MMP-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth
A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. He...
Uloženo v:
| Vydáno v: | Biomaterials Ročník 98; s. 192 - 202 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier Ltd
01.08.2016
|
| Témata: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A central challenge in cancer care is to ensure that therapeutic compounds reach their targets. One approach is to use enzyme-responsive biomaterials, which reconfigure in response to endogenous enzymes that are overexpressed in diseased tissues, as potential site-specific anti-tumoral therapies. Here we report peptide micelles that upon MMP-9 catalyzed hydrolysis reconfigure to form fibrillar nanostructures. These structures slowly release a doxorubicin payload at the site of action. Using both in vitro and in vivo models, we demonstrate that the fibrillar depots are formed at the sites of MMP-9 overexpression giving rise to enhanced efficacy of doxorubicin, resulting in inhibition of tumor growth in an animal model. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0142-9612 1878-5905 1878-5905 |
| DOI: | 10.1016/j.biomaterials.2016.04.039 |