Validation of IMU against optical reference and development of open-source pipeline: proof of concept case report in a participant with transfemoral amputation fitted with a Percutaneous Osseointegrated Implant

Background Systems that capture motion under laboratory conditions limit validity in real-world environments. Mobile motion capture solutions such as Inertial Measurement Units (IMUs) can progress our understanding of "real" human movement. IMU data must be validated in each application to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroengineering and rehabilitation Jg. 21; H. 1; S. 128 - 13
Hauptverfasser: Ahmed, Kirstin, Taheri, Shayan, Weygers, Ive, Ortiz-Catalan, Max
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 31.07.2024
BioMed Central Ltd
BMC
Schlagworte:
ISSN:1743-0003, 1743-0003
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Systems that capture motion under laboratory conditions limit validity in real-world environments. Mobile motion capture solutions such as Inertial Measurement Units (IMUs) can progress our understanding of "real" human movement. IMU data must be validated in each application to interpret with clinical applicability; this is particularly true for diverse populations. Our IMU analysis method builds on the OpenSim IMU Inverse Kinematics toolkit integrating the Versatile Quaternion-based Filter and incorporates realistic constraints to the underlying biomechanical model. We validate our processing method against the reference standard optical motion capture in a case report with participants with transfemoral amputation fitted with a Percutaneous Osseointegrated Implant (POI) and without amputation walking over level ground. We hypothesis that by using this novel pipeline, we can validate IMU motion capture data, to a clinically acceptable degree. Results Average RMSE (across all joints) between the two systems from the participant with a unilateral transfemoral amputation (TFA) on the amputated and the intact sides were 2.35° (IQR = 1.45°) and 3.59° (IQR = 2.00°) respectively. Equivalent results in the non-amputated participant were 2.26° (IQR = 1.08°). Joint level average RMSE between the two systems from the TFA ranged from 1.66° to 3.82° and from 1.21° to 5.46° in the non-amputated participant. In plane average RMSE between the two systems from the TFA ranged from 2.17° (coronal) to 3.91° (sagittal) and from 1.96° (transverse) to 2.32° (sagittal) in the non-amputated participant. Coefficients of Multiple Correlation (CMC) results between the two systems in the TFA ranged from 0.74 to > 0.99 and from 0.72 to > 0.99 in the non-amputated participant and resulted in ‘excellent’ similarity in each data set average, in every plane and at all joint levels. Normalized RMSE between the two systems from the TFA ranged from 3.40% (knee level) to 54.54% (pelvis level) and from 2.18% to 36.01% in the non-amputated participant. Conclusions We offer a modular processing pipeline that enables the addition of extra layers, facilitates changes to the underlying biomechanical model, and can accept raw IMU data from any vendor. We successfully validate the pipeline using data, for the first time, from a TFA participant using a POI and have proved our hypothesis.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 23
ObjectType-Case Study-4
ObjectType-Undefined-5
ObjectType-Feature-2
ObjectType-Report-3
ISSN:1743-0003
1743-0003
DOI:10.1186/s12984-024-01426-6