standardizing the mr image intensity scale
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M
– volume: 170
  issue: 2
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.036_bb0185
  article-title: Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3606
– volume: 1120
  issue: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.036_bb0195
  article-title: Opinion: reproducible research can still be wrong: adopting a prevention approach
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1421412111
– volume: 70
  start-page: 163
  issue: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.036_bb0260
  article-title: fslr: Connecting the fsl software with r
  publication-title: The R J.
  doi: 10.32614/RJ-2015-013
– volume: 150
  start-page: 45
  issue: 1
  year: 1994
  ident: 10.1016/j.neuroimage.2016.02.036_bb0385
  article-title: Neuron loss and shrinkage in the amygdala in alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(94)90143-0
– volume: 250
  issue: 3
  year: 2004
  ident: 10.1016/j.neuroimage.2016.02.036_bb0285
  article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early ad
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(03)00084-8
– volume: 46
  start-page: 47
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.036_bb0245
  article-title: Regionally-specific diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.054
– start-page: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.036_bb0065
  article-title: Neuroimaging biomarkers in alzheimer's disease
– volume: 240
  issue: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2016.02.036_bb0230
  article-title: Comparing mr image intensity standardization against tissue characterizability of magnetization transfer ratio imaging
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20658
– start-page: 37
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.036_bb0240
  article-title: Statistical estimation of t1 relaxation time using conventional magnetic resonance imaging
– volume: 20
  start-page: 345
  issue: 5
  year: 2005
  ident: 10.1016/j.neuroimage.2016.02.036_bb0150
  article-title: Multiple-laboratory comparison of microarray platforms
  publication-title: Nat. Methods
  doi: 10.1038/nmeth756
– volume: 190
  issue: 2
  year: 2000
  ident: 10.1016/j.neuroimage.2016.02.036_bb0275
  article-title: New variants of a method of mri scale standardization
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.836373
– start-page: 269
  year: 2006
  ident: 10.1016/j.neuroimage.2016.02.036_bb0175
  article-title: A new method for mri intensity standardization with application to lesion detection in the brain
– volume: 500
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2016.02.036_bb0215
  article-title: Robust atrophy rate measurement in alzheimer's disease using multi-site serial MRI: tissue-specific intensity normalization and parameter selection
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.059
– volume: 1550
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.036_bb0100
  article-title: Fronto-temporal-lobe atrophy in early-stage alzheimer's disease identified using an improved detection methodology
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2006.12.013
– volume: 420
  issue: 21
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.036_bb0190
  article-title: svaseq: removing batch effects and other unwanted noise from sequencing data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku864
– volume: 40
  start-page: 485
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.036_bb0235
  article-title: Time-series modeling of multiple sclerosis disease activity: a promising window on disease progression and repair potential?
  publication-title: Neurotherapeutics
  doi: 10.1016/j.nurt.2007.05.008
– volume: 390
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.036_bb0380
  article-title: Alzheimer's disease diagnosis in individual subjects using structural mr images: validation studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.073
– volume: 23
  start-page: S208
  year: 2004
  ident: 10.1016/j.neuroimage.2016.02.036_bb0350
  article-title: Advances in functional and structural mr image analysis and implementation as fsl
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 150
  issue: 6
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.036_bb0085
  article-title: A comprehensive overview of infinium humanmethylation450 data processing
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbt054
– volume: 520
  issue: 7
  year: 1999
  ident: 10.1016/j.neuroimage.2016.02.036_bb0155
  article-title: Prediction of ad with mri-based hippocampal volume in mild cognitive impairment
  publication-title: Neurology
  doi: 10.1212/WNL.52.7.1397
– volume: 110
  start-page: 549
  issue: 4
  year: 1993
  ident: 10.1016/j.neuroimage.2016.02.036_bb0225
  article-title: Is the signal intensity of cerebrospinal fluid constant? intensity measurements with high and low field magnetic resonance imagers
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/0730-725X(93)90474-R
– volume: 250
  start-page: 184
  issue: 2
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.036_bb0130
  article-title: Normalization of white matter intensity on t1-weighted images of patients with acquired central nervous system demyelination
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.12129
– volume: 540
  issue: 9
  year: 2000
  ident: 10.1016/j.neuroimage.2016.02.036_bb0420
  article-title: Usefulness of mri measures of entorhinal cortex versus hippocampus in ad
  publication-title: Neurology
  doi: 10.1212/WNL.54.9.1760
– volume: 80
  start-page: 227
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.036_bb0035
  article-title: Alzheimer's disease: pathogenesis and prevention
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2012.01.011
– volume: 290
  start-page: 589
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2016.02.036_bb0090
  article-title: Posterior cingulum white matter disruption and its associations with verbal memory and stroke risk in mild cognitive impairment
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2012-102103
– volume: 120
  start-page: 26
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.036_bb0010
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– volume: 6
  start-page: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2016.02.036_bb0340
  article-title: Australian imaging biomarkers lifestyle flagship study of ageing, and Alzheimer's disease neuroimaging initiative. Statistical normalization techniques for magnetic resonance imaging
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2014.08.008
– volume: 460
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.036_bb0280
  article-title: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and alzheimer's disease participants
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.01.002
– volume: 1940
  start-page: 7
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.036_bb0290
  article-title: Amygdala atrophy is prominent in early alzheimer's disease and relates to symptom severity
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2011.06.014
– volume: 1300
  issue: Pt 7
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.036_bb0405
  article-title: 3d maps from multiple mri illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to alzheimer's disease
  publication-title: Brain
– volume: 130
  start-page: 1939
  issue: 15
  year: 2002
  ident: 10.1016/j.neuroimage.2016.02.036_bb0055
  article-title: Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment
  publication-title: Neuroreport
  doi: 10.1097/00001756-200210280-00022
– volume: 280
  start-page: 663
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2016.02.036_bb0070
  article-title: Classifying spatial patterns of brain activity with machine learning methods: application to lie detection
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.08.009
– year: 2014
  ident: 10.1016/j.neuroimage.2016.02.036_bb0140
– volume: 200
  start-page: 45
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2016.02.036_bb0425
  article-title: Segmentation of brain mr images through a hidden markov random field model and the expectation–maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906424
– year: 2004
  ident: 10.1016/j.neuroimage.2016.02.036_bb0395
  article-title: Normalization of joint image-intensity statistics in MRI using the kullback–leibler divergence
  doi: 10.1109/ISBI.2004.1398484
– volume: 190
  start-page: 3
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2016.02.036_bb0265
  article-title: Deep gray matter involvement on brain MRI scans is associated with clinical progression in multiple sclerosis
  publication-title: J. Neuroimaging
  doi: 10.1111/j.1552-6569.2008.00296.x
– volume: 1050
  start-page: 18718
  issue: 48
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.036_bb0205
  article-title: A general framework for multiple testing dependence
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0808709105
– volume: 36
  issue: Suppl. 1
  year: 2015
  ident: 10.1016/j.neuroimage.2016.02.036_bb0250
  article-title: Amygdalar atrophy in symptomatic alzheimer's disease based on diffeomorphometry: the biocard cohort
  publication-title: Neurobiol. Aging
– volume: 60
  issue: 10
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.036_bb0415
  article-title: Multi-method analysis of mri images in early diagnostics of alzheimer's disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025446
– volume: 320
  start-page: e19
  issue: (12):2322
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.036_bb0075
  article-title: Prediction of mci to ad conversion, via MRI, csf biomarkers, and pattern classification
  publication-title: Neurobiol. Aging
– volume: 490
  start-page: 711
  issue: 7
  year: 1992
  ident: 10.1016/j.neuroimage.2016.02.036_bb0295
  article-title: Biological significance of iron-related magnetic resonance imaging changes in the brain
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.1992.00530310053012
– volume: 590
  start-page: 62
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2016.02.036_bb0020
  article-title: T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.59.1.62
– volume: 410
  issue: 3
  year: 1991
  ident: 10.1016/j.neuroimage.2016.02.036_bb0315
  article-title: Volumetric atrophy of the amygdala in alzheimer's disease: quantitative serial reconstruction
  publication-title: Neurology
  doi: 10.1212/WNL.41.3.351
– year: 2015
  ident: 10.1016/j.neuroimage.2016.02.036_bb0305
  article-title: Sample-size calculations for short-term proof-of-concept studies of tissue protection and repair in multiple sclerosis lesions via conventional clinical imaging
  publication-title: Mult. Scler. J.
  doi: 10.1177/1352458515569098
– volume: 30
  start-page: 1724
  issue: 9
  year: 2007
  ident: 10.1016/j.neuroimage.2016.02.036_bb0200
  article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis
  publication-title: PLoS Genet.
– volume: 150
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2016.02.036_bb0325
  article-title: Evaluating intensity normalization on mris of human brain with multiple sclerosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.12.003
– volume: 120
  start-page: 437
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2016.02.036_bb0040
  article-title: Cognitive impairment is associated with subcortical magnetic resonance imaging grey matter t2 hypointensity in multiple sclerosis
  publication-title: Mult. Scler.
  doi: 10.1191/135248506ms1301oa
– volume: 430
  start-page: 44
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2016.02.036_bb0080
  article-title: Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.06.037
– volume: 270
  start-page: 934
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2016.02.036_bb0060
  article-title: Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal mri study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.05.015
– volume: 50
  issue: 10
  year: 2006
  ident: 10.1016/j.neuroimage.2016.02.036_bb0310
  article-title: Tracking atrophy progression in familial alzheimer's disease: a serial mri study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(06)70550-6
– volume: 2
  start-page: 402
  year: 2013
  ident: 10.1016/j.neuroimage.2016.02.036_bb0355
  article-title: Oasis is automated statistical inference for segmentation, with applications to multiple sclerosis lesion segmentation in mri
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2013.03.002
– volume: 10
  start-page: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2016.02.036_bb0360
  article-title: Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2015.10.013
– year: 2014
  ident: 10.1016/j.neuroimage.2016.02.036_bb0375
  article-title: Characterizing Growth Patterns in Longitudinal Mri Using Image Contrast
– ident: 10.1016/j.neuroimage.2016.02.036_bb0330
– volume: 570
  issue: 9
  year: 2001
  ident: 10.1016/j.neuroimage.2016.02.036_bb0045
  article-title: Beyond the hippocampus: Mri volumetry confirms widespread limbic atrophy in ad
  publication-title: Neurology
  doi: 10.1212/WNL.57.9.1669
– volume: 1130
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2016.02.036_bb0145
  article-title: Amygdalar volume and psychiatric symptoms in alzheimer's disease: an mri analysis
  publication-title: Acta Neurol. Scand.
SSID ssj0009148
Score 2.5167181
Snippet Magnetic resonance imaging (MRI) intensities are acquired in arbitrary units, making scans non-comparable across sites and between subjects. Intensity...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 198
SubjectTerms ADNI
Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Alzheimer's disease
Biomarkers
Brain - anatomy & histology
Brain - pathology
Datasets
Female
Gene expression
Humans
Image Processing, Computer-Assisted
Linear Models
Magnetic Resonance Imaging - methods
Male
Medical imaging
Methods
MRI
Neuroimaging - methods
NMR
Normalization
Nuclear magnetic resonance
Reproducibility of Results
ROC Curve
Scan effect
Scanners
Signal Processing, Computer-Assisted
Studies
Title Removing inter-subject technical variability in magnetic resonance imaging studies
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811916001452
https://dx.doi.org/10.1016/j.neuroimage.2016.02.036
https://www.ncbi.nlm.nih.gov/pubmed/26923370
https://www.proquest.com/docview/1802753903
https://www.proquest.com/docview/1786126347
https://www.proquest.com/docview/1787962035
https://pubmed.ncbi.nlm.nih.gov/PMC5540379
Volume 132
WOSCitedRecordID wos000374832200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251008
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251008
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251008
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251008
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8OxFf_P5YPZcKvgabpm1SfJBT9lBxl2VR2bfQpgmueN1zu3vgf-9Mmu56KseCLy00mdBkJplfkskvAC9Ulbiiyh0zvHYsVVXGKslTJk1pCocum_vjY18-yslEzefFNCy4tSGssh8T_UBdLw2tkb8kpjKE1kUsXp__YHRrFO2uhis0DuCIWBKED92b7kh3edodhcsEU5wXIZKni-_yfJGLM-y1FOCVe-ZOT9T8T_f0N_z8M4ryN7d0evt_K3QHbgVAGp10FnQXrtnmHtwYhy33-zCb2TO_6hARs8SKtZuKlm6ijvwVNRxd4HS7Y_v-iXkirGtDJyMjnMgvic7DRlR_KqHtghYfwOfT0ae371i4iIEZBCRrVscOkVhViDIr49QZRaSDiruyFOje47wyEoFgIhN843TIZtIabus8r0VaVaoWD-GwWTb2MURoDJY7x7EMR-RqygmRC4clJxlKywHIvv21CSzldFnGd92Ho33TO81p0pyOE42aGwDfSp53TB17yBS9inV_EhXHTo3uZA_ZV1vZgFY6FLKn9HFvFTqMGq3emcQAnm-Tsb_TJk7Z2OUG80iFoDQXqbwyjyzyJBbZAB51RrptkiRH3QkZY0NfMt9tBuIbv5zSLL563nFEnrGQxZOrf_0p3KR6UoQFz47hcL3a2Gdw3VysF-1qCAdyLv1TDeHo5P1o_gHfb0aT6Qy_jpPx0HfhX8duTTs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCgSDB0SK2k9gRQggBVavurlBVUG8mcWyxVZstm92i_il-IzN5LQVU7aUHTnuIx9qM52Xnm88AL3QufJonnlleeBbpPGa54hFTNrOpx5TN6_axL0M1Huv9_fTTGvzsemEIVtnFxDpQF1NLZ-SviKkMS-s0lG-PvzO6NYq-rnZXaDRmseNOf-CWrXqz_QHX96UQmx_33m-x9lYBZjG7zlkReiwr8lRmcRZG3mpi0NPcZ5nEXBUmuVVY1Qgl8BdrexcrZ7krkqSQUZ7rQuK8l-ByhDshuipiJEZLkl8eNa13sWSa87RFDjV4spqfcnKEUYIAZUnNFFoTQ_8zHf5d7v6J2vwtDW7e_N8UeAtutAV38K7xkNuw5so7cHXUQgruwu6uO6pPVQJizpixapHT0VTQkNuiBQcnGTppjSE-xTEB6rakzs9g5mgbg04TkL5phqoBZd6DzxfyRvdhvZyW7iEEaOyOe89xDk_kcdpLmUiPM4sYpdUAVLfexrYs7HQZyKHp4HYHZmkphizFhMKgpQyA95LHDRPJCjJpZ1Km67TF3GAwXa4g-7qXbauxpspaUXqjs0LTRsXKLE1wAM_7xxjP6CNVVrrpAscojUV3IiN17hiVJiKU8QAeNE7Rq0QkuHZShajoM-7SDyA-9bNPysm3mlcdK-tQqvTR-X_9GVzb2hsNzXB7vPMYrtM7E5qExxuwPp8t3BO4Yk_mk2r2tA4OAXy9aGf6BRfNouQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvB8LBYwER6txnMSJEEKIsqJqWa0qQL2ZxLHFVm22bHaL-tf4dcw4j6WAqr30wCmHeKxkPK8433wGeJEWocuKxHEjSsejtIh5oUTElclN5jBlC98-9mVPjUbpwUE2XoOfXS8MwSq7mOgDdTk1tEe-RUxlWFpngdxyLSxivD18c_Kd0wlS9Ke1O06jMZFde_YDP9_q1zvbuNYvw3D4_tO7D7w9YYAbzLRzXgYOS4wik3mcB5EzKbHppcLlucS8FSSFUVjhhCrEK9b5NlbWCFsmSSmjokhLifNegauKSMs9bHC8JPwVUdOGF0ueCpG1KKIGW-a5KifHGDEIXJZ41lBPEv3P1Ph36fsngvO3lDi8-T8r8xbcaAtx9rbxnNuwZqs7sPGxhRrchf19e-x3Wxgxasx4vShoy4o1pLdo2ew0R-f12OIzHMNQzxV1hLKZpc8bdCZGuqcZ6gaseQ8-X8ob3Yf1alrZh8DQCaxwTuAcjkjlUidlIh3OHMYorQagurXXpmVnp0NCjnQHwzvUS6vRZDU6CDVazQBEL3nSMJSsIJN15qW7DlzMGRrT6Aqyr3rZtkprqq8VpTc7i9RttKz10hwH8Ly_jXGOfl7llZ0ucIxKsRhPZKQuHKOyJAxkPIAHjYP0KgkTXDupAlT0OdfpBxDP-vk71eSb51vHijuQKnt08aM_gw30Ib23M9p9DNfplQlkIuJNWJ_PFvYJXDOn80k9e-rjBIOvl-1LvwA-j6u1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removing+inter-subject+technical+variability+in+magnetic+resonance+imaging+studies&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Fortin%2C+Jean-Philippe&rft.au=Sweeney%2C+Elizabeth+M&rft.au=Muschelli%2C+John&rft.au=Crainiceanu%2C+Ciprian+M&rft.date=2016-05-15&rft.eissn=1095-9572&rft.volume=132&rft.spage=198&rft_id=info:doi/10.1016%2Fj.neuroimage.2016.02.036&rft_id=info%3Apmid%2F26923370&rft.externalDocID=26923370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon