spaMGCN: a graph convolutional network with autoencoder for spatial domain identification using multi-scale adaptation
Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete t...
Saved in:
| Published in: | Genome Biology Vol. 26; no. 1; p. 159 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
10.06.2025
Springer Nature B.V BMC |
| Subjects: | |
| ISSN: | 1474-760X, 1474-7596, 1474-760X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues. |
|---|---|
| AbstractList | Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues. Abstract Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues. Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues.Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle with discrete ones. We present spaMGCN, an innovative approach specifically designed for identifying spatial domains, especially in discrete tissue distributions. By integrating spatial transcriptomics and spatial epigenomic data through an autoencoder and a multi-scale adaptive graph convolutional network, spaMGCN outperforms baseline methods. Our evaluations demonstrate its effectiveness in recognizing discrete T cell zones in mouse spleens and follicular cells in human lymph nodes, as well as effectively distinguishing capsule structures from surrounding tissues. |
| ArticleNumber | 159 |
| Author | Jiang, Yucai Shao, Saihong Zhao, Zhongqian Zhang, Hongfei Wang, Guohua Zhang, Xiang Zhang, Tianjiao |
| Author_xml | – sequence: 1 givenname: Tianjiao surname: Zhang fullname: Zhang, Tianjiao organization: College of Computer and Control Engineering, Northeast Forestry University – sequence: 2 givenname: Hongfei surname: Zhang fullname: Zhang, Hongfei organization: College of Computer and Control Engineering, Northeast Forestry University – sequence: 3 givenname: Zhongqian surname: Zhao fullname: Zhao, Zhongqian organization: College of Computer and Control Engineering, Northeast Forestry University – sequence: 4 givenname: Saihong surname: Shao fullname: Shao, Saihong organization: College of Computer and Control Engineering, Northeast Forestry University – sequence: 5 givenname: Yucai surname: Jiang fullname: Jiang, Yucai organization: College of Computer and Control Engineering, Northeast Forestry University – sequence: 6 givenname: Xiang surname: Zhang fullname: Zhang, Xiang organization: College of Computer and Control Engineering, Northeast Forestry University – sequence: 7 givenname: Guohua surname: Wang fullname: Wang, Guohua email: ghwang@nefu.edu.cn organization: College of Computer and Control Engineering, Northeast Forestry University, Faculty of Computing, Harbin Institute of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40495225$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk9vFCEYxiemxrarX8CDIfHiZZT_DF6M2djapOpFE28EGGaXdRZWYLaxn77sbq2tB-MJwvt7Hl54n9PmKMTgmuY5gq8R6vibjAhksoWYtZBwItrrR80JooK2gsPvR_f2x81pzisIkaSYP2mOKaSSYcxOmm3e6E_n889vgQaLpDdLYGPYxnEqPgY9guDKVUw_wJUvS6CnEl2wsXcJDDGBqi2-Qn1cax-A710ofvBW78Rgyj4swHoai2-z1aMDutebsi8-bR4Peszu2e06a76dffg6_9hefjm_mL-_bC3nuLS062SPrCPadg462hkoBwkNMj3TBkNIBmxYb7rBSC6o5A4NHHONCLfGWENmzcXBt496pTbJr3X6paL2an8Q00LpVLwdnTIdlz2FSNCh_hu3ujNOWoowc5wjR6rXu4PXZjJr19v62KTHB6YPK8Ev1SJuFcKIQVYnNGte3Tqk-HNyuai1z9aNow4uTlkRLFAnERPyP1AkBIUC0Yq-_AtdxSnV4e0oLDiDhO6oF_e7v2v7dxQqgA-ATTHn5IY7BEG1y5s65E3VvKl93tR1FZGDKFc4LFz6c_c_VDeXPNpn |
| Cites_doi | 10.21203/rs.3.rs-2921471/v1 10.1609/aaai.v37i4.25618 10.1038/nrendo.2015.122 10.1038/s42003-024-07037-0 10.1038/s41587-019-0290-0 10.1021/acs.nanolett.9b02834 10.5281/zenodo.15112750 10.3389/fimmu.2022.850998 10.1038/s41467-023-36796-3 10.1093/bioinformatics/btae599 10.1101/2020.09.04.283887 10.1126/science.aaw1219 10.1038/s41467-022-35031-9 10.1016/j.cell.2020.10.026 10.1093/bib/bbae450 10.1002/advs.202403572 10.1093/database/baq020 10.1038/s41592-024-02316-4 10.1038/nmeth.4380 10.1016/0098-3004(93)90090-R 10.1038/s41592-025-02600-x 10.1038/s41587-023-01676-0 10.1093/bib/bbab466 10.1016/j.cell.2022.04.003 10.1016/j.cell.2020.08.043 10.1093/bib/bbae578 10.1016/j.ejca.2021.01.036 10.1038/s41586-023-05795-1 10.1038/s41592-021-01255-8 10.3390/ijms25115976 10.1016/j.ins.2024.121023 10.1186/s12859-020-3489-7 10.1016/j.cell.2019.03.016 10.5281/zenodo.7480069 10.1016/j.neuron.2016.10.001 10.1038/s41592-024-02257-y 10.1126/science.aaa6090 10.1038/s41587-021-00935-2 10.1186/s12864-022-08601-w 10.1016/j.trim.2016.12.004 10.1038/s41591-024-03073-9 10.1038/s41587-021-01182-1 10.1038/s41576-019-0093-7 10.1093/nar/gkaa942 10.1038/nbt.3192 10.1101/2024.10.02.616189 10.1186/s13059-017-1382-0 10.1101/2022.08.02.502407 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1186/s13059-025-03637-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1474-760X |
| EndPage | 159 |
| ExternalDocumentID | oai_doaj_org_article_b869d40174f1476ca8be9c4125e661e3 PMC12150536 40495225 10_1186_s13059_025_03637_z |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62473094 funderid: https://doi.org/10.13039/501100001809 – fundername: National Science Foundation for Distinguished Young Scholars of China grantid: 62225109 – fundername: National Natural Science Foundation of China grantid: 62473094 |
| GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO ROL RPM RSV SJN SOJ SV3 UKHRP AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c662t-4889d1ce3ac8e0e48b09f90b1bd5ab2003f2b5db8fb967496e1f626a136cbbcb3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001505517400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1474-760X 1474-7596 |
| IngestDate | Fri Oct 03 12:46:08 EDT 2025 Tue Nov 04 02:02:49 EST 2025 Fri Nov 14 18:39:01 EST 2025 Fri Sep 05 15:55:27 EDT 2025 Tue Oct 14 14:11:44 EDT 2025 Sat Jun 14 01:30:23 EDT 2025 Sat Nov 29 07:49:26 EST 2025 Sat Sep 06 07:17:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Discrete distribution spatial domain Multi-source feature fusion Spatial domain identification Spatial multi-omics data |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c662t-4889d1ce3ac8e0e48b09f90b1bd5ab2003f2b5db8fb967496e1f626a136cbbcb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/s13059-025-03637-z |
| PMID | 40495225 |
| PQID | 3227650344 |
| PQPubID | 2040232 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b869d40174f1476ca8be9c4125e661e3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12150536 proquest_miscellaneous_3271891579 proquest_miscellaneous_3217740714 proquest_journals_3227650344 pubmed_primary_40495225 crossref_primary_10_1186_s13059_025_03637_z springer_journals_10_1186_s13059_025_03637_z |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-10 |
| PublicationDateYYYYMMDD | 2025-06-10 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Genome Biology |
| PublicationTitleAbbrev | Genome Biol |
| PublicationTitleAlternate | Genome Biol |
| PublicationYear | 2025 |
| Publisher | BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| References | GS Hotamisligil (3637_CR33) 2015; 11 S Shah (3637_CR10) 2016; 92 Y Liu (3637_CR12) 2020; 183 A Chen (3637_CR8) 2022; 185 3637_CR21 3637_CR22 CS Groeneveld (3637_CR35) 2021; 148 J Hu (3637_CR20) 2021; 18 3637_CR23 3637_CR24 3637_CR25 3637_CR26 E Zhao (3637_CR18) 2021; 39 3637_CR52 3637_CR53 3637_CR54 SG Rodriques (3637_CR7) 2019; 363 3637_CR11 T Tian (3637_CR49) 2024; 21 3637_CR55 3637_CR50 3637_CR51 AL Ji (3637_CR6) 2020; 182 3637_CR16 3637_CR17 3637_CR19 3637_CR56 3637_CR57 3637_CR14 3637_CR5 G Palla (3637_CR27) 2022; 40 3637_CR1 Y Liu (3637_CR13) 2023; 41 T Stuart (3637_CR2) 2019; 20 3637_CR41 3637_CR42 3637_CR43 3637_CR44 3637_CR9 3637_CR40 3637_CR45 3637_CR46 3637_CR47 3637_CR48 JG Cyster (3637_CR28) 2019; 177 KL Howe (3637_CR37) 2021; 49 YN Zhang (3637_CR29) 2019; 19 3637_CR30 3637_CR31 S Chen (3637_CR4) 2019; 37 A Maćkiewicz (3637_CR39) 1993; 19 M Stoeckius (3637_CR3) 2017; 14 3637_CR38 M Safran (3637_CR32) 2010; 2010 3637_CR34 K Iwasaki (3637_CR36) 2017; 40 R Satija (3637_CR15) 2015; 33 |
| References_xml | – ident: 3637_CR50 doi: 10.21203/rs.3.rs-2921471/v1 – ident: 3637_CR25 doi: 10.1609/aaai.v37i4.25618 – volume: 11 start-page: 592 year: 2015 ident: 3637_CR33 publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2015.122 – ident: 3637_CR44 doi: 10.1038/s42003-024-07037-0 – volume: 37 start-page: 1452 year: 2019 ident: 3637_CR4 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0290-0 – volume: 19 start-page: 7226 year: 2019 ident: 3637_CR29 publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b02834 – ident: 3637_CR57 doi: 10.5281/zenodo.15112750 – ident: 3637_CR34 doi: 10.3389/fimmu.2022.850998 – ident: 3637_CR21 doi: 10.1038/s41467-023-36796-3 – ident: 3637_CR1 doi: 10.1093/bioinformatics/btae599 – ident: 3637_CR5 doi: 10.1101/2020.09.04.283887 – volume: 363 start-page: 1463 year: 2019 ident: 3637_CR7 publication-title: Science doi: 10.1126/science.aaw1219 – ident: 3637_CR54 – ident: 3637_CR26 doi: 10.1038/s41467-022-35031-9 – volume: 183 start-page: 1665 year: 2020 ident: 3637_CR12 publication-title: Cell doi: 10.1016/j.cell.2020.10.026 – ident: 3637_CR23 doi: 10.1093/bib/bbae450 – ident: 3637_CR47 doi: 10.1038/s41467-022-35031-9 – ident: 3637_CR55 doi: 10.1002/advs.202403572 – volume: 2010 start-page: 020 year: 2010 ident: 3637_CR32 publication-title: Database (Oxford) doi: 10.1093/database/baq020 – ident: 3637_CR11 doi: 10.1038/s41592-024-02316-4 – volume: 14 start-page: 865 year: 2017 ident: 3637_CR3 publication-title: Nature Methods doi: 10.1038/nmeth.4380 – volume: 19 start-page: 303 year: 1993 ident: 3637_CR39 publication-title: Comput Geosci doi: 10.1016/0098-3004(93)90090-R – ident: 3637_CR46 doi: 10.1038/s41592-025-02600-x – volume: 41 start-page: 1405 year: 2023 ident: 3637_CR13 publication-title: Nat Biotechnol doi: 10.1038/s41587-023-01676-0 – ident: 3637_CR19 doi: 10.1093/bib/bbab466 – ident: 3637_CR31 – volume: 185 start-page: 1777 year: 2022 ident: 3637_CR8 publication-title: Cell doi: 10.1016/j.cell.2022.04.003 – volume: 182 start-page: 1661 year: 2020 ident: 3637_CR6 publication-title: Cell doi: 10.1016/j.cell.2020.08.043 – ident: 3637_CR40 doi: 10.1093/bib/bbae578 – volume: 148 start-page: 181 year: 2021 ident: 3637_CR35 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2021.01.036 – ident: 3637_CR14 doi: 10.1038/s41586-023-05795-1 – ident: 3637_CR45 doi: 10.1093/bib/bbae578 – volume: 18 start-page: 1342 year: 2021 ident: 3637_CR20 publication-title: Nat Methods doi: 10.1038/s41592-021-01255-8 – ident: 3637_CR30 doi: 10.3390/ijms25115976 – ident: 3637_CR24 doi: 10.1016/j.ins.2024.121023 – ident: 3637_CR17 doi: 10.1186/s12859-020-3489-7 – volume: 177 start-page: 524 year: 2019 ident: 3637_CR28 publication-title: Cell doi: 10.1016/j.cell.2019.03.016 – ident: 3637_CR51 doi: 10.5281/zenodo.7480069 – ident: 3637_CR22 doi: 10.1038/s42003-024-07037-0 – ident: 3637_CR56 – volume: 92 start-page: 342 year: 2016 ident: 3637_CR10 publication-title: Neuron doi: 10.1016/j.neuron.2016.10.001 – volume: 21 start-page: 1501 year: 2024 ident: 3637_CR49 publication-title: Nat Methods doi: 10.1038/s41592-024-02257-y – ident: 3637_CR9 doi: 10.1126/science.aaa6090 – ident: 3637_CR42 doi: 10.1093/bib/bbae450 – volume: 39 start-page: 1375 year: 2021 ident: 3637_CR18 publication-title: Nat Biotechnol doi: 10.1038/s41587-021-00935-2 – ident: 3637_CR16 doi: 10.1186/s12864-022-08601-w – volume: 40 start-page: 22 year: 2017 ident: 3637_CR36 publication-title: Transpl Immunol doi: 10.1016/j.trim.2016.12.004 – ident: 3637_CR52 doi: 10.1038/s41591-024-03073-9 – volume: 40 start-page: 308 year: 2022 ident: 3637_CR27 publication-title: Nat Biotechnol doi: 10.1038/s41587-021-01182-1 – ident: 3637_CR53 – ident: 3637_CR41 doi: 10.21203/rs.3.rs-2921471/v1 – volume: 20 start-page: 257 year: 2019 ident: 3637_CR2 publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0093-7 – volume: 49 start-page: D884 year: 2021 ident: 3637_CR37 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa942 – volume: 33 start-page: 495 year: 2015 ident: 3637_CR15 publication-title: Nat Biotechnol doi: 10.1038/nbt.3192 – ident: 3637_CR48 doi: 10.1101/2024.10.02.616189 – ident: 3637_CR38 doi: 10.1186/s13059-017-1382-0 – ident: 3637_CR43 doi: 10.1101/2022.08.02.502407 |
| SSID | ssj0019426 ssj0017866 |
| Score | 2.477582 |
| Snippet | Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but struggle... Abstract Spatial domain identification is crucial in spatial transcriptomics analysis. Existing methods excel with continuous and clustered distributions but... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 159 |
| SubjectTerms | Animal Genetics and Genomics Animals Autoencoder Bioinformatics Biomedical and Life Sciences Cluster analysis Datasets Deep learning Discrete distribution spatial domain domain epigenome Epigenomics - methods Evolutionary Biology Gene expression Gene Expression Profiling - methods Graphs Human Genetics Humans Identification Life Sciences lymph Lymph nodes Lymph Nodes - metabolism Lymphocytes T Methodology Mice Microbial Genetics and Genomics Multi-source feature fusion Neighborhoods Neural networks Plant Genetics and Genomics Software Spatial domain identification Spatial multi-omics data Spleen Spleen - metabolism Statistical analysis T-lymphocytes Transcriptome Transcriptomics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXRHmmtMhI3MBqkvWzN1pRuLDiAFJvlseZwB7IVpvdSvTXM3aSheV54Ro7kuOZ8cxkPn_D2PO6blXrlBJOgxISnRYWlBamDHXZoo26bnKzCTOf24sL9_6HVl8JEzbQAw8bdwxWu4aSACPbShodgwV0UZJfRnItmHk-S-OmZGqsHzhyPNMVGauPezqplROpdWsqXBpxveOGMlv_70LMX5GSP5VLsxc6v8vujOEjfzUse5_dwO4euzU0lPx6n13R-fDuzdn8hAeeqah5QpWP2kXvdQPom6e_rzxs1stEY9ngilPoyvsErqZJzfJLWHR80YxAoiw7ngDyn3jGH4qeBIs8NOFyKOQ_YB_PX384eyvGzgoial2vBVmta6qIsxAtligtlK51JVTQqAAJr9bWoBqwLThtpNNYtZT5hGqmI0CE2UO21y07fMx4pYONaKsSoJYYIZQltEguMADaEFzBXkwb7S8HAg2fEw-r_SAWT2LxWSz-umCnSRbbmYn8Oj8glfCjSvh_qUTBDidJ-tEie08Hl6FodCZlwZ5th8mWUoEkdLjcpDkVRcPpStff5pA3d5Uy9GWPBuXYrlZSukXxrCqY3VGbnc_ZHekWnzOndyL5oPNQF-zlpGHf1_7n_Tr4H_v1hN2us2locsqHbG-92uARuxmv1ot-9TQb1jfWAClL priority: 102 providerName: Directory of Open Access Journals – databaseName: Biological Science Database (ProQuest) dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgAYkL70dgQUbiBtYmju3YXBCsWLhQ7QGkvVm24yw9kJSmXYn99cw4blflsReObVwp7nwz_uz5PEPIS8472RkpmVFeMhGNYtpLxZrS8bKLOijepmYTzWymT07McT5wG7OschMTU6Buh4Bn5AcAvAbYRC3E28UPhl2jMLuaW2hcJdewSgJP0r3jbRah0chV8gcj-HTVCAWI0qjNDRqtDkYI5NIw7OyKec2Gne-sUqmY_98Y6J9Cyt-yqWmROrr9v9O7Q25lekrfTXi6S67E_h65MTWs_HmfnEH8-fzxcPaGOppKXVNUrWf0wu_6SVRO8XSXuvVqwDKZbVxSoMZ0RPE2DGqH727e03mbhUoJGxQF-Kc06RvZCMCJ1LVuMQkFHpCvRx--HH5iuXMDC0rxFYOoYNoqxNoFHcsotC9NZ0pf-VY6j3q4jnvZet15oxphVKw62Fm5qlbB--Drh2SvH_r4mNBKOR2irkrvuYjBu7L0XYQl1vmonTMFebWxlF1MBTps2thoZSe7WrCrTXa15wV5j8bcjsTi2umLYXlqs69ar5VpYd_ZiA7QooLTPpoggApGYDOxLsj-xoY2e_xoLwxYkBfbx-CrmIBxfRzWOKYCto1Xxi4bA2zBVLKBmT2a0LV9WwHbOeDLsiB6B3c709l90s-_pZrh6B4Qb1VBXm8gevHu__6_nlw-1afkJk9eo2A53yd7q-U6PiPXw9lqPi6fJ2f8Ba38PJM priority: 102 providerName: ProQuest |
| Title | spaMGCN: a graph convolutional network with autoencoder for spatial domain identification using multi-scale adaptation |
| URI | https://link.springer.com/article/10.1186/s13059-025-03637-z https://www.ncbi.nlm.nih.gov/pubmed/40495225 https://www.proquest.com/docview/3227650344 https://www.proquest.com/docview/3217740714 https://www.proquest.com/docview/3271891579 https://pubmed.ncbi.nlm.nih.gov/PMC12150536 https://doaj.org/article/b869d40174f1476ca8be9c4125e661e3 |
| Volume | 26 |
| WOSCitedRecordID | wos001505517400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017866 issn: 1474-760X databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: M7P dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: RSV dateStart: 20000201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RFiQuvKGBEhmJG1jkZcfmxlYtcOgqWh5auES245Q9NKk2u5Xor2fsJIsWChJcVtpkIjn2PD5nPs8APE-SmtWSMSq5ZjSzklOhGad5pJKotsLwpPLNJvLpVMznshgOhXUj231MSXpP7c1a8FcdelsmqWu_6pKPOb3cgT0Md8I1bJh9-LzJHUgMOuPxmCuf2wpBvlL_VfDyd5bkL6lSH4GOb__f2O_ArQFxkje9ityFa7a5Bzf6HpTf78MFupSTt4fT10QRX72aOCL6oJD4XNPzxIn7YEvUetW6ypeVXRJEu6RzfGwUqtoztWjIohq4R365iePUnxJPWaQd6oIlqlLnfe7_AXw6Pvp4-I4OzRio4TxZUTR0WcXGpsoIG9lM6EjWMtKxrpjSjuJWJ5pVWtRa8jyT3MY1bpZUnHKjtdHpQ9ht2sbuA4m5EsaKONI6yazRKop0bTFqKm2FUjKAF-P6lOd9zY3S71UEL_uZLHEmSz-T5WUAE7eEG0lXL9tfaJen5WB-pRZcVriVzLM6znJulNBWmgzRnUWAYtMADkYFKAcj7kr0dTkC2DTLAni2uY3m53IqqrHt2snECKDdKbC_ySAAkDHL8c0e9Tq1GW2GOzSEwCwAsaVtW6-zfadZfPNlwF1dEHShPICXo9L9HPuf5-vxv4k_gZuJ11uOEfsAdlfLtX0K183FatEtQ9jJ57n_FSHsTY6mxSz0nzVCR6It8Frx_qT4gv9mk6-ht9MfSFQ2-A |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE1hNvIljIyEEhdJVu6s9FKk9Bdtxyh5Ils1uUfuj-I2MnWSr5dFbDxw3cVZx8s34m8znGYDnjBVJIZOESq4TGlvJqdAJp2moWFhYYTjLfbOJdDQSBwdyvAY_u70wTlbZ-UTvqPPKuG_kmwi8FNlEP47fTr9T1zXKZVe7FhoNLHbtyQ8M2eo3gw_4fl8wtv1xf2uHtl0FqOGczSkiVuaRsX1lhA1tLHQoCxnqSOeJ0k6rVTCd5FoUWvI0ltxGBbJ-FfW50droPv7vJViPHdh7sD4eDMeHy7xFKhw7an_ImDWbm5zkMZG827Mj-GaNS0ciqesl6zKpKT1dWRd9-4C_cd4_pZu_5W_9srh94397oDfhekvAybvGYm7Bmi1vw5WmJefJHThGDzv8tDV6TRTxxbyJ0-W39onXlY1snrjv10Qt5pUrBJrbGUHyT2onT8dBefVNTUoyyVsplkc_cVsMjohXcNIaTcMSlatpI4W4C58vZNL3oFdWpX0AJOJKGCuiUGsWW6NVGOrCIolQ2gqlZAAvO2Rk06YESeZDN8GzBkcZ4ijzOMpOA3jvwLMc6cqH-wPV7ChrvVGmBZc5RtZpXCA6uVFCW2liJLsW-ZrtB7DRYSZrfVqdnQEmgGfL0-iNXIpJlbZauDERxhNuU9x5Y5APyShJcWb3GzQv7zbGgBUjgiQAsYLzlemsniknX31VdFcmBVcUHsCrziTO7v3fz-vh-VN9Cld39od72d5gtPsIrjFvsRzJywb05rOFfQyXzfF8Us-etK6AwJeLNpZfsLic4g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLagLOLCWtpAASNxA6tZbMfmBoUBBIwqsag3y2uZA8lokqlEfz3PTmZgoCAhrvGLZDvf2_I-PyP0qCwDC5IxIrlhhHrJiTCMkzrXZR68sLx06bKJejoVR0fy8KdT_IntvipJDmcaYpempt-fuzCouOD7HVheJkm8ijUWImtyeh5doJFIH_P1D5_XdQQJDmh1VObM9zbcUeraf1ao-Ttj8peyafJGk2v_v47r6OoYieJnA3RuoHO-uYkuDXdTfruFTsDUvH91MH2KNU5drXEkqI9AhfeagT-O449crJd9GztiOr_AEAXjLvK0Qci1X_WswTM3cpISDHDk2h_jRGUkHWDEY-30fOAEbKNPk5cfD16T8ZIGYjkvewIGQLrC-kpb4XNPhcllkLkpjGPaROpbKA1zRgQjeU0l90WAJEoXFbfGWFPdRltN2_hdhAuuhfWiyI0pqbdG57kJHrypNl5oLTP0ePWt1HzoxaFSDiO4GnZSwU6qtJPqNEPP4-dcS8Y-2ulBuzhWo1oqI7h0kGLWNBS05lYL46WlEPV5CFx8laG9FRjUqNydAhtYQ2BbUZqhh-thUMtYa9GNb5dRpoDAOp4O-5sMBAayYDWsbGfA13q2FDI3CI1ZhsQG8jaWsznSzL6k9uCxXwiYVp6hJysA_pj7n_frzr-JP0CXD19M1Ls307d30ZUyQZiDU99DW_1i6e-hi_akn3WL-0khvwOPZTqs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=spaMGCN%3A+a+graph+convolutional+network+with+autoencoder+for+spatial+domain+identification+using+multi-scale+adaptation&rft.jtitle=Genome+biology&rft.au=Zhang%2C+Tianjiao&rft.au=Zhang%2C+Hongfei&rft.au=Zhao%2C+Zhongqian&rft.au=Shao%2C+Saihong&rft.date=2025-06-10&rft.issn=1474-760X&rft.volume=26&rft.issue=1+p.159-159&rft.spage=159&rft.epage=159&rft_id=info:doi/10.1186%2Fs13059-025-03637-z&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |