Automatic discovery of resource-restricted Convolutional Neural Network topologies for myoelectric pattern recognition

Convolutional Neural Networks (CNNs) have been subject to extensive attention in the pattern recognition literature due to unprecedented performance in tasks of information extraction from unstructured data. Whereas available methods for supervised training of a CNN with a given network topology are...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine Vol. 120; p. 103723
Main Authors: Olsson, Alexander E., Björkman, Anders, Antfolk, Christian
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.05.2020
Elsevier Limited
Subjects:
ISSN:0010-4825, 1879-0534, 1879-0534
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Convolutional Neural Networks (CNNs) have been subject to extensive attention in the pattern recognition literature due to unprecedented performance in tasks of information extraction from unstructured data. Whereas available methods for supervised training of a CNN with a given network topology are well-defined with rigorous theoretical justification, procedures for the initial selection of topology are currently not. Work incorporating selection of the CNN topology has instead substantially been guided by the domain-specific expertise of the creator(s), followed by iterative improvement via empirical evaluation. This limitation of methodology is restricting in the pursuit of naturally controlled muscle-computer interfaces, where CNNs have been identified as a promising research avenue but effective topology selection heuristics are lacking. With the goal of mitigating ambiguities in topology selection, this paper presents a systematic approach wherein we apply a novel evolutionary algorithm to search a space of candidate topologies. Furthermore, we constrain the search-space by excluding topologies with excessive inference-time computational complexity, making the obtained results implementable in embedded systems. In contrast to manual topology design, our algorithm requires the user to only specify a relatively small set of intuitive hyperparameters. To validate our approach, we use it in order to create topologies for myoelectric pattern recognition via movement decoding of surface electromyography signals. By collating offline classification accuracies obtained from experiments on a collection of publicly available databases, we demonstrate that our method generates computationally lightweight topologies with performance comparable to those of available alternatives. •A meta-learning algorithm is introduced to generate CNN topologies suitable for EMG gesture classification.•Only classifiers with feasible time complexity and memory footprint are considered.•The method is demonstrated by automatically generating a novel CNN topology.•The resulting network is evaluated on a set of publicly available EMG databases.•Classification performance was comparable to that of costlier CNNs introduced previously.
AbstractList Convolutional Neural Networks (CNNs) have been subject to extensive attention in the pattern recognition literature due to unprecedented performance in tasks of information extraction from unstructured data. Whereas available methods for supervised training of a CNN with a given network topology are well-defined with rigorous theoretical justification, procedures for the initial selection of topology are currently not. Work incorporating selection of the CNN topology has instead substantially been guided by the domain-specific expertise of the creator(s), followed by iterative improvement via empirical evaluation. This limitation of methodology is restricting in the pursuit of naturally controlled muscle-computer interfaces, where CNNs have been identified as a promising research avenue but effective topology selection heuristics are lacking. With the goal of mitigating ambiguities in topology selection, this paper presents a systematic approach wherein we apply a novel evolutionary algorithm to search a space of candidate topologies. Furthermore, we constrain the search-space by excluding topologies with excessive inference-time computational complexity, making the obtained results implementable in embedded systems. In contrast to manual topology design, our algorithm requires the user to only specify a relatively small set of intuitive hyperparameters. To validate our approach, we use it in order to create topologies for myoelectric pattern recognition via movement decoding of surface electromyography signals. By collating offline classification accuracies obtained from experiments on a collection of publicly available databases, we demonstrate that our method generates computationally lightweight topologies with performance comparable to those of available alternatives. •A meta-learning algorithm is introduced to generate CNN topologies suitable for EMG gesture classification.•Only classifiers with feasible time complexity and memory footprint are considered.•The method is demonstrated by automatically generating a novel CNN topology.•The resulting network is evaluated on a set of publicly available EMG databases.•Classification performance was comparable to that of costlier CNNs introduced previously.
Convolutional Neural Networks (CNNs) have been subject to extensive attention in the pattern recognition literature due to unprecedented performance in tasks of information extraction from unstructured data. Whereas available methods for supervised training of a CNN with a given network topology are well-defined with rigorous theoretical justification, procedures for the initial selection of topology are currently not. Work incorporating selection of the CNN topology has instead substantially been guided by the domain-specific expertise of the creator(s), followed by iterative improvement via empirical evaluation. This limitation of methodology is restricting in the pursuit of naturally controlled muscle-computer interfaces, where CNNs have been identified as a promising research avenue but effective topology selection heuristics are lacking. With the goal of mitigating ambiguities in topology selection, this paper presents a systematic approach wherein we apply a novel evolutionary algorithm to search a space of candidate topologies. Furthermore, we constrain the search-space by excluding topologies with excessive inference-time computational complexity, making the obtained results implementable in embedded systems. In contrast to manual topology design, our algorithm requires the user to only specify a relatively small set of intuitive hyperparameters. To validate our approach, we use it in order to create topologies for myoelectric pattern recognition via movement decoding of surface electromyography signals. By collating offline classification accuracies obtained from experiments on a collection of publicly available databases, we demonstrate that our method generates computationally lightweight topologies with performance comparable to those of available alternatives.
Convolutional Neural Networks (CNNs) have been subject to extensive attention in the pattern recognition literature due to unprecedented performance in tasks of information extraction from unstructured data. Whereas available methods for supervised training of a CNN with a given network topology are well-defined with rigorous theoretical justification, procedures for the initial selection of topology are currently not. Work incorporating selection of the CNN topology has instead substantially been guided by the domain-specific expertise of the creator(s), followed by iterative improvement via empirical evaluation. This limitation of methodology is restricting in the pursuit of naturally controlled muscle-computer interfaces, where CNNs have been identified as a promising research avenue but effective topology selection heuristics are lacking. With the goal of mitigating ambiguities in topology selection, this paper presents a systematic approach wherein we apply a novel evolutionary algorithm to search a space of candidate topologies. Furthermore, we constrain the search-space by excluding topologies with excessive inference-time computational complexity, making the obtained results implementable in embedded systems. In contrast to manual topology design, our algorithm requires the user to only specify a relatively small set of intuitive hyperparameters. To validate our approach, we use it in order to create topologies for myoelectric pattern recognition via movement decoding of surface electromyography signals. By collating offline classification accuracies obtained from experiments on a collection of publicly available databases, we demonstrate that our method generates computationally lightweight topologies with performance comparable to those of available alternatives.Convolutional Neural Networks (CNNs) have been subject to extensive attention in the pattern recognition literature due to unprecedented performance in tasks of information extraction from unstructured data. Whereas available methods for supervised training of a CNN with a given network topology are well-defined with rigorous theoretical justification, procedures for the initial selection of topology are currently not. Work incorporating selection of the CNN topology has instead substantially been guided by the domain-specific expertise of the creator(s), followed by iterative improvement via empirical evaluation. This limitation of methodology is restricting in the pursuit of naturally controlled muscle-computer interfaces, where CNNs have been identified as a promising research avenue but effective topology selection heuristics are lacking. With the goal of mitigating ambiguities in topology selection, this paper presents a systematic approach wherein we apply a novel evolutionary algorithm to search a space of candidate topologies. Furthermore, we constrain the search-space by excluding topologies with excessive inference-time computational complexity, making the obtained results implementable in embedded systems. In contrast to manual topology design, our algorithm requires the user to only specify a relatively small set of intuitive hyperparameters. To validate our approach, we use it in order to create topologies for myoelectric pattern recognition via movement decoding of surface electromyography signals. By collating offline classification accuracies obtained from experiments on a collection of publicly available databases, we demonstrate that our method generates computationally lightweight topologies with performance comparable to those of available alternatives.
AbstractConvolutional Neural Networks (CNNs) have been subject to extensive attention in the pattern recognition literature due to unprecedented performance in tasks of information extraction from unstructured data. Whereas available methods for supervised training of a CNN with a given network topology are well-defined with rigorous theoretical justification, procedures for the initial selection of topology are currently not. Work incorporating selection of the CNN topology has instead substantially been guided by the domain-specific expertise of the creator(s), followed by iterative improvement via empirical evaluation. This limitation of methodology is restricting in the pursuit of naturally controlled muscle-computer interfaces, where CNNs have been identified as a promising research avenue but effective topology selection heuristics are lacking. With the goal of mitigating ambiguities in topology selection, this paper presents a systematic approach wherein we apply a novel evolutionary algorithm to search a space of candidate topologies. Furthermore, we constrain the search-space by excluding topologies with excessive inference-time computational complexity, making the obtained results implementable in embedded systems. In contrast to manual topology design, our algorithm requires the user to only specify a relatively small set of intuitive hyperparameters. To validate our approach, we use it in order to create topologies for myoelectric pattern recognition via movement decoding of surface electromyography signals. By collating offline classification accuracies obtained from experiments on a collection of publicly available databases, we demonstrate that our method generates computationally lightweight topologies with performance comparable to those of available alternatives.
ArticleNumber 103723
Author Olsson, Alexander E.
Björkman, Anders
Antfolk, Christian
Author_xml – sequence: 1
  givenname: Alexander E.
  surname: Olsson
  fullname: Olsson, Alexander E.
  email: alexander.olsson@bme.lth.se
  organization: Dept. of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
– sequence: 2
  givenname: Anders
  surname: Björkman
  fullname: Björkman, Anders
  organization: Dept. of Hand Surgery, Lund University, Skåne University Hospital, Malmö, Sweden
– sequence: 3
  givenname: Christian
  surname: Antfolk
  fullname: Antfolk, Christian
  email: christian.antfolk@bme.lth.se
  organization: Dept. of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32421642$$D View this record in MEDLINE/PubMed
BookMark eNqVUk1v1DAQjVAR3Rb-AorEhUsWf8XJXhDtii-pggNwHjn2pHjrjYPtbLX_HqdbFqkSUjmNZb33ZubNOytOBj9gUZSULCmh8s1mqf127KzfolkywuZv3jD-pFjQtllVpObipFgQQkklWlafFmcxbgghgnDyrDjlTDAqBVsUu4sp-a1KVpfGRu13GPal78uA0U9BY5UfKVid0JRrP-y8m5L1g3LlF5zCXUm3PtyUyY_e-WuLsex9KLd7jw71TC1HlRKGIWtqfz3Ymf-8eNorF_HFfT0vfnx4_339qbr6-vHz-uKq0rIWqUJjUBpijGilXNWm1UzrphdayBUSoQTtV5pjIyU1uuWk7_qWZmovSFMr1vHzQh104y2OUwdjsFsV9uCVhdGHpBzkBVEF_RPcBBEho5zVah4yAhGiaWQrgatGguAcIXdAQGGaZkVV13Zzj9eHHmPwv6ZsF2yzk-icGtBPEZggQvKWkCZDXz2AbrLL2c0ZxWopGWd1Rr28R01dPvBx6D9Xy4D2ANDBxxiwP0IogTkgsIG_AYE5IHAISKa-fUDVNt1tm4Ky7jEClwcBzGfbWQwQtcVBo7H5vgmMt_8xxVFEOztk290N7jEeTaEQGRD4Ngd5zjHL8aWklVng3b8FHjfDb4GpDFI
CitedBy_id crossref_primary_10_1038_s41598_024_82676_1
crossref_primary_10_1016_j_bspc_2024_107176
crossref_primary_10_1016_j_eswa_2024_125302
crossref_primary_10_1016_j_bbe_2022_02_005
crossref_primary_10_1016_j_patrec_2025_02_008
crossref_primary_10_1016_j_asoc_2025_113375
crossref_primary_10_1155_2022_8436741
crossref_primary_10_1155_2021_4454648
crossref_primary_10_1016_j_compbiomed_2022_105359
crossref_primary_10_3390_s23135775
crossref_primary_10_1007_s11517_021_02466_z
crossref_primary_10_1016_j_compbiomed_2023_107497
crossref_primary_10_1109_JTEHM_2020_3023898
crossref_primary_10_1186_s12984_021_00832_4
crossref_primary_10_1088_1741_2552_ad4c98
crossref_primary_10_3390_s24113631
crossref_primary_10_1038_s41597_021_00843_9
crossref_primary_10_1109_TEVC_2021_3079985
Cites_doi 10.3390/sym8120148
10.1016/j.medengphy.2011.11.018
10.1109/TNSRE.2012.2196711
10.1371/journal.pone.0206049
10.1162/neco.1989.1.4.541
10.1007/s13246-011-0079-z
10.1109/TNSRE.2010.2100828
10.1016/j.eswa.2012.01.102
10.1109/TNSRE.2017.2687520
10.1682/JRRD.2010.09.0177
10.1038/s41598-019-43676-8
10.1016/j.eswa.2011.06.043
10.1155/2018/9728264
10.1097/00008526-199600810-00003
10.3390/bdcc2030021
10.1109/TNSRE.2011.2108667
10.1080/17483100701714733
10.1109/TNSRE.2014.2305111
10.1016/j.bspc.2015.02.009
10.3389/fnins.2017.00379
10.1682/JRRD.2011.10.0188
10.3390/s17030458
10.1016/0893-6080(89)90020-8
10.1108/01439910810876364
10.5405/jmbe.767
10.3389/fnbot.2016.00009
10.1038/sdata.2014.53
10.1016/j.patrec.2017.12.005
10.1088/1741-2552/ab0e2e
10.1007/s11263-015-0816-y
10.1186/1743-0003-9-85
10.1186/1751-0473-8-11
10.1080/03093640601061265
10.3109/03091902.2016.1167971
10.1615/CritRevBiomedEng.v30.i456.80
ContentType Journal Article
Copyright 2020 The Authors
The Authors
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
2020. The Authors
Copyright_xml – notice: 2020 The Authors
– notice: The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: 2020. The Authors
CorporateAuthor Institutioner vid LTH
Departments at LTH
Handkirurgi, Malmö
Institutionen för translationell medicin
Department of Translational Medicine
Lunds universitet
Faculty of Engineering, LTH
Lunds Tekniska Högskola
Institutionen för biomedicinsk teknik
WCMM-Wallenberg Centre for Molecular Medicine
Lund University
Department of Biomedical Engineering
Division for Biomedical Engineering
WCMM- Wallenberg center för molekylär medicinsk forskning
Hand Surgery, Malmö
Faculty of Medicine
Avdelningen för biomedicinsk teknik
Medicinska fakulteten
CorporateAuthor_xml – name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Hand Surgery, Malmö
– name: Avdelningen för biomedicinsk teknik
– name: Handkirurgi, Malmö
– name: WCMM-Wallenberg Centre for Molecular Medicine
– name: Department of Biomedical Engineering
– name: Lunds Tekniska Högskola
– name: Departments at LTH
– name: Lunds universitet
– name: Faculty of Engineering, LTH
– name: Division for Biomedical Engineering
– name: Lund University
– name: Department of Translational Medicine
– name: WCMM- Wallenberg center för molekylär medicinsk forskning
– name: Institutioner vid LTH
– name: Institutionen för biomedicinsk teknik
– name: Institutionen för translationell medicin
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1016/j.compbiomed.2020.103723
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic



Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 103723
ExternalDocumentID oai_portal_research_lu_se_publications_04477686_3a76_433e_bf8e_e4d7791ab8bb
32421642
10_1016_j_compbiomed_2020_103723
S0010482520301086
1_s2_0_S0010482520301086
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
9DU
AAYXX
AFFHD
CITATION
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c654t-edde6d0dd486695d8c2cc7f4c469e04a41f9c3e7661dc830fbf81c65f4075a2b3
IEDL.DBID M7P
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000532824300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4825
1879-0534
IngestDate Sun Nov 30 03:10:43 EST 2025
Mon Sep 29 06:28:09 EDT 2025
Sat Nov 29 14:51:25 EST 2025
Thu Apr 03 06:50:17 EDT 2025
Tue Nov 18 21:38:57 EST 2025
Sat Nov 29 07:31:23 EST 2025
Fri Feb 23 02:47:20 EST 2024
Sun Feb 23 10:19:10 EST 2025
Tue Oct 14 19:33:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Myoelectric control
Deep learning
Model selection
Muscle-computer interfaces
Machine learning
Electromyography
Convolutional neural networks
Myoelectric pattern recognition
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c654t-edde6d0dd486695d8c2cc7f4c469e04a41f9c3e7661dc830fbf81c65f4075a2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.compbiomed.2020.103723
PMID 32421642
PQID 2425662325
PQPubID 1226355
PageCount 1
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_04477686_3a76_433e_bf8e_e4d7791ab8bb
proquest_miscellaneous_2404638007
proquest_journals_2425662325
pubmed_primary_32421642
crossref_primary_10_1016_j_compbiomed_2020_103723
crossref_citationtrail_10_1016_j_compbiomed_2020_103723
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_103723
elsevier_clinicalkeyesjournals_1_s2_0_S0010482520301086
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2020_103723
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Connolly (bib23) 2008; 32
Alkan, Günay (bib32) 2012; 39
He, Zhang, Ren, Sun (bib8) 2016
Hu, Wong, Wei, Du, Kankanhalli, Geng (bib43) 2018; 13
Shim, An, Lee, Lee, Min, Lee (bib46) 2016; 8
Chen, Zhang, Zhao, Yang, Lantz, Wang (bib34) 2017
Snoek, Larochelle, Adams (bib54) 2012; 2
Huang, Li, Enz, Koch, Justiz, Antfolk (bib33) 2016
Geethanjali, Ray (bib28) 2011; 34
Farina, Jiang, Rehbaum, Holobar, Graimann, Dietl, Aszmann (bib16) 2014; 22
Moons, Bankman, Verhelst (bib66) 2019
Miikkulainen, Liang, Meyerson, Rawal, Fink, Francon, Raju, Shahrzad, Navruzyan, Duffy, Hodjat (bib53) 2018
Biddiss, Beaton, Chau (bib17) 2007; 2
Jimenez-Fabian, Verlinden (bib15) 2012; 34
Ko, Peddinti, Povey, Seltzer, Khudanpur (bib9) 2017
Saikia, Mazumdar, Sahai, Paul, Bhatia, Verma, Rohilla (bib20) 2016; 40
Phinyomark, Scheme (bib12) 2018; 2
Ortiz-Catalan, Brånemark, Håkansson (bib67) 2013; 8
Bäck (bib58) 1996
Phinyomark, Limsakul, Phukpattaranont (bib27) 2009
Rojas-Martnex, Mañanas, Alonso (bib50) 2012; 9
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, Kudlur, Levenberg, Monga, Moore, Murray, Steiner, Tucker, Vasudevan, Warden, Wicke, Yu, Zheng (bib63) 2016
Pylatiuk, Schulz, Döderlein (bib18) 2007; 31
Fougner, Stavdahl, Kyberd, Losier, Parker (bib22) 2012; 20
Phinyomark, Phukpattaranont, Limsakul (bib37) 2012; 39
bib5
Atkins, Heard, Donovan (bib19) 1996; 8
Smith, Hargrove, Lock, Kuiken (bib65) 2011; 19
Han, Pool, Tran, Dally (bib56) 2015; 1
Mills (bib13) 2005; 76
Ioffe, Szegedy (bib61) 2015
Real, Moore, Selle, Saxena, Suematsu, Tan, Le, Kurakin (bib52) 2017; 70
Zhai, Jelfs, Chan, Tin (bib41) 2017; 11
Cipriani, Antfolk, Controzzi, Lundborg, Rosen, Carrozza, Sebelius (bib29) 2011; 90
Collobert, Weston, Bottou, Karlen, Kavukcuoglu, Kuksa (bib10) 2010; 12
Hornik, Stinchcombe, White (bib38) 1989; 2
Du, Jin, Wei, Hu, Geng (bib47) 2017; 17
Scheme, Englehart (bib25) 2011; 48
Zecca, Micera, Carrozza, Dario (bib26) 2002; 30
Kim, Lu, Ma, Kim, Kim, Wang, Wu, Won, Tao, Islam, Yu, Kim, Chowdhury, Ying, Xu, Li, Chung, Keum (bib14) 2011; 333
Atzori, Cognolato, Müller (bib39) 2016; 10
Kingma, Ba (bib62) 2014
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (bib4) 2015; 115
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib7) 2015
Wallach, Dzamba, Heifets (bib11) 2015
LeCun, Bengio, Hinton (bib2) 2015; 521
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib60) 2014; 15
Shuman, Duric, Barbara, Lin, Gerber (bib36) 2016; 16
Zoph, Le (bib55) 2016
Goodfellow, Bengio, Courville (bib1) 2016
Hakonen, Piitulainen, Visala (bib24) 2015; 18
Olsson, Sager, Andersson, Björkman, Malešević, Antfolk (bib48) 2019; 9
Krizhevsky, Sutskever, Hinton (bib6) 2012; 25
Ameri, Akhaee, Scheme, Englehart (bib49) 2019; 16
Cortes, Gonzalvo, Kuznetsov, Mohri, Yang (bib51) 2017; 70
Malešević, Markovic, Kanitz, Controzzi, Cipriani, Antfolk (bib35) 2018
Wei, Wong, Du, Hu, Kankanhalli, Geng (bib42) 2017; 119
Stanley, Miikkulainen (bib57) 2002
Kanitz, Antfolk, Cipriani, Sebelius, Carrozza (bib59) 2011
Belter, Segil, Dollar, Weir (bib21) 2013; 50
Antfolk, Cipriani, Controzzi, Carrozza, Lundborg, Rosen, Sebelius (bib30) 2010; 30
Khushaba, Al-Timemy, Al-Ani, Al-Jumaily (bib31) 2017; 25
Atzori, Gijsberts, Castellini, Caputo, Mittaz Hager, Elsig, Giatsidis, Bassetto, Müller (bib64) 2014; 1
Park, Lee (bib44) 2016
LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (bib3) 1989; 1
Geng, Du, Jin, Wei, Hu, Li (bib40) 2016; 15
ur Rehman, Gilani, Waris, Niazi, Slabaugh, Farina, Kamavuako (bib45) 2018; 8
Atzori (10.1016/j.compbiomed.2020.103723_bib64) 2014; 1
Goodfellow (10.1016/j.compbiomed.2020.103723_bib1) 2016
Smith (10.1016/j.compbiomed.2020.103723_bib65) 2011; 19
He (10.1016/j.compbiomed.2020.103723_bib8) 2016
Connolly (10.1016/j.compbiomed.2020.103723_bib23) 2008; 32
Du (10.1016/j.compbiomed.2020.103723_bib47) 2017; 17
Stanley (10.1016/j.compbiomed.2020.103723_bib57) 2002
Belter (10.1016/j.compbiomed.2020.103723_bib21) 2013; 50
Atkins (10.1016/j.compbiomed.2020.103723_bib19) 1996; 8
Zoph (10.1016/j.compbiomed.2020.103723_bib55)
LeCun (10.1016/j.compbiomed.2020.103723_bib2) 2015; 521
Saikia (10.1016/j.compbiomed.2020.103723_bib20) 2016; 40
Shim (10.1016/j.compbiomed.2020.103723_bib46) 2016; 8
Atzori (10.1016/j.compbiomed.2020.103723_bib39) 2016; 10
Farina (10.1016/j.compbiomed.2020.103723_bib16) 2014; 22
LeCun (10.1016/j.compbiomed.2020.103723_bib3) 1989; 1
Phinyomark (10.1016/j.compbiomed.2020.103723_bib27)
Ameri (10.1016/j.compbiomed.2020.103723_bib49) 2019; 16
Ortiz-Catalan (10.1016/j.compbiomed.2020.103723_bib67) 2013; 8
Fougner (10.1016/j.compbiomed.2020.103723_bib22) 2012; 20
Chen (10.1016/j.compbiomed.2020.103723_bib34) 2017
Abadi (10.1016/j.compbiomed.2020.103723_bib63) 2016
Wallach (10.1016/j.compbiomed.2020.103723_bib11) 2015
Huang (10.1016/j.compbiomed.2020.103723_bib33) 2016
Zhai (10.1016/j.compbiomed.2020.103723_bib41) 2017; 11
Geng (10.1016/j.compbiomed.2020.103723_bib40) 2016; 15
Khushaba (10.1016/j.compbiomed.2020.103723_bib31) 2017; 25
Russakovsky (10.1016/j.compbiomed.2020.103723_bib4) 2015; 115
Cipriani (10.1016/j.compbiomed.2020.103723_bib29) 2011; 90
Hornik (10.1016/j.compbiomed.2020.103723_bib38) 1989; 2
Wei (10.1016/j.compbiomed.2020.103723_bib42) 2017; 119
Han (10.1016/j.compbiomed.2020.103723_bib56) 2015; 1
Park (10.1016/j.compbiomed.2020.103723_bib44) 2016
Snoek (10.1016/j.compbiomed.2020.103723_bib54) 2012; 2
Malešević (10.1016/j.compbiomed.2020.103723_bib35) 2018
Alkan (10.1016/j.compbiomed.2020.103723_bib32) 2012; 39
Miikkulainen (10.1016/j.compbiomed.2020.103723_bib53) 2018
Ko (10.1016/j.compbiomed.2020.103723_bib9) 2017
Hakonen (10.1016/j.compbiomed.2020.103723_bib24) 2015; 18
ur Rehman (10.1016/j.compbiomed.2020.103723_bib45) 2018; 8
Kingma (10.1016/j.compbiomed.2020.103723_bib62)
Srivastava (10.1016/j.compbiomed.2020.103723_bib60) 2014; 15
Phinyomark (10.1016/j.compbiomed.2020.103723_bib37) 2012; 39
Zecca (10.1016/j.compbiomed.2020.103723_bib26) 2002; 30
Mills (10.1016/j.compbiomed.2020.103723_bib13) 2005; 76
Ioffe (10.1016/j.compbiomed.2020.103723_bib61)
Real (10.1016/j.compbiomed.2020.103723_bib52) 2017; 70
Scheme (10.1016/j.compbiomed.2020.103723_bib25) 2011; 48
Shuman (10.1016/j.compbiomed.2020.103723_bib36) 2016; 16
Collobert (10.1016/j.compbiomed.2020.103723_bib10) 2010; 12
Biddiss (10.1016/j.compbiomed.2020.103723_bib17) 2007; 2
Kim (10.1016/j.compbiomed.2020.103723_bib14) 2011; 333
Szegedy (10.1016/j.compbiomed.2020.103723_bib7) 2015
Pylatiuk (10.1016/j.compbiomed.2020.103723_bib18) 2007; 31
Olsson (10.1016/j.compbiomed.2020.103723_bib48) 2019; 9
Geethanjali (10.1016/j.compbiomed.2020.103723_bib28) 2011; 34
Cortes (10.1016/j.compbiomed.2020.103723_bib51) 2017; 70
Moons (10.1016/j.compbiomed.2020.103723_bib66) 2019
Bäck (10.1016/j.compbiomed.2020.103723_bib58) 1996
Antfolk (10.1016/j.compbiomed.2020.103723_bib30) 2010; 30
Jimenez-Fabian (10.1016/j.compbiomed.2020.103723_bib15) 2012; 34
Krizhevsky (10.1016/j.compbiomed.2020.103723_bib6) 2012; 25
Kanitz (10.1016/j.compbiomed.2020.103723_bib59) 2011
Rojas-Martnex (10.1016/j.compbiomed.2020.103723_bib50) 2012; 9
Hu (10.1016/j.compbiomed.2020.103723_bib43) 2018; 13
Phinyomark (10.1016/j.compbiomed.2020.103723_bib12) 2018; 2
References_xml – volume: 34
  start-page: 419
  year: 2011
  end-page: 427
  ident: bib28
  article-title: Identification of motion from multi-channel EMG signals for control of prosthetic hand
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 8
  start-page: 7
  year: 2018
  ident: bib45
  article-title: Stacked sparse autoencoders for EMG-based classification of hand motions: a comparative multi day analyses between surface and intramuscular EMG
  publication-title: Appl. Sci.
– volume: 1
  year: 2014
  ident: bib64
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Sci. Data
– volume: 30
  start-page: 459
  year: 2002
  end-page: 485
  ident: bib26
  article-title: Control of multifunctional prosthetic hands by processing the electromyographic signal
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 30
  start-page: 399
  year: 2010
  end-page: 406
  ident: bib30
  article-title: Using EMG for real-time prediction of joint angles of a prosthetic hand equipped with a sensory feedback system
  publication-title: J. Med. Biol. Eng.
– volume: 50
  start-page: 599
  year: 2013
  end-page: 618
  ident: bib21
  article-title: Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review
  publication-title: J. Rehabil. Res. Dev.
– volume: 13
  year: 2018
  ident: bib43
  article-title: A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition
  publication-title: PloS One
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib60
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: bib3
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
– volume: 17
  start-page: 3
  year: 2017
  ident: bib47
  article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation
  publication-title: Sensors
– volume: 20
  start-page: 663
  year: 2012
  end-page: 677
  ident: bib22
  article-title: Control of upper limb prostheses: terminology and proportional myoelectric control-a review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 76
  start-page: 32
  year: 2005
  end-page: 35
  ident: bib13
  article-title: The basics of electromyography
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 8
  start-page: 2
  year: 1996
  end-page: 11
  ident: bib19
  article-title: Epidemiologic overview of individuals with upper-limb loss and their reported research priorities
  publication-title: J. Prosthet. Orthot.
– start-page: 293
  year: 2018
  end-page: 312
  ident: bib53
  article-title: Evolving deep neural networks
  publication-title: Artificial Intelligence in the Age of Neural Networks and Brain Computing
– year: 1996
  ident: bib58
  article-title: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms
– year: 2016
  ident: bib44
  article-title: Movement intention decoding based on deep learning for multiuser myoelectric interfaces
  publication-title: Proceedings of BCI
– volume: 34
  start-page: 397
  year: 2012
  end-page: 408
  ident: bib15
  article-title: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons
  publication-title: Med. Eng. Phys.
– start-page: 11
  year: 2017
  end-page: 14
  ident: bib34
  article-title: Hand gesture recognition research based on surface emg sensors and 2d-accelerometers
  publication-title: Proc. IEEE Int. Sym. Wrbl. Co.
– volume: 2
  start-page: 2951
  year: 2012
  end-page: 2959
  ident: bib54
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: In Proc. Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: bib33
  article-title: EMG pattern recognition using decomposition techniques for constructing multiclass classifiers
  publication-title: , Singpore
– year: 2009
  ident: bib27
  article-title: A novel feature extraction for robust EMG pattern recognition
– volume: 39
  start-page: 7420
  year: 2012
  end-page: 7431
  ident: bib37
  article-title: Feature reduction and selection for emg signal classification
  publication-title: Expert Syst. Appl.
– year: 2011
  ident: bib59
  article-title: Decoding of individuated finger movements using surface EMG and input optimization applying a genetic algorithm
  publication-title: , Boston, USA
– volume: 90
  start-page: 260
  year: 2011
  end-page: 270
  ident: bib29
  article-title: Online myoelectric control of a dexterous hand prosthesis by transradial amputees
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 12
  start-page: 2493
  year: 2010
  end-page: 2537
  ident: bib10
  article-title: Natural language processing (almost) from scratch
  publication-title: J. Mach. Learn. Res.
– year: 2015
  ident: bib11
  article-title: AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery
– volume: 8
  start-page: 11
  year: 2013
  ident: bib67
  article-title: BioPatRec: a modular research platform for the control of artificial limbs based on pattern recognition algorithms
  publication-title: Source Code Biol. Med.
– volume: 31
  start-page: 362
  year: 2007
  end-page: 370
  ident: bib18
  article-title: Results of an Internet survey of myoelectric prosthetic hand users
  publication-title: Prosthet. Orthot. Int.
– volume: 9
  start-page: 85
  year: 2012
  ident: bib50
  article-title: High-density surface EMG maps from upper-arm and forearm muscles
  publication-title: J. NeuroEng. Rehabil.
– volume: 22
  start-page: 797
  year: 2014
  end-page: 809
  ident: bib16
  article-title: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 70
  start-page: 2902
  year: 2017
  end-page: 2911
  ident: bib52
  article-title: Large-scale evolution of image classifiers
  publication-title: Proc. ICML
– volume: 2
  start-page: 21
  year: 2018
  ident: bib12
  article-title: EMG pattern recognition in the era of big data and deep learning
  publication-title: Big Data Cogn. Comput.
– volume: 10
  start-page: 9
  year: 2016
  ident: bib39
  article-title: Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands
  publication-title: Front. Neurorob.
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib4
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 16
  year: 2016
  ident: bib36
  article-title: Improving the recognition of grips and movements of the hand using myoelectric signals
  publication-title: BMC Med. Inf. Decis. Making
– volume: 8
  start-page: 12
  year: 2016
  ident: bib46
  article-title: EMG pattern classification by split and merge deep belief network
  publication-title: Symmetry
– year: 2016
  ident: bib63
  article-title: TensorFlow: a system for large-scale machine learning
  publication-title: Proceedings of the USENIX Conference on Operating Systems Design and Implementation
– year: 2016
  ident: bib1
  article-title: Deep Learning
– volume: 48
  start-page: 643
  year: 2011
  end-page: 659
  ident: bib25
  article-title: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use
  publication-title: J. Rehabil. Res. Dev.
– volume: 2
  start-page: 346
  year: 2007
  end-page: 357
  ident: bib17
  article-title: Consumer design priorities for upper limb prosthetics
  publication-title: Disabil. Rehabil. Assist. Technol.
– volume: 16
  year: 2019
  ident: bib49
  article-title: Regression convolutional neural network for improved simultaneous EMG control
  publication-title: J. Neural. Eng.
– year: 2018
  ident: bib35
  article-title: Vector Autoregressive Hierarchical Hidden Markov Models (VARHHMM) for extracting finger movements using multichannel surface EMG signals
  publication-title: Complexity
– year: 2015
  ident: bib7
  article-title: Going deeper with convolutions
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 40
  start-page: 255
  year: 2016
  end-page: 264
  ident: bib20
  article-title: Recent advancements in prosthetic hand technology
  publication-title: J. Med. Eng. Technol.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib2
  publication-title: “Deep learning,”
– volume: 333
  start-page: 838
  year: 2011
  end-page: 843
  ident: bib14
  publication-title: “Epidermal electronics,”
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib38
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Network.
– volume: 1
  start-page: 1135
  year: 2015
  end-page: 1143
  ident: bib56
  article-title: Learning both weights and connections for efficient neural network
  publication-title: In Proceedings of NeurIPS
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib8
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.
– ident: bib5
  article-title: ImageNet LSVRC
– volume: 11
  start-page: 379
  year: 2017
  ident: bib41
  article-title: Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network
  publication-title: Front. Neurosci.
– volume: 70
  start-page: 874
  year: 2017
  end-page: 883
  ident: bib51
  article-title: AdaNet: adaptive structural learning of artificial neural networks
  publication-title: Proceedings of the ICML
– volume: 18
  start-page: 334
  year: 2015
  end-page: 359
  ident: bib24
  article-title: Current state of digital signal processing in myoelectric interfaces and related applications
  publication-title: Biomed. Signal Process Contr.
– volume: 119
  start-page: 131
  year: 2017
  end-page: 138
  ident: bib42
  article-title: A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface
  publication-title: Pattern Recogn. Lett.
– volume: 25
  year: 2012
  ident: bib6
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc. Adv. Neural Inf. Process. Syst.
– start-page: 5220
  year: 2017
  end-page: 5224
  ident: bib9
  article-title: A study on data augmentation of reverberant speech for robust speech recognition
  publication-title: In Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
– year: 2016
  ident: bib55
  article-title: Neural architecture search with reinforcement learning
– start-page: 569
  year: 2002
  end-page: 577
  ident: bib57
  article-title: Efficient reinforcement learning through evolving neural network topologies
  publication-title: Proc. GECCO
– volume: 9
  year: 2019
  ident: bib48
  article-title: Extraction of multi-labelled movement information from the raw HD-sEMG image with time-domain depth
  publication-title: Sci. Rep.
– year: 2019
  ident: bib66
  article-title: Embedded Deep Learning: Algorithms, Architectures and Circuits for Always-On Neural Network Processing”
– volume: 32
  start-page: 290
  year: 2008
  end-page: 293
  ident: bib23
  article-title: Prosthetic hands from touch bionics
  publication-title: Ind. Robot
– year: 2014
  ident: bib62
  article-title: Adam: a method for stochastic optimization
– volume: 39
  start-page: 44
  year: 2012
  end-page: 47
  ident: bib32
  article-title: Identification of emg signals using discriminant analysis and svm classifier
  publication-title: Expert Syst. Appl.
– year: 2015
  ident: bib61
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– volume: 19
  start-page: 186
  year: 2011
  end-page: 192
  ident: bib65
  article-title: Determining the optimal window length for pattern recognition-based myoelectric control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 15
  year: 2016
  ident: bib40
  article-title: Gesture recognition by instantaneous surface EMG images
  publication-title: Sci. Rep.
– volume: 25
  start-page: 1821
  year: 2017
  end-page: 1831
  ident: bib31
  article-title: A framework of temporal-spatial descriptors-based feature extraction for improving myoelectric pattern recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 8
  start-page: 12
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103723_bib46
  article-title: EMG pattern classification by split and merge deep belief network
  publication-title: Symmetry
  doi: 10.3390/sym8120148
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103723_bib2
  publication-title: “Deep learning,” Nature
– volume: 34
  start-page: 397
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103723_bib15
  article-title: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.11.018
– volume: 15
  issue: 6
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103723_bib40
  article-title: Gesture recognition by instantaneous surface EMG images
  publication-title: Sci. Rep.
– year: 2015
  ident: 10.1016/j.compbiomed.2020.103723_bib7
  article-title: Going deeper with convolutions
– volume: 16
  issue: 2
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103723_bib36
  article-title: Improving the recognition of grips and movements of the hand using myoelectric signals
  publication-title: BMC Med. Inf. Decis. Making
– volume: 20
  start-page: 663
  issue: 5
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103723_bib22
  article-title: Control of upper limb prostheses: terminology and proportional myoelectric control-a review
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2196711
– volume: 13
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103723_bib43
  article-title: A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition
  publication-title: PloS One
  doi: 10.1371/journal.pone.0206049
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.compbiomed.2020.103723_bib3
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 34
  start-page: 419
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2020.103723_bib28
  article-title: Identification of motion from multi-channel EMG signals for control of prosthetic hand
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-011-0079-z
– volume: 8
  start-page: 7
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103723_bib45
  article-title: Stacked sparse autoencoders for EMG-based classification of hand motions: a comparative multi day analyses between surface and intramuscular EMG
  publication-title: Appl. Sci.
– ident: 10.1016/j.compbiomed.2020.103723_bib55
– volume: 19
  start-page: 186
  issue: 2
  year: 2011
  ident: 10.1016/j.compbiomed.2020.103723_bib65
  article-title: Determining the optimal window length for pattern recognition-based myoelectric control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2100828
– volume: 39
  start-page: 7420
  issue: 8
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103723_bib37
  article-title: Feature reduction and selection for emg signal classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.01.102
– volume: 1
  start-page: 1135
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103723_bib56
  article-title: Learning both weights and connections for efficient neural network
  publication-title: In Proceedings of NeurIPS
– volume: 25
  start-page: 1821
  issue: 10
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103723_bib31
  article-title: A framework of temporal-spatial descriptors-based feature extraction for improving myoelectric pattern recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2687520
– volume: 48
  start-page: 643
  issue: 6
  year: 2011
  ident: 10.1016/j.compbiomed.2020.103723_bib25
  article-title: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2010.09.0177
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103723_bib48
  article-title: Extraction of multi-labelled movement information from the raw HD-sEMG image with time-domain depth
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43676-8
– start-page: 569
  year: 2002
  ident: 10.1016/j.compbiomed.2020.103723_bib57
  article-title: Efficient reinforcement learning through evolving neural network topologies
  publication-title: Proc. GECCO
– volume: 39
  start-page: 44
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103723_bib32
  article-title: Identification of emg signals using discriminant analysis and svm classifier
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.06.043
– year: 2018
  ident: 10.1016/j.compbiomed.2020.103723_bib35
  article-title: Vector Autoregressive Hierarchical Hidden Markov Models (VARHHMM) for extracting finger movements using multichannel surface EMG signals
  publication-title: Complexity
  doi: 10.1155/2018/9728264
– year: 2011
  ident: 10.1016/j.compbiomed.2020.103723_bib59
  article-title: Decoding of individuated finger movements using surface EMG and input optimization applying a genetic algorithm
– year: 2016
  ident: 10.1016/j.compbiomed.2020.103723_bib44
  article-title: Movement intention decoding based on deep learning for multiuser myoelectric interfaces
– volume: 8
  start-page: 2
  year: 1996
  ident: 10.1016/j.compbiomed.2020.103723_bib19
  article-title: Epidemiologic overview of individuals with upper-limb loss and their reported research priorities
  publication-title: J. Prosthet. Orthot.
  doi: 10.1097/00008526-199600810-00003
– volume: 12
  start-page: 2493
  year: 2010
  ident: 10.1016/j.compbiomed.2020.103723_bib10
  article-title: Natural language processing (almost) from scratch
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.compbiomed.2020.103723_bib60
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 21
  issue: 3
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103723_bib12
  article-title: EMG pattern recognition in the era of big data and deep learning
  publication-title: Big Data Cogn. Comput.
  doi: 10.3390/bdcc2030021
– ident: 10.1016/j.compbiomed.2020.103723_bib27
– start-page: 770
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103723_bib8
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.
– volume: 90
  start-page: 260
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2020.103723_bib29
  article-title: Online myoelectric control of a dexterous hand prosthesis by transradial amputees
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2108667
– volume: 2
  start-page: 346
  issue: 6
  year: 2007
  ident: 10.1016/j.compbiomed.2020.103723_bib17
  article-title: Consumer design priorities for upper limb prosthetics
  publication-title: Disabil. Rehabil. Assist. Technol.
  doi: 10.1080/17483100701714733
– volume: 22
  start-page: 797
  issue: 4
  year: 2014
  ident: 10.1016/j.compbiomed.2020.103723_bib16
  article-title: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2305111
– volume: 18
  start-page: 334
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103723_bib24
  article-title: Current state of digital signal processing in myoelectric interfaces and related applications
  publication-title: Biomed. Signal Process Contr.
  doi: 10.1016/j.bspc.2015.02.009
– start-page: 293
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103723_bib53
  article-title: Evolving deep neural networks
– volume: 11
  start-page: 379
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103723_bib41
  article-title: Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00379
– volume: 50
  start-page: 599
  issue: 5
  year: 2013
  ident: 10.1016/j.compbiomed.2020.103723_bib21
  article-title: Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2011.10.0188
– volume: 17
  start-page: 3
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103723_bib47
  article-title: Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation
  publication-title: Sensors
  doi: 10.3390/s17030458
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.compbiomed.2020.103723_bib38
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Network.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 32
  start-page: 290
  issue: 4
  year: 2008
  ident: 10.1016/j.compbiomed.2020.103723_bib23
  article-title: Prosthetic hands from touch bionics
  publication-title: Ind. Robot
  doi: 10.1108/01439910810876364
– volume: 2
  start-page: 2951
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103723_bib54
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: In Proc. Adv. Neural Inf. Process. Syst.
– start-page: 11
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103723_bib34
  article-title: Hand gesture recognition research based on surface emg sensors and 2d-accelerometers
  publication-title: Proc. IEEE Int. Sym. Wrbl. Co.
– volume: 30
  start-page: 399
  issue: 6
  year: 2010
  ident: 10.1016/j.compbiomed.2020.103723_bib30
  article-title: Using EMG for real-time prediction of joint angles of a prosthetic hand equipped with a sensory feedback system
  publication-title: J. Med. Biol. Eng.
  doi: 10.5405/jmbe.767
– ident: 10.1016/j.compbiomed.2020.103723_bib61
– year: 2016
  ident: 10.1016/j.compbiomed.2020.103723_bib1
– start-page: 5220
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103723_bib9
  article-title: A study on data augmentation of reverberant speech for robust speech recognition
  publication-title: In Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
– volume: 10
  start-page: 9
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103723_bib39
  article-title: Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands
  publication-title: Front. Neurorob.
  doi: 10.3389/fnbot.2016.00009
– ident: 10.1016/j.compbiomed.2020.103723_bib62
– volume: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2020.103723_bib64
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.53
– volume: 119
  start-page: 131
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103723_bib42
  article-title: A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.12.005
– volume: 25
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103723_bib6
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc. Adv. Neural Inf. Process. Syst.
– year: 2015
  ident: 10.1016/j.compbiomed.2020.103723_bib11
– volume: 16
  issue: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103723_bib49
  article-title: Regression convolutional neural network for improved simultaneous EMG control
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/ab0e2e
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103723_bib4
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– year: 2016
  ident: 10.1016/j.compbiomed.2020.103723_bib33
  article-title: EMG pattern recognition using decomposition techniques for constructing multiclass classifiers
– volume: 9
  start-page: 85
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103723_bib50
  article-title: High-density surface EMG maps from upper-arm and forearm muscles
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-9-85
– year: 2016
  ident: 10.1016/j.compbiomed.2020.103723_bib63
  article-title: TensorFlow: a system for large-scale machine learning
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103723_bib66
– volume: 70
  start-page: 874
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103723_bib51
  article-title: AdaNet: adaptive structural learning of artificial neural networks
  publication-title: Proceedings of the ICML
– volume: 8
  start-page: 11
  year: 2013
  ident: 10.1016/j.compbiomed.2020.103723_bib67
  article-title: BioPatRec: a modular research platform for the control of artificial limbs based on pattern recognition algorithms
  publication-title: Source Code Biol. Med.
  doi: 10.1186/1751-0473-8-11
– volume: 333
  start-page: 838
  issue: 6044
  year: 2011
  ident: 10.1016/j.compbiomed.2020.103723_bib14
  publication-title: “Epidermal electronics,” Science
– volume: 70
  start-page: 2902
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103723_bib52
  article-title: Large-scale evolution of image classifiers
  publication-title: Proc. ICML
– volume: 31
  start-page: 362
  issue: 4
  year: 2007
  ident: 10.1016/j.compbiomed.2020.103723_bib18
  article-title: Results of an Internet survey of myoelectric prosthetic hand users
  publication-title: Prosthet. Orthot. Int.
  doi: 10.1080/03093640601061265
– volume: 76
  start-page: 32
  issue: 2
  year: 2005
  ident: 10.1016/j.compbiomed.2020.103723_bib13
  article-title: The basics of electromyography
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 40
  start-page: 255
  issue: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103723_bib20
  article-title: Recent advancements in prosthetic hand technology
  publication-title: J. Med. Eng. Technol.
  doi: 10.3109/03091902.2016.1167971
– volume: 30
  start-page: 459
  issue: 4–6
  year: 2002
  ident: 10.1016/j.compbiomed.2020.103723_bib26
  article-title: Control of multifunctional prosthetic hands by processing the electromyographic signal
  publication-title: Crit. Rev. Biomed. Eng.
  doi: 10.1615/CritRevBiomedEng.v30.i456.80
– year: 1996
  ident: 10.1016/j.compbiomed.2020.103723_bib58
SSID ssj0004030
Score 2.3777342
Snippet Convolutional Neural Networks (CNNs) have been subject to extensive attention in the pattern recognition literature due to unprecedented performance in tasks...
AbstractConvolutional Neural Networks (CNNs) have been subject to extensive attention in the pattern recognition literature due to unprecedented performance in...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103723
SubjectTerms Algorithms
Artificial neural networks
Bioinformatics (Computational Biology)
Bioinformatik (Beräkningsbiologi)
Collating
Computer and Information Sciences
Computer applications
Convolutional neural networks
Data- och informationsvetenskap (Datateknik)
Deep learning
Discriminant analysis
Electromyography
Embedded systems
Evolutionary algorithms
Information retrieval
Interfaces
Internal Medicine
Iterative methods
Machine learning
Medical research
Model selection
Muscle-computer interfaces
Muscles
Myoelectric control
Myoelectric pattern recognition
Myoelectricity
Natural Sciences
Naturvetenskap
Network topologies
Neural networks
Other
Pattern recognition
Problem solving
Prostheses
Unstructured data
Title Automatic discovery of resource-restricted Convolutional Neural Network topologies for myoelectric pattern recognition
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482520301086
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482520301086
https://dx.doi.org/10.1016/j.compbiomed.2020.103723
https://www.ncbi.nlm.nih.gov/pubmed/32421642
https://www.proquest.com/docview/2425662325
https://www.proquest.com/docview/2404638007
Volume 120
WOSCitedRecordID wos000532824300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: P5Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: K7-
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7RV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdrO0Zf9r3OWxc82KuZLcuWzR5GV1oGo1noPgh9OWxZphudncVOoP_97iTZGfsisBeZYJ8d5y6n-0l3v2PsRR2HSlcxD3hSF4EQOf6luCiCUIV1UolIFklhmk3I6TSbz_OZW3DrXFrl4BONo65aRWvkLyk0TnGu5snrxfeAukbR7qprobHD9oglgZvUvdmmLjKMbQkK-hqBUMhl8tj8LkrZtiXuiBK5rT7n8d-mp9_Dz1-4Rc18dHrnf9_kLrvtIlH_yJrOPXZDN_fZrTO31_6ArY9WfWsIXX0q3aVUz2u_rf2lW_APqKsHelEMWf3jtlk7G8ZbEuGHOZgMc7-3fRgQkvsYIfvfrlvbewdvvDDsno0_pjG1zUP26fTk4_HbwHVpCFSaiD7Q6CDTKqwqkaVpnlSZ4krJWigE3joUhYjqXMVaYiBQqSwO67LOIhStEUomBS_jR2y3aRv9GJWDsUiiIh1xrYQhuldVitMlUUOlhdAek4NyQDkKc-qkcQVDrtpX2KgVSK1g1eqxaJRcWBqPLWTyQf8wlKmiYwWca7aQlX-S1Z3zEB1E0HEI4YMhSELb5IRNEV967NUo6YIgG9xs-dzDweZgfNTG4Dz2fDyNboT2hopGtyu6hqjjED1Ijx1YAx9_KIq5EVVzj11Yix_PEDe5hYnguKku4WoFnYbFT4vOEAohEdamEBcyBRHHGtAINGhRSZlHRZmV5ZN_f_OnbJ9e06aaHrLdfrnSz9hNte6_dMsJ25Hnn2mcSzNmE7b35mQ6O8dP72SA4xl_PzHOAcdZcvED4JJrjw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgoAL74ehgJHgaGHvrr22EEJVoWqVNkKiSBWX6Xq9FkXFDnESlD_Fb2TGazuIl3LpgZMP9qxjZ16fd-Ybxp6VIjS2EDzgcakDKTM0KS51EJqwjAsZKR3rdtiEGo_T4-Ps3Qb73vfCUFll7xNbR13Uhr6Rv6DUOMFYzePXk68BTY2i3dV-hIZTi5FdfkPI1rzaf4P_73POd98e7ewF3VSBwCSxnAUWDTopwqKQaZJkcZEabowqpUGgaEOpZVRmRliFgaswqQjLvEwjFC0R-sSa5wLXvcAuSpEqsquRClZ9mKFwLS_o2yRCr65yyNWTUYm4a6lHVMpdtzsXfwuHv6e7v3CZtvFv9_r_9uZusGtdpu1vO9O4yTZsdYtdPuxqCW6zxfZ8VreEtT61JlMp69KvS3_abWgENLUEowSm5P5OXS06G8UlidCkPbQV9P7MzZk4tY2PCMD_sqzdbCFceNKyl1b-UKZVV3fYh3N56rtss6orex-VAXOt2EQ24tbIlsjfFAmmA0R9lWhpPaZ6ZQDTUbTTpJAz6GvxPsNKjYDUCJwaeSwaJCeOpmQNmazXN-jbcDFwAMbSNWTVn2Rt03nABiJoOITwviWAQlvghL0RP3vs5SDZJXkueVvzvlu9jsNwq5WCe-zpcBrdJO196crWc7qGqPEQHSmP3XMGNbwowhQR4nCPfXQWNpwh7nUHg6Hj3voEZ3NoLEx--qgOoZQKYXsCQqsEpBAWUAksWFkolUU6T_P8wb9_-RN2Ze_o8AAO9sejh-wqPbIrq91im7Pp3D5il8xidtpMH7cux2cn522pPwDz1cKz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db5RAEN_Uahpf_K5Fq2Kij6SwLCzEGNO0Xmyql0vUpOnLCMsSa1o4D-7M_Wv-dc6wC2f8yr30wad7gFkOmK8fO_Mbxp6Voa90EXKPR2XmCZGiSXGReb7yy6gQgcyirBs2Icfj5OQknWyw730vDJVV9j6xc9RFregb-R6lxjHGah7tlbYsYnI4ejX96tEEKdpp7cdpGBU51stvCN-al0eH-K6fcz56_eHgjWcnDHgqjkTraTTuuPCLQiRxnEZForhSshQKQaP2RSaCMlWhlhjECpWEfpmXSYCiJcKgKON5iOteYVclnk7lhJPodNWT6Yem_QX9nEAYZquITG0ZlYub9npEqNx0vvPwb6Hx99T3F17TLhaObv7PT_EWu2EzcHffmMxttqGrO2zrna0xuMsW-_O27ohsXWpZphLXpVuX7sxudHg0zQSjB6bq7kFdLazt4pJEdNL9dJX1bmvmT5zpxkVk4F4sazNzCBeedqymlTuUb9XVPfbxUu56m21WdaV3UDEwB4tUoAOulegI_lURY5pAlFhxJrTDZK8YoCx1O00QOYe-Ru8LrFQKSKXAqJTDgkFyauhL1pBJe92Dvj0XAwpgjF1DVv5JVjfWMzYQQMPBh_cdMRTaBSdMjrjaYS8GSZv8maRuzevu9voOw6VWyu6wp8NhdJ-0J5ZVup7TOUSZh6hJOuy-Ma7hQRHWCBCfO-zUWNtwhDjZDTwGy8n1Gc7n0GiY_vSxHXwhJML5GMJMxiDCUAMqgQYtCinTIMuTPH_w73_-hG2hgcLbo_HxQ3ad7thU2-6yzXY214_YNbVoz5rZ4877uOzTZRvqD_A7y9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+discovery+of+resource-restricted+Convolutional+Neural+Network+topologies+for+myoelectric+pattern+recognition&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Olsson%2C+Alexander+E&rft.au=Bj%C3%B6rkman%2C+Anders&rft.au=Antfolk%2C+Christian&rft.date=2020-05-01&rft.issn=0010-4825&rft.volume=120&rft.spage=103723&rft.epage=103723&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.103723&rft.externalDBID=ECK1-s2.0-S0010482520301086&rft.externalDocID=1_s2_0_S0010482520301086
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482520X00047%2Fcov150h.gif