Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app

The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication us...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pediatric pulmonology Ročník 29; číslo 4; s. 292 - 305
Hlavní autoři: Bousquet, J., Sousa-Pinto, B., Anto, J.M., Amaral, R., Brussino, L., Canonica, G.W., Cruz, A.A., Gemicioglu, B., Haahtela, T., Kupczyk, M., Kvedariene, V., Larenas-Linnemann, D.E., Louis, R., Pham-Thi, N., Puggioni, F., Regateiro, F.S., Romantowski, J., Sastre, J., Scichilone, N., Taborda-Barata, L., Ventura, M.T., Agache, I., Bedbrook, A., Bergmann, K.C., Bosnic-Anticevich, S., Bonini, M., Boulet, L.-P., Brusselle, G., Buhl, R., Cecchi, L., Charpin, D., Chaves-Loureiro, C., Czarlewski, W., de Blay, F., Devillier, P., Joos, G., Jutel, M., Klimek, L., Kuna, P., Laune, D., Pech, J.L., Makela, M., Morais-Almeida, M., Nadif, R., Niedoszytko, M., Ohta, K., Papadopoulos, N.G., Papi, A., Yeverino, D.R., Roche, N., Sá-Sousa, A., Samolinski, B., Shamji, M.H., Sheikh, A., Suppli Ulrik, C., Usmani, O.S., Valiulis, A., Vandenplas, O., Yorgancioglu, A., Zuberbier, T., Fonseca, J.A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Spain Elsevier España, S.L.U 01.07.2023
Wiley
Elsevier Espana S.L.U
Taylor & Francis Group
Témata:
ISSN:2531-0437, 2531-0429, 8755-6863, 2531-0437, 1099-0496
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. We studied MASK-air® users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale – “VAS Asthma”) at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. We assessed a total of 8,075 MASK-air® users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air® users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians. We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma.
AbstractList Background The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app.Methods We studied MASK-air® users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale – “VAS Asthma”) at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels.Findings We assessed a total of 8,075 MASK-air® users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air® users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians.Interpretation We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma.
The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. We studied MASK-air® users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale – “VAS Asthma”) at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. We assessed a total of 8,075 MASK-air® users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air® users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians. We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma.
The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app.BACKGROUNDThe self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app.We studied MASK-air® users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale - "VAS Asthma") at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels.METHODSWe studied MASK-air® users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale - "VAS Asthma") at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels.We assessed a total of 8,075 MASK-air® users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air® users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians.FINDINGSWe assessed a total of 8,075 MASK-air® users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air® users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians.We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma.INTERPRETATIONWe identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma.
AbstractBackgroundThe self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. MethodsWe studied MASK-air® users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale – “VAS Asthma”) at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. FindingsWe assessed a total of 8,075 MASK-air® users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air® users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians. InterpretationWe identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma.
Background: The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. Methods: We studied MASK-air® users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale – “VAS Asthma”) at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. Findings: We assessed a total of 8,075 MASK-air® users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air® users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians. Interpretation: We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma. © 2022 Sociedade Portuguesa de Pneumologia
Author Buhl, R.
Bousquet, J.
Roche, N.
Cruz, A.A.
Valiulis, A.
Cecchi, L.
Brussino, L.
Morais-Almeida, M.
Samolinski, B.
Puggioni, F.
Bedbrook, A.
Jutel, M.
Laune, D.
Kupczyk, M.
Romantowski, J.
Haahtela, T.
Nadif, R.
Boulet, L.-P.
Louis, R.
Taborda-Barata, L.
Sheikh, A.
Bergmann, K.C.
de Blay, F.
Gemicioglu, B.
Klimek, L.
Pham-Thi, N.
Bosnic-Anticevich, S.
Sastre, J.
Chaves-Loureiro, C.
Pech, J.L.
Ohta, K.
Zuberbier, T.
Anto, J.M.
Bonini, M.
Brusselle, G.
Czarlewski, W.
Vandenplas, O.
Regateiro, F.S.
Fonseca, J.A.
Canonica, G.W.
Charpin, D.
Amaral, R.
Ventura, M.T.
Papadopoulos, N.G.
Sousa-Pinto, B.
Yorgancioglu, A.
Makela, M.
Kvedariene, V.
Kuna, P.
Papi, A.
Sá-Sousa, A.
Niedoszytko, M.
Shamji, M.H.
Suppli Ulrik, C.
Usmani, O.S.
Scichilone, N.
Yeverino, D.R.
Larenas-Linnemann, D.E.
Joos, G.
Devillier, P.
Agache, I.
Author_xml – sequence: 1
  givenname: J.
  orcidid: 0000-0002-4061-4766
  surname: Bousquet
  fullname: Bousquet, J.
  email: jean.bousquet@orange.fr
  organization: Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
– sequence: 2
  givenname: B.
  surname: Sousa-Pinto
  fullname: Sousa-Pinto, B.
  organization: MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences; Faculty of Medicine, University of Porto, Porto, Portugal
– sequence: 3
  givenname: J.M.
  surname: Anto
  fullname: Anto, J.M.
  organization: ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
– sequence: 4
  givenname: R.
  orcidid: 0000-0002-0233-830X
  surname: Amaral
  fullname: Amaral, R.
  organization: MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences; Faculty of Medicine, University of Porto, Porto, Portugal
– sequence: 5
  givenname: L.
  surname: Brussino
  fullname: Brussino, L.
  organization: Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, Torino, Italy
– sequence: 6
  givenname: G.W.
  surname: Canonica
  fullname: Canonica, G.W.
  organization: Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
– sequence: 7
  givenname: A.A.
  orcidid: 0000-0002-7403-3871
  surname: Cruz
  fullname: Cruz, A.A.
  organization: Fundaçao ProAR, Federal University of Bahia and GARD/WHO Planning Group, Salvador, Bahia, Brazil
– sequence: 8
  givenname: B.
  orcidid: 0000-0001-5953-4881
  surname: Gemicioglu
  fullname: Gemicioglu, B.
  organization: Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
– sequence: 9
  givenname: T.
  surname: Haahtela
  fullname: Haahtela, T.
  organization: Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Finland
– sequence: 10
  givenname: M.
  orcidid: 0000-0003-0800-7867
  surname: Kupczyk
  fullname: Kupczyk, M.
  organization: Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Poland
– sequence: 11
  givenname: V.
  surname: Kvedariene
  fullname: Kvedariene, V.
  organization: Institute of Clinical medicine, Clinic of Chest diseases and Allergology, Faculty of Medicine, Vilnius University and Institute of Biomedical Sciences, Department of Pathology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
– sequence: 12
  givenname: D.E.
  orcidid: 0000-0002-5713-5331
  surname: Larenas-Linnemann
  fullname: Larenas-Linnemann, D.E.
  organization: Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, México City, Mexico
– sequence: 13
  givenname: R.
  surname: Louis
  fullname: Louis, R.
  organization: Department of Pulmonary Medicine, CHU Liège and GIGA I3 research group, University of Liege, Belgium
– sequence: 14
  givenname: N.
  surname: Pham-Thi
  fullname: Pham-Thi, N.
  organization: Ecole Polytechnique Palaiseau, IRBA (Institut de Recherche bio-Médicale des Armées), Bretigny, France
– sequence: 15
  givenname: F.
  surname: Puggioni
  fullname: Puggioni, F.
  organization: Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
– sequence: 16
  givenname: F.S.
  surname: Regateiro
  fullname: Regateiro, F.S.
  organization: Allergy and Clinical Immunology Unit, Centro Hospitalar e Universitário de Coimbra, and Coimbra Institute for Clinical and Biomedical Research (ICBR), Faculty of Medicine, University of Coimbra, and Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
– sequence: 17
  givenname: J.
  surname: Romantowski
  fullname: Romantowski, J.
  organization: Department of Allergology, Medical University of Gdańsk, Gdansk, Poland
– sequence: 18
  givenname: J.
  surname: Sastre
  fullname: Sastre, J.
  organization: Fundacion Jimenez Diaz, CIBERES, Faculty of Medicine, Autonoma University of Madrid, Spain
– sequence: 19
  givenname: N.
  surname: Scichilone
  fullname: Scichilone, N.
  organization: PROMISE Department, University of Palermo, Palermo, Italy
– sequence: 20
  givenname: L.
  surname: Taborda-Barata
  fullname: Taborda-Barata, L.
  organization: Department of Immunoallergology, Cova da Beira University Hospital Centre, Covilhã, and UBIAir - Clinical & Experimental Lung Centre, and CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
– sequence: 21
  givenname: M.T.
  surname: Ventura
  fullname: Ventura, M.T.
  organization: Unit of Geriatric Immunoallergology, University of Bari Medical School, Bari, Italy
– sequence: 22
  givenname: I.
  surname: Agache
  fullname: Agache, I.
  organization: Transylvania University Brasov, Brasov, Romania
– sequence: 23
  givenname: A.
  surname: Bedbrook
  fullname: Bedbrook, A.
  organization: ARIA, Montpellier, France
– sequence: 24
  givenname: K.C.
  surname: Bergmann
  fullname: Bergmann, K.C.
  organization: Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
– sequence: 25
  givenname: S.
  surname: Bosnic-Anticevich
  fullname: Bosnic-Anticevich, S.
  organization: Quality Use of Respiratory Medicine Group, Woolcock Institute of Medical Research, The University of Sydney, and Sydney Local Health District, Sydney, NSW, Australia
– sequence: 26
  givenname: M.
  surname: Bonini
  fullname: Bonini, M.
  organization: Department of Cardiovascular and Thoracic Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
– sequence: 27
  givenname: L.-P.
  surname: Boulet
  fullname: Boulet, L.-P.
  organization: Quebec Heart and Lung Institute, Laval University, Québec City, Quebec, Canada
– sequence: 28
  givenname: G.
  surname: Brusselle
  fullname: Brusselle, G.
  organization: Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
– sequence: 29
  givenname: R.
  surname: Buhl
  fullname: Buhl, R.
  organization: Dept of Pulmonary Medicine, Mainz University Hospital, Mainz, Germany
– sequence: 30
  givenname: L.
  surname: Cecchi
  fullname: Cecchi, L.
  organization: SOS Allergology and Clinical Immunology, USL Toscana Centro, Prato, Italy
– sequence: 31
  givenname: D.
  surname: Charpin
  fullname: Charpin, D.
  organization: Clinique des bronches, allergie et sommeil, Hôpital Nord, Marseille, France
– sequence: 32
  givenname: C.
  surname: Chaves-Loureiro
  fullname: Chaves-Loureiro, C.
  organization: Pneumology Unit, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
– sequence: 33
  givenname: W.
  surname: Czarlewski
  fullname: Czarlewski, W.
  organization: Medical Consulting Czarlewski, Levallois, France
– sequence: 34
  givenname: F.
  surname: de Blay
  fullname: de Blay, F.
  organization: Allergy Division, Chest Disease Department, University Hospital of Strasbourg, and Federation of translational medicine, University of Strasbourg, Strasbourg, France
– sequence: 35
  givenname: P.
  surname: Devillier
  fullname: Devillier, P.
  organization: VIM Suresnes, UMR 0892, Pôle des Maladies des Voies Respiratoires, Hôpital Foch, Université Paris-Saclay, Suresnes, France
– sequence: 36
  givenname: G.
  surname: Joos
  fullname: Joos, G.
  organization: Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
– sequence: 37
  givenname: M.
  surname: Jutel
  fullname: Jutel, M.
  organization: Department of Clinical Immunology, Wrocław Medical University, and ALL-MED Medical Research Institute, Wroclaw, Poland
– sequence: 38
  givenname: L.
  surname: Klimek
  fullname: Klimek, L.
  organization: Department of Otolaryngology, Head and Neck Surgery, Universitätsmedizin Mainz, Mainz, and Center for Rhinology and Allergology, Wiesbaden, Germany
– sequence: 39
  givenname: P.
  surname: Kuna
  fullname: Kuna, P.
  organization: Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Poland
– sequence: 40
  givenname: D.
  surname: Laune
  fullname: Laune, D.
  organization: KYomed INNOV, Montpellier, France
– sequence: 41
  givenname: J.L.
  surname: Pech
  fullname: Pech, J.L.
  organization: University of Guadalajara, Guadalajara, Mexico
– sequence: 42
  givenname: M.
  surname: Makela
  fullname: Makela, M.
  organization: Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Finland
– sequence: 43
  givenname: M.
  surname: Morais-Almeida
  fullname: Morais-Almeida, M.
  organization: Allergy Center, CUF Descobertas Hospital, Lisbon, Portugal
– sequence: 44
  givenname: R.
  surname: Nadif
  fullname: Nadif, R.
  organization: Université Paris-Saclay, UVSQ, Univ. Paris-Sud, and Inserm, Equipe d'Epidémiologie Respiratoire Intégrative, CESP, Villejuif, France
– sequence: 45
  givenname: M.
  surname: Niedoszytko
  fullname: Niedoszytko, M.
  organization: Department of Allergology, Medical University of Gdańsk, Gdansk, Poland
– sequence: 46
  givenname: K.
  surname: Ohta
  fullname: Ohta, K.
  organization: National Hospital Organization, Tokyo National Hospital, and JATA Fukujuji Hospital, Tokyo, Japan
– sequence: 47
  givenname: N.G.
  surname: Papadopoulos
  fullname: Papadopoulos, N.G.
  organization: Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
– sequence: 48
  givenname: A.
  surname: Papi
  fullname: Papi, A.
  organization: Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
– sequence: 49
  givenname: D.R.
  surname: Yeverino
  fullname: Yeverino, D.R.
  organization: Allergy and Clinical Immunology Department, Hospital Universitario de Puebla, Puebla, Mexico
– sequence: 50
  givenname: N.
  surname: Roche
  fullname: Roche, N.
  organization: Pneumologie, AP-HP Centre Université de Paris Cité, Hôpital Cochin, Paris and UMR 1016, Institut Cochin, Paris, France
– sequence: 51
  givenname: A.
  surname: Sá-Sousa
  fullname: Sá-Sousa, A.
  organization: MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences; Faculty of Medicine, University of Porto, Porto, Portugal
– sequence: 52
  givenname: B.
  surname: Samolinski
  fullname: Samolinski, B.
  organization: Department of Prevention of Environmental Hazards, Allergology and Immunology, Medical University of Warsaw, Poland
– sequence: 53
  givenname: M.H.
  surname: Shamji
  fullname: Shamji, M.H.
  organization: National Heart and Lung Institute, Imperial College London, and NIHR Imperial Biomedical Research Centre, London, UK
– sequence: 54
  givenname: A.
  surname: Sheikh
  fullname: Sheikh, A.
  organization: Usher Institute, The University of Edinburgh, Edinburgh, UK
– sequence: 55
  givenname: C.
  surname: Suppli Ulrik
  fullname: Suppli Ulrik, C.
  organization: Department of Respiratory Medicine, Copenhagen University Hospital-Hvidovre, and Institute of Cinical Medicine, University of Copenhagen, Denmark
– sequence: 56
  givenname: O.S.
  surname: Usmani
  fullname: Usmani, O.S.
  organization: National Heart and Lung Institute (NHLI), Imperial College London & Royal Brompton Hospital, Airways Disease Section, London, UK
– sequence: 57
  givenname: A.
  surname: Valiulis
  fullname: Valiulis, A.
  organization: Institute of Clinical Medicine and Institute of Health Sciences,Vilnius, and Medical Faculty of Vilnius University, Vilnius, Lithuania
– sequence: 58
  givenname: O.
  surname: Vandenplas
  fullname: Vandenplas, O.
  organization: Department of Chest Medicine, Centre Hospitalier Universitaire UCL, Namur, and Université Catholique de Louvain, Yvoir, Belgium
– sequence: 59
  givenname: A.
  surname: Yorgancioglu
  fullname: Yorgancioglu, A.
  organization: Department of Pulmonary Diseases, Celal Bayar University, Faculty of Medicine, Manisa, Turkey
– sequence: 60
  givenname: T.
  surname: Zuberbier
  fullname: Zuberbier, T.
  organization: Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
– sequence: 61
  givenname: J.A.
  surname: Fonseca
  fullname: Fonseca, J.A.
  organization: MEDCIDS - Department of Community Medicine, Information and Health Decision Sciences; Faculty of Medicine, University of Porto, Porto, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36428213$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04260452$$DView record in HAL
BookMark eNqVkt2K1DAYhousuOu6dyCSQz2YMX9NOyILw6LO4IoHu-fha5rOZEybmqQjc1NehFdmOt0VFWQRCg1f3_dpSJ6n2UnnOp1lzwmeE0zE6928H2zr9JxiStNojnH-KDujOSMzzFlx8tv6NLsIYYcxpulhJXmSnTLBaUkJO8u6da27aBqjIBrXoeqAlB1C1B5BB_YQTECuQX36mnIBfTNxiyDEbQspUKMOAlgUDm0fXRvQEEy3QXGr0aflzccZGP_jO2pXGuxY6_tn2eMGbNAXd-_z7Pb9u9ur1ez684f11fJ6poTAcUY5V5zXDc1JDazCoqjLqhSNqItFDVCzipa8Eo1SCwoNFKUSqioYWWBKFMHsPFtP2NrBTvbetOAP0oGRx4HzGwk-GmW11DivoChwniC8KXhZ8qbKCSVpI6zhKrHYxLJGb3TqVkbu6RF2XA82wZSstKRUlJJhWgqWWq-m1hbsHxtYLa_lOMOcCsxzuicp-3LK9t59HXSIsjVBaWuh024IkhYc55hxlqfoi7voULW6_kW-v9AUeDMFlHcheN1IZeLxaqMHYyXBchRIplM5CiRHgcZpEiiV-V_le_4DtcupptON7o32Mqhki9K18VrFdObmfwHKmi4pab_ogw47N_jkYpBEBiqxvBnVHs2mo9E5HQFv_w14-P8_AQZDCWg
CitedBy_id crossref_primary_10_1111_all_15880
crossref_primary_10_1111_pai_14134
crossref_primary_10_2147_JAA_S281439
crossref_primary_10_1002_clt2_12358
crossref_primary_10_1080_25310429_2025_2532980
crossref_primary_10_1016_j_jaip_2024_06_040
crossref_primary_10_1111_all_15842
crossref_primary_10_1111_pai_14080
crossref_primary_10_1016_j_bjorl_2024_101500
crossref_primary_10_1016_j_pulmoe_2023_07_004
crossref_primary_10_1080_25310429_2024_2419216
crossref_primary_10_1097_ACI_0000000000001027
crossref_primary_10_1016_j_jaip_2024_03_024
crossref_primary_10_1016_j_alit_2024_12_007
crossref_primary_10_1016_j_pulmoe_2022_12_001
Cites_doi 10.1186/s13601-020-00342-x
10.1093/ije/28.3.409
10.1111/all.13697
10.1038/s41598-020-72060-0
10.1164/rccm.201808-1543OC
10.1186/2045-7022-2-16
10.1111/all.13448
10.1183/20734735.0362-2018
10.3109/02770903.2014.930480
10.1016/j.rmr.2019.08.003
10.1111/all.13218
10.1002/clt2.12062
10.1164/rccm.200711-1754OC
10.1164/rccm.201804-0682CI
10.4187/respcare.04553
10.1111/j.1398-9995.2009.02310.x
10.1111/all.15248
10.1111/all.14415
10.2147/JMDH.S104807
10.1111/all.13670
10.1111/all.14314
10.1111/cea.13333
10.1016/j.jaip.2021.09.012
10.1016/j.jclinepi.2005.03.019
ContentType Journal Article
Copyright 2022 Sociedade Portuguesa de Pneumologia
Sociedade Portuguesa de Pneumologia
Copyright © 2022 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Sociedade Portuguesa de Pneumologia
– notice: Sociedade Portuguesa de Pneumologia
– notice: Copyright © 2022 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
BXJBU
IHQJB
VOOES
JLOSS
Q33
DOA
DOI 10.1016/j.pulmoe.2022.10.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)
Hyper Article en Ligne (HAL) (Open Access)
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2531-0437
1099-0496
EndPage 305
ExternalDocumentID oai_doaj_org_article_e05ba770578c4f74884fb51216603f4c
oai_orbi_ulg_ac_be_2268_302863
oai:HAL:hal-04260452v1
36428213
10_1016_j_pulmoe_2022_10_005
S2531043722002525
1_s2_0_S2531043722002525
Genre Journal Article
GroupedDBID .1-
.FO
0R~
1P~
65R
AAEDW
AALRI
AAXUO
AAYWO
ABMAC
ACLIJ
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AFRHN
AFTJW
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M4Z
OK1
ROL
SSZ
TDBHL
Z5R
AACTN
AFCTW
NCXOZ
0SF
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
---
.3N
.GA
.GJ
.Y3
05W
10A
123
1L6
1OB
1OC
1XC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BXJBU
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IHQJB
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O8X
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VOOES
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
JLOSS
Q33
AQTUD
ID FETCH-LOGICAL-c660t-244c44df251da3b067d8b86f6d79daad3b284b6fcc92afa78c6cb7319021c103
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035277500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2531-0437
2531-0429
8755-6863
IngestDate Mon Nov 10 19:22:54 EST 2025
Sat Nov 29 01:22:13 EST 2025
Sat Nov 29 14:59:14 EST 2025
Thu Sep 04 18:40:16 EDT 2025
Mon Jul 21 06:00:49 EDT 2025
Sat Nov 29 08:03:34 EST 2025
Tue Nov 18 22:32:38 EST 2025
Sat Jun 10 15:31:34 EDT 2023
Tue Feb 25 19:53:33 EST 2025
Tue Aug 26 18:40:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Cluster analysis
Control
Treatment
Rhinitis
Asthma
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c660t-244c44df251da3b067d8b86f6d79daad3b284b6fcc92afa78c6cb7319021c103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-85142526120
ORCID 0000-0001-5953-4881
0000-0002-0233-830X
0000-0002-7403-3871
0000-0002-5713-5331
0000-0002-4061-4766
0000-0003-0800-7867
0000-0003-4938-9339
OpenAccessLink https://doaj.org/article/e05ba770578c4f74884fb51216603f4c
PMID 36428213
PQID 2740503435
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_e05ba770578c4f74884fb51216603f4c
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_302863
hal_primary_oai_HAL_hal_04260452v1
proquest_miscellaneous_2740503435
pubmed_primary_36428213
crossref_citationtrail_10_1016_j_pulmoe_2022_10_005
crossref_primary_10_1016_j_pulmoe_2022_10_005
elsevier_sciencedirect_doi_10_1016_j_pulmoe_2022_10_005
elsevier_clinicalkeyesjournals_1_s2_0_S2531043722002525
elsevier_clinicalkey_doi_10_1016_j_pulmoe_2022_10_005
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Spain
PublicationPlace_xml – name: Spain
PublicationTitle Pediatric pulmonology
PublicationTitleAlternate Pulmonology
PublicationYear 2023
Publisher Elsevier España, S.L.U
Wiley
Elsevier Espana S.L.U
Taylor & Francis Group
Publisher_xml – name: Elsevier España, S.L.U
– name: Wiley
– name: Elsevier Espana S.L.U
– name: Taylor & Francis Group
References Zhu, McKnight, Stergachis, Daling, Levine (bib0002) 1999; 28
Althubaiti (bib0001) 2016; 9
2021.
Bousquet, Devillier, Anto (bib0013) 2018; 73
Menditto, Costa, Midao (bib0014) 2019; 49
Fonseca, Nogueira-Silva, Morais-Almeida (bib0016) 2012; 2
Lemonnier, Melen, Jiang (bib0025) 2020; 75
Bousquet, Agache, Aliberti (bib0015) 2017; 73
Sousa-Pinto, Eklund, Pfaar (bib0024) 2021; 11
Amaral, Bousquet, Pereira (bib0010) 2019; 74
Burnett, Vardiman, Deckert, Ward, Sharpe (bib0003) 2016; 61
Haldar, Pavord, Shaw (bib0008) 2008; 178
Tibble, Chan, Mitchell (bib0012) 2020; 10
Fonseca, Nogueira-Silva, Morais-Almeida (bib0019) 2010; 65
Toren, Palmqvist, Lowhagen, Balder, Tunsater (bib0006) 2006; 59
Boudier, Chanoine, Accordini (bib0009) 2019; 74
Sastre, Del Cuvillo, Colas (bib0022) 2020; 75
Wu, Bang, Bleecker (bib0011) 2019; 199
Aaron, Boulet, Reddel, Gershon (bib0005) 2018; 198
Laune, Arnavielhe, Viart (bib0018) 2019; 36
Mirabelli, Beavers, Flanders, Chatterjee (bib0007) 2014; 51
Bedard, Basagana, Anto (bib0020) 2020; 10
Kavanagh, Jackson, Kent (bib0004) 2019; 15
Sousa-Pinto, Fonseca, Gemicioglu (bib0021) 2022; 77
GINA report 2021.
Sousa-Pinto, Sa-Sousa, Amaral (bib0023) 2022; 10
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_10_1
e_1_3_2_11_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_3_1
e_1_3_2_15_1
References_xml – volume: 73
  start-page: 1622
  year: 2018
  end-page: 1631
  ident: bib0013
  article-title: Daily allergic multimorbidity in rhinitis using mobile technology: a novel concept of the MASK study
  publication-title: Allergy
– volume: 11
  start-page: e12062
  year: 2021
  ident: bib0024
  article-title: Validity, reliability, and responsiveness of daily monitoring visual analog scales in MASK-air(R)
  publication-title: Clin Transl Allergy
– volume: 28
  start-page: 409
  year: 1999
  end-page: 417
  ident: bib0002
  article-title: Comparison of self-report data and medical records data: results from a case-control study on prostate cancer
  publication-title: Int J Epidemiol
– volume: 15
  start-page: e20
  year: 2019
  end-page: e27
  ident: bib0004
  article-title: Over- and under-diagnosis in asthma
  publication-title: Breathe
– volume: 61
  start-page: 897
  year: 2016
  end-page: 901
  ident: bib0003
  article-title: Perception of exercise-induced bronchoconstriction in college athletes
  publication-title: Respir Care
– volume: 36
  start-page: 1019
  year: 2019
  end-page: 1031
  ident: bib0018
  article-title: [Adaptation of the general data protection regulation (GDPR) to a smartphone app for rhinitis and asthma (MASK-air(R))]
  publication-title: Rev Mal Respir
– volume: 77
  start-page: 1600
  year: 2022
  end-page: 1602
  ident: bib0021
  article-title: Patient-reported outcome measures (PROMs) using the MASK-air(R) app in severe asthma
  publication-title: Allergy
– volume: 10
  start-page: 14999
  year: 2020
  ident: bib0012
  article-title: A data-driven typology of asthma medication adherence using cluster analysis
  publication-title: Sci Rep
– volume: 198
  start-page: 1012
  year: 2018
  end-page: 1020
  ident: bib0005
  article-title: Underdiagnosis and overdiagnosis of asthma
  publication-title: Am J Respir Crit Care Med
– volume: 2
  start-page: 16
  year: 2012
  ident: bib0016
  article-title: Control of allergic rhinitis and asthma test (CARAT) can be used to assess individual patients over time
  publication-title: Clin Transl Allergy
– volume: 10
  start-page: 62
  year: 2020
  ident: bib0020
  article-title: Treatment of allergic rhinitis during and outside the pollen season using mobile technology. A MASK study
  publication-title: Clin Transl Allergy
– volume: 74
  start-page: 698
  year: 2019
  end-page: 708
  ident: bib0010
  article-title: Disentangling the heterogeneity of allergic respiratory diseases by latent class analysis reveals novel phenotypes
  publication-title: Allergy
– volume: 51
  start-page: 956
  year: 2014
  end-page: 963
  ident: bib0007
  article-title: Reliability in reporting asthma history and age at asthma onset
  publication-title: J Asthma
– volume: 199
  start-page: 1358
  year: 2019
  end-page: 1367
  ident: bib0011
  article-title: Multiview cluster analysis identifies variable corticosteroid response phenotypes in severe asthma
  publication-title: Am J Respir Crit Care Med
– reference: GINA report 2021.
– volume: 65
  start-page: 1042
  year: 2010
  end-page: 1048
  ident: bib0019
  article-title: Validation of a questionnaire (CARAT10) to assess rhinitis and asthma in patients with asthma
  publication-title: Allergy
– volume: 74
  start-page: 953
  year: 2019
  end-page: 963
  ident: bib0009
  article-title: Data-driven adult asthma phenotypes based on clinical characteristics are associated with asthma outcomes twenty years later
  publication-title: Allergy
– volume: 73
  start-page: 77
  year: 2017
  end-page: 92
  ident: bib0015
  article-title: Transfer of innovation on allergic rhinitis and asthma multimorbidity in the elderly (MACVIA-ARIA) - reference site twinning (EIP on AHA)
  publication-title: Allergy
– volume: 178
  start-page: 218
  year: 2008
  end-page: 224
  ident: bib0008
  article-title: Cluster analysis and clinical asthma phenotypes
  publication-title: Am J Respir Crit Care Med
– volume: 75
  start-page: 3248
  year: 2020
  end-page: 3260
  ident: bib0025
  article-title: A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents
  publication-title: Allergy
– volume: 59
  start-page: 90
  year: 2006
  end-page: 93
  ident: bib0006
  article-title: Self-reported asthma was biased in relation to disease severity while reported year of asthma onset was accurate
  publication-title: J Clin Epidemiol
– volume: 49
  start-page: 442
  year: 2019
  end-page: 460
  ident: bib0014
  article-title: Adherence to treatment in allergic rhinitis using mobile technology. The MASK study
  publication-title: Clin Exp Allergy
– volume: 75
  start-page: 2958
  year: 2020
  end-page: 2961
  ident: bib0022
  article-title: Validation of the MASK-air App for assessment of allergic rhinitis
  publication-title: Allergy
– volume: 10
  start-page: 343
  year: 2022
  end-page: 345
  ident: bib0023
  article-title: Assessment of the control of allergic rhinitis and asthma test (CARAT) using MASK-air
  publication-title: J Allergy Clin Immunol Pract
– reference: . 2021.
– volume: 9
  start-page: 211
  year: 2016
  end-page: 217
  ident: bib0001
  article-title: Information bias in health research: definition, pitfalls, and adjustment methods
  publication-title: J Multidiscip Healthc
– ident: e_1_3_2_21_1
  doi: 10.1186/s13601-020-00342-x
– ident: e_1_3_2_3_1
  doi: 10.1093/ije/28.3.409
– ident: e_1_3_2_10_1
  doi: 10.1111/all.13697
– ident: e_1_3_2_13_1
  doi: 10.1038/s41598-020-72060-0
– ident: e_1_3_2_12_1
  doi: 10.1164/rccm.201808-1543OC
– ident: e_1_3_2_17_1
  doi: 10.1186/2045-7022-2-16
– ident: e_1_3_2_14_1
  doi: 10.1111/all.13448
– ident: e_1_3_2_5_1
  doi: 10.1183/20734735.0362-2018
– ident: e_1_3_2_8_1
  doi: 10.3109/02770903.2014.930480
– ident: e_1_3_2_19_1
  doi: 10.1016/j.rmr.2019.08.003
– ident: e_1_3_2_16_1
  doi: 10.1111/all.13218
– ident: e_1_3_2_18_1
– ident: e_1_3_2_25_1
  doi: 10.1002/clt2.12062
– ident: e_1_3_2_9_1
  doi: 10.1164/rccm.200711-1754OC
– ident: e_1_3_2_6_1
  doi: 10.1164/rccm.201804-0682CI
– ident: e_1_3_2_4_1
  doi: 10.4187/respcare.04553
– ident: e_1_3_2_20_1
  doi: 10.1111/j.1398-9995.2009.02310.x
– ident: e_1_3_2_22_1
  doi: 10.1111/all.15248
– ident: e_1_3_2_23_1
  doi: 10.1111/all.14415
– ident: e_1_3_2_2_1
  doi: 10.2147/JMDH.S104807
– ident: e_1_3_2_11_1
  doi: 10.1111/all.13670
– ident: e_1_3_2_26_1
  doi: 10.1111/all.14314
– ident: e_1_3_2_15_1
  doi: 10.1111/cea.13333
– ident: e_1_3_2_24_1
  doi: 10.1016/j.jaip.2021.09.012
– ident: e_1_3_2_7_1
  doi: 10.1016/j.jclinepi.2005.03.019
SSID ssj0002002381
ssib044757603
ssj0009991
Score 2.478714
Snippet The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources...
AbstractBackgroundThe self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation...
Background: The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of...
Background The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of...
SourceID doaj
liege
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 292
SubjectTerms Asthma
Asthma - diagnosis
Asthma - epidemiology
Cardiovascular & respiratory systems
Cluster analysis
Control
Human health sciences
Humanities and Social Sciences
Humans
Internal Medicine
Life Sciences
Mobile Applications
Pulmonary/Respiratory
Research Design
Rhinitis
Rhinitis, Allergic - diagnosis
Rhinitis, Allergic - epidemiology
Sciences de la santé humaine
Systèmes cardiovasculaire & respiratoire
Treatment
Title Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2531043722002525
https://www.clinicalkey.es/playcontent/1-s2.0-S2531043722002525
https://dx.doi.org/10.1016/j.pulmoe.2022.10.005
https://www.ncbi.nlm.nih.gov/pubmed/36428213
https://www.proquest.com/docview/2740503435
https://hal.science/hal-04260452
https://orbi.uliege.be/handle/2268/302863
https://doaj.org/article/e05ba770578c4f74884fb51216603f4c
Volume 29
WOSCitedRecordID wos001035277500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2531-0437
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002381
  issn: 2531-0437
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2531-0437
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044757603
  issn: 2531-0429
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 2531-0437
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009991
  issn: 2531-0437
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfYhhAvE_8pfyqDeCSQ2EnsPBZYNYl1QmxIfbNsJ9k6tWnUtJX2so_Eh-CTcec41SqBygNvjWU78t2vd-f4_DtC3iV5UYQpM0FYcgMbFJkFJitkIDMkr2K55Va6YhPi9FSOx9m3W6W-MCespQduBfexCBOjhYCwQtq4FIC3uDTgpaI0DXkZW7S-EPXc2kwBkpDFTqT-fPHKHbc534SV5gB0AVrh7h6dS_aqV9PZHFkzGfvgkr2SLT_l6Py33NXeJeZNHkzxZPvvwalzUsMH5NBHl3TQruohuVNUj8i9kT8_f0yq9l5u6T_UUXNN7XSFXAlUe3YSOi-pJ1ttKH6lpbpZXs40dMhppRuYvrme1cv5rKGYNH9BIYSko8HZ10BPFr9-0ll7s4nqun5CzodH55-PA19xIbAgzmUAvt7GcV5C0JNrbsCT5dLItExzkeVa59yAN8PrQTZjutSgktQaAf9iiBRsFPKnZL-aV8VzQuPICp0k1sqI44zaxFkO4QIrLGAgjXqEd-JV1rORY1GMqerSzq5UqxSFSsFWUEqPBJtRdcvGsaP_J9Tcpi9yabsGQJjyCFO7ENYjSad31V1XBQMLE012vFz8aVzReCvRqEg1TIXqDDGJHFMMYZqwrZE-EGoDnH9451sA5tZ6jwcnCttcLYI4YWuQ_XuHW5CCmag1c93c79UUxGKVgTlZKhWH4DPlPfKmg7cC24MHSroq5qtGMREjnRBE3D3yrMX95tUcN7Ys4i_-hwpekvuwSN6mSb8i-8vFqnhN7tr1ctIs-mRPjGXfGYA-OfjyffjjBJ5GN0e_AdqDWvU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+by+cluster+analysis+of+patients+with+asthma+and+nasal+symptoms+using+the+MASK-air%C2%AE+mHealth+app&rft.jtitle=Pulmonology&rft.au=Bousquet%2C+J.&rft.au=Sousa-Pinto%2C+B.&rft.au=Anto%2C+J.M.&rft.au=Amaral%2C+R.&rft.date=2023-07-01&rft.pub=Elsevier+Espa%C3%B1a%2C+S.L.U&rft.issn=2531-0437&rft.eissn=2531-0437&rft.volume=29&rft.issue=4&rft.spage=292&rft.epage=305&rft_id=info:doi/10.1016%2Fj.pulmoe.2022.10.005&rft.externalDocID=S2531043722002525
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F25310437%2FS2531043723X0004X%2Fcov150h.gif