Extreme Flexibility in a Zeolitic Imidazolate Framework: Porous to Dense Phase Transition in Desolvated ZIF-4
Desolvated zeolitic imidazolate framework ZIF‐4(Zn) undergoes a discontinuous porous to dense phase transition on cooling through 140 K, with a 23 % contraction in unit cell volume. The structure of the non‐porous, low temperature phase was determined from synchrotron X‐ray powder diffraction data a...
Uložené v:
| Vydané v: | Angewandte Chemie International Edition Ročník 54; číslo 22; s. 6447 - 6451 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Weinheim
WILEY-VCH Verlag
26.05.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
| Vydanie: | International ed. in English |
| Predmet: | |
| ISSN: | 1433-7851, 1521-3773 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Desolvated zeolitic imidazolate framework ZIF‐4(Zn) undergoes a discontinuous porous to dense phase transition on cooling through 140 K, with a 23 % contraction in unit cell volume. The structure of the non‐porous, low temperature phase was determined from synchrotron X‐ray powder diffraction data and its density was found to be slightly less than that of the densest ZIF phase, ZIF‐zni. The mechanism of the phase transition involves a cooperative rotation of imidazolate linkers resulting in isotropic framework contraction and pore space minimization. DFT calculations established the energy of the new structure relative to those of the room temperature phase and ZIF‐zni, while DSC measurements indicate the entropic stabilization of the porous room temperature phase at temperatures above 140 K.
ZIF‐4(Zn) undergoes a porous to non‐porous transition on cooling from the high‐temperature (HT) to low‐temperature (LT) phase. The nature of this transition is elucidated by a combined approach of structure solution from powder diffraction, DSC measurement, and DFT calculations. |
|---|---|
| Bibliografia: | Alexander von Humboldt Foundation istex:E924474BF4250E43A9A5DCCF4519AE14061DAB34 European Research Council S.H. is grateful to the Alexander von Humboldt Foundation for a Feodor Lynen Fellowship. T.D.B thanks Trinity Hall (University of Cambridge) for funding and A.K.C. is grateful to the European Research Council for an Advanced Investigator Award. We thank Diamond Light Source and PSI for beamtime at beamlines I11 (visit EE9225) and X04SA respectively. Y.Y. thanks Jiming An for assistance in DSC experiments. ArticleID:ANIE201410167 University of Cambridge ark:/67375/WNG-LPSHM51P-0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1433-7851 1521-3773 |
| DOI: | 10.1002/anie.201410167 |