spaMGCN: a graph convolutional network with autoencoder for spatial domain identification using multi-scale adaptation

Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete t...

Full description

Saved in:
Bibliographic Details
Published in:Genome Biology Vol. 26; no. 1; p. 159
Main Authors: Zhang, Tianjiao, Zhang, Hongfei, Zhao, Zhongqian, Shao, Saihong, Jiang, Yucai, Zhang, Xiang, Wang, Guohua
Format: Journal Article
Language:English
Published: London BioMed Central 10.06.2025
Springer Nature B.V
BMC
Subjects:
ISSN:1474-760X, 1474-7596, 1474-760X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues.
AbstractList Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues.
Abstract Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues.
Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues.Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues.
ArticleNumber 159
Author Jiang, Yucai
Shao, Saihong
Zhao, Zhongqian
Zhang, Hongfei
Wang, Guohua
Zhang, Xiang
Zhang, Tianjiao
Author_xml – sequence: 1
  givenname: Tianjiao
  surname: Zhang
  fullname: Zhang, Tianjiao
  organization: College of Computer and Control Engineering, Northeast Forestry University
– sequence: 2
  givenname: Hongfei
  surname: Zhang
  fullname: Zhang, Hongfei
  organization: College of Computer and Control Engineering, Northeast Forestry University
– sequence: 3
  givenname: Zhongqian
  surname: Zhao
  fullname: Zhao, Zhongqian
  organization: College of Computer and Control Engineering, Northeast Forestry University
– sequence: 4
  givenname: Saihong
  surname: Shao
  fullname: Shao, Saihong
  organization: College of Computer and Control Engineering, Northeast Forestry University
– sequence: 5
  givenname: Yucai
  surname: Jiang
  fullname: Jiang, Yucai
  organization: College of Computer and Control Engineering, Northeast Forestry University
– sequence: 6
  givenname: Xiang
  surname: Zhang
  fullname: Zhang, Xiang
  organization: College of Computer and Control Engineering, Northeast Forestry University
– sequence: 7
  givenname: Guohua
  surname: Wang
  fullname: Wang, Guohua
  email: ghwang@nefu.edu.cn
  organization: College of Computer and Control Engineering, Northeast Forestry University, Faculty of Computing, Harbin Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40495225$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9vFCEYxiemxrarX8CDIfHiZZT_DF6M2djapOpFE28EGGaXdRZWYLaxn77sbq2tB-MJwvt7Hl54n9PmKMTgmuY5gq8R6vibjAhksoWYtZBwItrrR80JooK2gsPvR_f2x81pzisIkaSYP2mOKaSSYcxOmm3e6E_n889vgQaLpDdLYGPYxnEqPgY9guDKVUw_wJUvS6CnEl2wsXcJDDGBqi2-Qn1cax-A710ofvBW78Rgyj4swHoai2-z1aMDutebsi8-bR4Peszu2e06a76dffg6_9hefjm_mL-_bC3nuLS062SPrCPadg462hkoBwkNMj3TBkNIBmxYb7rBSC6o5A4NHHONCLfGWENmzcXBt496pTbJr3X6paL2an8Q00LpVLwdnTIdlz2FSNCh_hu3ujNOWoowc5wjR6rXu4PXZjJr19v62KTHB6YPK8Ev1SJuFcKIQVYnNGte3Tqk-HNyuai1z9aNow4uTlkRLFAnERPyP1AkBIUC0Yq-_AtdxSnV4e0oLDiDhO6oF_e7v2v7dxQqgA-ATTHn5IY7BEG1y5s65E3VvKl93tR1FZGDKFc4LFz6c_c_VDeXPNpn
Cites_doi 10.21203/rs.3.rs-2921471/v1
10.1609/aaai.v37i4.25618
10.1038/nrendo.2015.122
10.1038/s42003-024-07037-0
10.1038/s41587-019-0290-0
10.1021/acs.nanolett.9b02834
10.5281/zenodo.15112750
10.3389/fimmu.2022.850998
10.1038/s41467-023-36796-3
10.1093/bioinformatics/btae599
10.1101/2020.09.04.283887
10.1126/science.aaw1219
10.1038/s41467-022-35031-9
10.1016/j.cell.2020.10.026
10.1093/bib/bbae450
10.1002/advs.202403572
10.1093/database/baq020
10.1038/s41592-024-02316-4
10.1038/nmeth.4380
10.1016/0098-3004(93)90090-R
10.1038/s41592-025-02600-x
10.1038/s41587-023-01676-0
10.1093/bib/bbab466
10.1016/j.cell.2022.04.003
10.1016/j.cell.2020.08.043
10.1093/bib/bbae578
10.1016/j.ejca.2021.01.036
10.1038/s41586-023-05795-1
10.1038/s41592-021-01255-8
10.3390/ijms25115976
10.1016/j.ins.2024.121023
10.1186/s12859-020-3489-7
10.1016/j.cell.2019.03.016
10.5281/zenodo.7480069
10.1016/j.neuron.2016.10.001
10.1038/s41592-024-02257-y
10.1126/science.aaa6090
10.1038/s41587-021-00935-2
10.1186/s12864-022-08601-w
10.1016/j.trim.2016.12.004
10.1038/s41591-024-03073-9
10.1038/s41587-021-01182-1
10.1038/s41576-019-0093-7
10.1093/nar/gkaa942
10.1038/nbt.3192
10.1101/2024.10.02.616189
10.1186/s13059-017-1382-0
10.1101/2022.08.02.502407
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13059-025-03637-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Publicly Available Content Database
MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 159
ExternalDocumentID oai_doaj_org_article_b869d40174f1476ca8be9c4125e661e3
PMC12150536
40495225
10_1186_s13059_025_03637_z
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62473094
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Science Foundation for Distinguished Young Scholars of China
  grantid: 62225109
– fundername: National Natural Science Foundation of China
  grantid: 62473094
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c662t-4889d1ce3ac8e0e48b09f90b1bd5ab2003f2b5db8fb967496e1f626a136cbbcb3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001505517400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-760X
1474-7596
IngestDate Fri Oct 03 12:46:08 EDT 2025
Tue Nov 04 02:02:49 EST 2025
Fri Nov 14 18:39:01 EST 2025
Fri Sep 05 15:55:27 EDT 2025
Tue Oct 14 14:11:44 EDT 2025
Sat Jun 14 01:30:23 EDT 2025
Sat Nov 29 07:49:26 EST 2025
Sat Sep 06 07:17:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Discrete distribution spatial domain
Multi-source feature fusion
Spatial domain identification
Spatial multi-omics data
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c662t-4889d1ce3ac8e0e48b09f90b1bd5ab2003f2b5db8fb967496e1f626a136cbbcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s13059-025-03637-z
PMID 40495225
PQID 3227650344
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_b869d40174f1476ca8be9c4125e661e3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12150536
proquest_miscellaneous_3271891579
proquest_miscellaneous_3217740714
proquest_journals_3227650344
pubmed_primary_40495225
crossref_primary_10_1186_s13059_025_03637_z
springer_journals_10_1186_s13059_025_03637_z
PublicationCentury 2000
PublicationDate 2025-06-10
PublicationDateYYYYMMDD 2025-06-10
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome Biology
PublicationTitleAbbrev Genome Biol
PublicationTitleAlternate Genome Biol
PublicationYear 2025
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References GS Hotamisligil (3637_CR33) 2015; 11
S Shah (3637_CR10) 2016; 92
Y Liu (3637_CR12) 2020; 183
A Chen (3637_CR8) 2022; 185
3637_CR21
3637_CR22
CS Groeneveld (3637_CR35) 2021; 148
J Hu (3637_CR20) 2021; 18
3637_CR23
3637_CR24
3637_CR25
3637_CR26
E Zhao (3637_CR18) 2021; 39
3637_CR52
3637_CR53
3637_CR54
SG Rodriques (3637_CR7) 2019; 363
3637_CR11
T Tian (3637_CR49) 2024; 21
3637_CR55
3637_CR50
3637_CR51
AL Ji (3637_CR6) 2020; 182
3637_CR16
3637_CR17
3637_CR19
3637_CR56
3637_CR57
3637_CR14
3637_CR5
G Palla (3637_CR27) 2022; 40
3637_CR1
Y Liu (3637_CR13) 2023; 41
T Stuart (3637_CR2) 2019; 20
3637_CR41
3637_CR42
3637_CR43
3637_CR44
3637_CR9
3637_CR40
3637_CR45
3637_CR46
3637_CR47
3637_CR48
JG Cyster (3637_CR28) 2019; 177
KL Howe (3637_CR37) 2021; 49
YN Zhang (3637_CR29) 2019; 19
3637_CR30
3637_CR31
S Chen (3637_CR4) 2019; 37
A Maćkiewicz (3637_CR39) 1993; 19
M Stoeckius (3637_CR3) 2017; 14
3637_CR38
M Safran (3637_CR32) 2010; 2010
3637_CR34
K Iwasaki (3637_CR36) 2017; 40
R Satija (3637_CR15) 2015; 33
References_xml – ident: 3637_CR50
  doi: 10.21203/rs.3.rs-2921471/v1
– ident: 3637_CR25
  doi: 10.1609/aaai.v37i4.25618
– volume: 11
  start-page: 592
  year: 2015
  ident: 3637_CR33
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2015.122
– ident: 3637_CR44
  doi: 10.1038/s42003-024-07037-0
– volume: 37
  start-page: 1452
  year: 2019
  ident: 3637_CR4
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0290-0
– volume: 19
  start-page: 7226
  year: 2019
  ident: 3637_CR29
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b02834
– ident: 3637_CR57
  doi: 10.5281/zenodo.15112750
– ident: 3637_CR34
  doi: 10.3389/fimmu.2022.850998
– ident: 3637_CR21
  doi: 10.1038/s41467-023-36796-3
– ident: 3637_CR1
  doi: 10.1093/bioinformatics/btae599
– ident: 3637_CR5
  doi: 10.1101/2020.09.04.283887
– volume: 363
  start-page: 1463
  year: 2019
  ident: 3637_CR7
  publication-title: Science
  doi: 10.1126/science.aaw1219
– ident: 3637_CR54
– ident: 3637_CR26
  doi: 10.1038/s41467-022-35031-9
– volume: 183
  start-page: 1665
  year: 2020
  ident: 3637_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.026
– ident: 3637_CR23
  doi: 10.1093/bib/bbae450
– ident: 3637_CR47
  doi: 10.1038/s41467-022-35031-9
– ident: 3637_CR55
  doi: 10.1002/advs.202403572
– volume: 2010
  start-page: 020
  year: 2010
  ident: 3637_CR32
  publication-title: Database (Oxford)
  doi: 10.1093/database/baq020
– ident: 3637_CR11
  doi: 10.1038/s41592-024-02316-4
– volume: 14
  start-page: 865
  year: 2017
  ident: 3637_CR3
  publication-title: Nature Methods
  doi: 10.1038/nmeth.4380
– volume: 19
  start-page: 303
  year: 1993
  ident: 3637_CR39
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(93)90090-R
– ident: 3637_CR46
  doi: 10.1038/s41592-025-02600-x
– volume: 41
  start-page: 1405
  year: 2023
  ident: 3637_CR13
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-023-01676-0
– ident: 3637_CR19
  doi: 10.1093/bib/bbab466
– ident: 3637_CR31
– volume: 185
  start-page: 1777
  year: 2022
  ident: 3637_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2022.04.003
– volume: 182
  start-page: 1661
  year: 2020
  ident: 3637_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.043
– ident: 3637_CR40
  doi: 10.1093/bib/bbae578
– volume: 148
  start-page: 181
  year: 2021
  ident: 3637_CR35
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2021.01.036
– ident: 3637_CR14
  doi: 10.1038/s41586-023-05795-1
– ident: 3637_CR45
  doi: 10.1093/bib/bbae578
– volume: 18
  start-page: 1342
  year: 2021
  ident: 3637_CR20
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01255-8
– ident: 3637_CR30
  doi: 10.3390/ijms25115976
– ident: 3637_CR24
  doi: 10.1016/j.ins.2024.121023
– ident: 3637_CR17
  doi: 10.1186/s12859-020-3489-7
– volume: 177
  start-page: 524
  year: 2019
  ident: 3637_CR28
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.016
– ident: 3637_CR51
  doi: 10.5281/zenodo.7480069
– ident: 3637_CR22
  doi: 10.1038/s42003-024-07037-0
– ident: 3637_CR56
– volume: 92
  start-page: 342
  year: 2016
  ident: 3637_CR10
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.001
– volume: 21
  start-page: 1501
  year: 2024
  ident: 3637_CR49
  publication-title: Nat Methods
  doi: 10.1038/s41592-024-02257-y
– ident: 3637_CR9
  doi: 10.1126/science.aaa6090
– ident: 3637_CR42
  doi: 10.1093/bib/bbae450
– volume: 39
  start-page: 1375
  year: 2021
  ident: 3637_CR18
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-00935-2
– ident: 3637_CR16
  doi: 10.1186/s12864-022-08601-w
– volume: 40
  start-page: 22
  year: 2017
  ident: 3637_CR36
  publication-title: Transpl Immunol
  doi: 10.1016/j.trim.2016.12.004
– ident: 3637_CR52
  doi: 10.1038/s41591-024-03073-9
– volume: 40
  start-page: 308
  year: 2022
  ident: 3637_CR27
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-01182-1
– ident: 3637_CR53
– ident: 3637_CR41
  doi: 10.21203/rs.3.rs-2921471/v1
– volume: 20
  start-page: 257
  year: 2019
  ident: 3637_CR2
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0093-7
– volume: 49
  start-page: D884
  year: 2021
  ident: 3637_CR37
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa942
– volume: 33
  start-page: 495
  year: 2015
  ident: 3637_CR15
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3192
– ident: 3637_CR48
  doi: 10.1101/2024.10.02.616189
– ident: 3637_CR38
  doi: 10.1186/s13059-017-1382-0
– ident: 3637_CR43
  doi: 10.1101/2022.08.02.502407
SSID ssj0019426
ssj0017866
Score 2.477582
Snippet Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle...
Abstract Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 159
SubjectTerms Animal Genetics and Genomics
Animals
Autoencoder
Bioinformatics
Biomedical and Life Sciences
Cluster analysis
Datasets
Deep learning
Discrete distribution spatial domain
domain
epigenome
Epigenomics - methods
Evolutionary Biology
Gene expression
Gene Expression Profiling - methods
Graphs
Human Genetics
Humans
Identification
Life Sciences
lymph
Lymph nodes
Lymph Nodes - metabolism
Lymphocytes T
Methodology
Mice
Microbial Genetics and Genomics
Multi-source feature fusion
Neighborhoods
Neural networks
Plant Genetics and Genomics
Software
Spatial domain identification
Spatial multi-omics data
Spleen
Spleen - metabolism
Statistical analysis
T-lymphocytes
Transcriptome
Transcriptomics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXRHmmtMhI3MBqkvWzN1pRuLDiAFJvlseZwB7IVpvdSvTXM3aSheV54Ro7kuOZ8cxkPn_D2PO6blXrlBJOgxISnRYWlBamDHXZoo26bnKzCTOf24sL9_6HVl8JEzbQAw8bdwxWu4aSACPbShodgwV0UZJfRnItmHk-S-OmZGqsHzhyPNMVGauPezqplROpdWsqXBpxveOGMlv_70LMX5GSP5VLsxc6v8vujOEjfzUse5_dwO4euzU0lPx6n13R-fDuzdn8hAeeqah5QpWP2kXvdQPom6e_rzxs1stEY9ngilPoyvsErqZJzfJLWHR80YxAoiw7ngDyn3jGH4qeBIs8NOFyKOQ_YB_PX384eyvGzgoial2vBVmta6qIsxAtligtlK51JVTQqAAJr9bWoBqwLThtpNNYtZT5hGqmI0CE2UO21y07fMx4pYONaKsSoJYYIZQltEguMADaEFzBXkwb7S8HAg2fEw-r_SAWT2LxWSz-umCnSRbbmYn8Oj8glfCjSvh_qUTBDidJ-tEie08Hl6FodCZlwZ5th8mWUoEkdLjcpDkVRcPpStff5pA3d5Uy9GWPBuXYrlZSukXxrCqY3VGbnc_ZHekWnzOndyL5oPNQF-zlpGHf1_7n_Tr4H_v1hN2us2locsqHbG-92uARuxmv1ot-9TQb1jfWAClL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database (ProQuest)
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgAYkL70dgQUbiBtYmju3YXBCsWLhQ7QGkvVm24yw9kJSmXYn99cw4blflsReObVwp7nwz_uz5PEPIS8472RkpmVFeMhGNYtpLxZrS8bKLOijepmYTzWymT07McT5wG7OschMTU6Buh4Bn5AcAvAbYRC3E28UPhl2jMLuaW2hcJdewSgJP0r3jbRah0chV8gcj-HTVCAWI0qjNDRqtDkYI5NIw7OyKec2Gne-sUqmY_98Y6J9Cyt-yqWmROrr9v9O7Q25lekrfTXi6S67E_h65MTWs_HmfnEH8-fzxcPaGOppKXVNUrWf0wu_6SVRO8XSXuvVqwDKZbVxSoMZ0RPE2DGqH727e03mbhUoJGxQF-Kc06RvZCMCJ1LVuMQkFHpCvRx--HH5iuXMDC0rxFYOoYNoqxNoFHcsotC9NZ0pf-VY6j3q4jnvZet15oxphVKw62Fm5qlbB--Drh2SvH_r4mNBKOR2irkrvuYjBu7L0XYQl1vmonTMFebWxlF1MBTps2thoZSe7WrCrTXa15wV5j8bcjsTi2umLYXlqs69ar5VpYd_ZiA7QooLTPpoggApGYDOxLsj-xoY2e_xoLwxYkBfbx-CrmIBxfRzWOKYCto1Xxi4bA2zBVLKBmT2a0LV9WwHbOeDLsiB6B3c709l90s-_pZrh6B4Qb1VBXm8gevHu__6_nlw-1afkJk9eo2A53yd7q-U6PiPXw9lqPi6fJ2f8Ba38PJM
  priority: 102
  providerName: ProQuest
Title spaMGCN: a graph convolutional network with autoencoder for spatial domain identification using multi-scale adaptation
URI https://link.springer.com/article/10.1186/s13059-025-03637-z
https://www.ncbi.nlm.nih.gov/pubmed/40495225
https://www.proquest.com/docview/3227650344
https://www.proquest.com/docview/3217740714
https://www.proquest.com/docview/3271891579
https://pubmed.ncbi.nlm.nih.gov/PMC12150536
https://doaj.org/article/b869d40174f1476ca8be9c4125e661e3
Volume 26
WOSCitedRecordID wos001505517400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017866
  issn: 1474-760X
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: RSV
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RFiQuvKGBEhmJG1jkZcfmxlYtcOgqWh5auES245Q9NKk2u5Xor2fsJIsWChJcVtpkIjn2PD5nPs8APE-SmtWSMSq5ZjSzklOhGad5pJKotsLwpPLNJvLpVMznshgOhXUj231MSXpP7c1a8FcdelsmqWu_6pKPOb3cgT0Md8I1bJh9-LzJHUgMOuPxmCuf2wpBvlL_VfDyd5bkL6lSH4GOb__f2O_ArQFxkje9ityFa7a5Bzf6HpTf78MFupSTt4fT10QRX72aOCL6oJD4XNPzxIn7YEvUetW6ypeVXRJEu6RzfGwUqtoztWjIohq4R365iePUnxJPWaQd6oIlqlLnfe7_AXw6Pvp4-I4OzRio4TxZUTR0WcXGpsoIG9lM6EjWMtKxrpjSjuJWJ5pVWtRa8jyT3MY1bpZUnHKjtdHpQ9ht2sbuA4m5EsaKONI6yazRKop0bTFqKm2FUjKAF-P6lOd9zY3S71UEL_uZLHEmSz-T5WUAE7eEG0lXL9tfaJen5WB-pRZcVriVzLM6znJulNBWmgzRnUWAYtMADkYFKAcj7kr0dTkC2DTLAni2uY3m53IqqrHt2snECKDdKbC_ySAAkDHL8c0e9Tq1GW2GOzSEwCwAsaVtW6-zfadZfPNlwF1dEHShPICXo9L9HPuf5-vxv4k_gZuJ11uOEfsAdlfLtX0K183FatEtQ9jJ57n_FSHsTY6mxSz0nzVCR6It8Frx_qT4gv9mk6-ht9MfSFQ2-A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE1hNvIljIyEEhdJVu6s9FKk9Bdtxyh5Ils1uUfuj-I2MnWSr5dFbDxw3cVZx8s34m8znGYDnjBVJIZOESq4TGlvJqdAJp2moWFhYYTjLfbOJdDQSBwdyvAY_u70wTlbZ-UTvqPPKuG_kmwi8FNlEP47fTr9T1zXKZVe7FhoNLHbtyQ8M2eo3gw_4fl8wtv1xf2uHtl0FqOGczSkiVuaRsX1lhA1tLHQoCxnqSOeJ0k6rVTCd5FoUWvI0ltxGBbJ-FfW50droPv7vJViPHdh7sD4eDMeHy7xFKhw7an_ImDWbm5zkMZG827Mj-GaNS0ciqesl6zKpKT1dWRd9-4C_cd4_pZu_5W_9srh94397oDfhekvAybvGYm7Bmi1vw5WmJefJHThGDzv8tDV6TRTxxbyJ0-W39onXlY1snrjv10Qt5pUrBJrbGUHyT2onT8dBefVNTUoyyVsplkc_cVsMjohXcNIaTcMSlatpI4W4C58vZNL3oFdWpX0AJOJKGCuiUGsWW6NVGOrCIolQ2gqlZAAvO2Rk06YESeZDN8GzBkcZ4ijzOMpOA3jvwLMc6cqH-wPV7ChrvVGmBZc5RtZpXCA6uVFCW2liJLsW-ZrtB7DRYSZrfVqdnQEmgGfL0-iNXIpJlbZauDERxhNuU9x5Y5APyShJcWb3GzQv7zbGgBUjgiQAsYLzlemsniknX31VdFcmBVcUHsCrziTO7v3fz-vh-VN9Cld39od72d5gtPsIrjFvsRzJywb05rOFfQyXzfF8Us-etK6AwJeLNpZfsLic4g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLagLOLCWtpAASNxA6tZbMfmBoUBBIwqsag3y2uZA8lokqlEfz3PTmZgoCAhrvGLZDvf2_I-PyP0qCwDC5IxIrlhhHrJiTCMkzrXZR68sLx06bKJejoVR0fy8KdT_IntvipJDmcaYpempt-fuzCouOD7HVheJkm8ijUWImtyeh5doJFIH_P1D5_XdQQJDmh1VObM9zbcUeraf1ao-Ttj8peyafJGk2v_v47r6OoYieJnA3RuoHO-uYkuDXdTfruFTsDUvH91MH2KNU5drXEkqI9AhfeagT-O449crJd9GztiOr_AEAXjLvK0Qci1X_WswTM3cpISDHDk2h_jRGUkHWDEY-30fOAEbKNPk5cfD16T8ZIGYjkvewIGQLrC-kpb4XNPhcllkLkpjGPaROpbKA1zRgQjeU0l90WAJEoXFbfGWFPdRltN2_hdhAuuhfWiyI0pqbdG57kJHrypNl5oLTP0ePWt1HzoxaFSDiO4GnZSwU6qtJPqNEPP4-dcS8Y-2ulBuzhWo1oqI7h0kGLWNBS05lYL46WlEPV5CFx8laG9FRjUqNydAhtYQ2BbUZqhh-thUMtYa9GNb5dRpoDAOp4O-5sMBAayYDWsbGfA13q2FDI3CI1ZhsQG8jaWsznSzL6k9uCxXwiYVp6hJysA_pj7n_frzr-JP0CXD19M1Ls307d30ZUyQZiDU99DW_1i6e-hi_akn3WL-0khvwOPZTqs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=spaMGCN%3A+a+graph+convolutional+network+with+autoencoder+for+spatial+domain+identification+using+multi-scale+adaptation&rft.jtitle=Genome+biology&rft.au=Zhang%2C+Tianjiao&rft.au=Zhang%2C+Hongfei&rft.au=Zhao%2C+Zhongqian&rft.au=Shao%2C+Saihong&rft.date=2025-06-10&rft.issn=1474-760X&rft.volume=26&rft.issue=1+p.159-159&rft.spage=159&rft.epage=159&rft_id=info:doi/10.1186%2Fs13059-025-03637-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon