Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention?

The functional role of oxidative stress in cancer pathogenesis has long been a hotly debated topic. A study published this month in BMC Cancer by Goh et al. , directly addresses this issue by using a molecular genetic approach, via an established mouse animal model of human breast cancer. More speci...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC medicine Ročník 9; číslo 1; s. 62
Hlavní autori: Sotgia, Federica, Martinez-Outschoorn, Ubaldo E, Lisanti, Michael P
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 23.05.2011
BioMed Central Ltd
BMC
Predmet:
ISSN:1741-7015, 1741-7015
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The functional role of oxidative stress in cancer pathogenesis has long been a hotly debated topic. A study published this month in BMC Cancer by Goh et al. , directly addresses this issue by using a molecular genetic approach, via an established mouse animal model of human breast cancer. More specifically, alleviation of mitochondrial oxidative stress, via transgenic over-expression of catalase (an anti-oxidant enzyme) targeted to mitochondria, was sufficient to lower tumor grade (from high-to-low) and to dramatically reduce metastatic tumor burden by >12-fold. Here, we discuss these new findings and place them in the context of several other recent studies showing that oxidative stress directly contributes to tumor progression and metastasis. These results have important clinical and translational significance, as most current chemo-therapeutic agents and radiation therapy increase oxidative stress, and, therefore, could help drive tumor recurrence and metastasis. Similarly, chemo- and radiation-therapy both increase the risk for developing a secondary malignancy, such as leukemia and/or lymphoma. To effectively reduce mitochondrial oxidative stress, medical oncologists should now re-consider the use of powerful anti-oxidants as a key component of patient therapy and cancer prevention. Please see related research article: http://www.biomedcentral.com/1471-2407/11/191
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Commentary-1
ISSN:1741-7015
1741-7015
DOI:10.1186/1741-7015-9-62