A simple pressure stabilization method for the Stokes equation

In this paper, we consider a stabilization method for the Stokes problem, using equal‐order interpolation of the pressure and velocity, which avoids the use of the mesh size parameter in the stabilization term. We show that our approach is stable for equal‐order interpolation in the case of piecewis...

Full description

Saved in:
Bibliographic Details
Published in:Communications in numerical methods in engineering Vol. 24; no. 11; pp. 1421 - 1430
Main Authors: Becker, Roland, Hansbo, Peter
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01.11.2008
Wiley
Subjects:
ISSN:1069-8299, 1099-0887, 1099-0887
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we consider a stabilization method for the Stokes problem, using equal‐order interpolation of the pressure and velocity, which avoids the use of the mesh size parameter in the stabilization term. We show that our approach is stable for equal‐order interpolation in the case of piecewise linear and piecewise quadratic polynomials on triangles. In the case of linear polynomials, we retrieve a well‐known idea of using mass lumping as a stabilization mechanism. Copyright © 2007 John Wiley & Sons, Ltd.
AbstractList In this paper, we consider a stabilization method for the Stokes problem, using equal-order interpolation of the pressure and velocity, which avoids the use of the mesh size parameter in the stabilization term. We show that our approach is stable for equal-order interpolation in the case of piecewise linear and piecewise quadratic polynomials on triangles. In the case of linear polynomials, we retrieve a well-known idea of using mass lumping as a stabilization mechanism.
In this paper, we consider a stabilization method for the Stokes problem, using equal‐order interpolation of the pressure and velocity, which avoids the use of the mesh size parameter in the stabilization term. We show that our approach is stable for equal‐order interpolation in the case of piecewise linear and piecewise quadratic polynomials on triangles. In the case of linear polynomials, we retrieve a well‐known idea of using mass lumping as a stabilization mechanism. Copyright © 2007 John Wiley & Sons, Ltd.
Author Hansbo, Peter
Becker, Roland
Author_xml – sequence: 1
  givenname: Roland
  surname: Becker
  fullname: Becker, Roland
  organization: Laboratoire de Mathématiques Appliquées, Université de Pau et des Pays de l'Adour, BP 1155, 64013 PAU Cedex, France
– sequence: 2
  givenname: Peter
  surname: Hansbo
  fullname: Hansbo, Peter
  email: peter.hansbo@me.chalmers.se
  organization: Division of Computational Mathematics, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg, Sweden
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20832969$$DView record in Pascal Francis
https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-15823$$DView record from Swedish Publication Index (Högskolan i Jönköping)
https://gup.ub.gu.se/publication/77887$$DView record from Swedish Publication Index (Göteborgs universitet)
https://research.chalmers.se/publication/77887$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp1kltv1DAQRiNUJNqCxE_ICwgJUnzJzS9IqwW6VKU8dAWPo4k92bjNrXaiUn493m6pBGKfPLLPHI3t7yg66IeeouglZyecMfFe910oUv4kOuRMqYSVZXGwrXOVlEKpZ9GR91eMMcVKdhh9WMTedmNL8ejI-9lR7CesbGt_4WSHPu5oagYT14OLp4biy2m4Jh_TzXx__Dx6WmPr6cXDehytP39aL1fJ-bfTL8vFeaLztOCJMLVhOlel4iUVpVLGCMSa6tRwrWSmeFWhQo5YZmHI1KRSGKqMzhhxqeVxdLnT-lsa5wpGZzt0dzCghTA2odMN6AbbjpwHT6CRmZJQQl1XCKmUBSAXBqQgRZVmSlAarO_2WjfzCGFrM29tRREeMeBv9-If7fcFDG4DzRXwcAUZ6Nc7enTDzUx-gs56TW2LPQ2zB5nlpWCpCOCrBxC9xrZ22GvrH-2ClVKoXAXuZMdpN3jvqAZtp_tPmBzaFjiDbQAgBAC2AQgNb_5p-OP8D5rs0Fvb0t1eDpYXX__mrZ_o5yOP7hryQhYZ_Lg4hbN0tc7OshxW8jcIKdHi
CitedBy_id crossref_primary_10_1007_s11075_022_01470_0
crossref_primary_10_1016_j_cma_2009_06_017
crossref_primary_10_1016_j_compfluid_2025_106622
crossref_primary_10_1002_fld_4205
crossref_primary_10_1016_j_amc_2022_127270
crossref_primary_10_1002_nla_2564
crossref_primary_10_1016_j_cam_2011_06_009
crossref_primary_10_1016_j_apm_2013_02_016
crossref_primary_10_1007_s00466_016_1337_4
crossref_primary_10_1016_j_ijheatmasstransfer_2014_08_015
crossref_primary_10_1016_j_apm_2014_04_049
crossref_primary_10_1155_2014_698354
crossref_primary_10_1007_s10444_014_9400_1
crossref_primary_10_1016_j_apnum_2012_03_006
crossref_primary_10_1080_10407782_2013_756756
crossref_primary_10_1016_j_apm_2013_06_033
crossref_primary_10_1002_fld_5282
crossref_primary_10_1080_10618562_2011_646262
crossref_primary_10_1155_2018_4865849
crossref_primary_10_1016_j_cma_2013_01_005
crossref_primary_10_1515_cmam_2024_0187
crossref_primary_10_1155_2017_6362505
crossref_primary_10_1016_j_compfluid_2013_06_028
crossref_primary_10_1155_2012_651808
crossref_primary_10_1002_zamm_202300634
crossref_primary_10_1016_j_matcom_2012_02_007
crossref_primary_10_1016_j_cma_2020_113445
crossref_primary_10_1016_j_cam_2018_01_018
crossref_primary_10_1155_2014_474160
crossref_primary_10_1016_j_camwa_2020_08_018
crossref_primary_10_1007_s10492_014_0076_0
crossref_primary_10_1007_s10483_012_1575_7
crossref_primary_10_1016_j_apm_2012_04_057
crossref_primary_10_1002_mma_1618
Cites_doi 10.1007/s10092-001-8180-4
10.1016/0045-7825(86)90025-3
10.1016/S0045-7825(96)01154-1
10.1002/fld.1650071007
10.1016/j.cma.2005.05.009
10.1002/fld.752
10.1007/978-3-642-61623-5
10.1007/978-1-4612-3172-1
10.1016/j.cam.2007.02.015
ContentType Journal Article
Copyright Copyright © 2007 John Wiley & Sons, Ltd.
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2007 John Wiley & Sons, Ltd.
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTPV
AOWAS
D8X
F1U
F1S
DOI 10.1002/cnm.1041
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Högskolan i Jönköping
SWEPUB Göteborgs universitet
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts




CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1099-0887
EndPage 1430
ExternalDocumentID oai_research_chalmers_se_ca0d8ea3_ffba_4337_a12d_32e9ebc092e4
oai_gup_ub_gu_se_77887
oai_DiVA_org_hj_15823
20832969
10_1002_cnm_1041
CNM1041
ark_67375_WNG_J4HT5J56_H
Genre article
GroupedDBID -~X
.GA
.Y3
10A
1L6
1OB
1OC
1ZS
31~
4.4
51W
51X
52N
52O
52P
52S
52T
52W
52X
5GY
5VS
66C
6J9
7PT
8-1
8-4
8-5
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
AEFGJ
AEIGN
AEIMD
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BRXPI
BSCLL
BY8
CO8
CS3
D-F
DCZOG
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
GBZZK
GNP
GODZA
HBH
HF~
HGLYW
HHY
HVGLF
I-F
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M6O
MEWTI
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P4D
PALCI
QB0
QRW
RIWAO
RJQFR
ROL
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
WIB
WIH
WIK
WQJ
WXSBR
XG1
XPP
XV2
ZY4
~02
ALUQN
AAYXX
CITATION
O8X
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTPV
AOWAS
D8X
F1U
F1S
ID FETCH-LOGICAL-c6471-2dfd0c698918e7899dd2aafef4d1c93591bba9a1aa858294d432debdc50e13c3
IEDL.DBID DRFUL
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000261200200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1069-8299
1099-0887
IngestDate Wed Nov 05 04:08:49 EST 2025
Tue Nov 04 16:21:46 EST 2025
Tue Nov 04 16:10:49 EST 2025
Sun Nov 09 09:52:23 EST 2025
Mon Jul 21 09:13:55 EDT 2025
Sat Nov 29 06:28:02 EST 2025
Tue Nov 18 21:37:22 EST 2025
Sun Sep 21 06:19:27 EDT 2025
Tue Nov 11 03:32:44 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Incompressible flow
Stokes problem
Stokes equation
Stabilization
Polynomial approximation
Quadratic approximation
equal-order interpolation
Piecewise linear system
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6471-2dfd0c698918e7899dd2aafef4d1c93591bba9a1aa858294d432debdc50e13c3
Notes ArticleID:CNM1041
istex:4F1FD78854F75F03D79BE2CCBD9E476C7920C1E1
ark:/67375/WNG-J4HT5J56-H
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://hal.science/hal-01352889
PQID 35682042
PQPubID 23500
PageCount 10
ParticipantIDs swepub_primary_oai_research_chalmers_se_ca0d8ea3_ffba_4337_a12d_32e9ebc092e4
swepub_primary_oai_gup_ub_gu_se_77887
swepub_primary_oai_DiVA_org_hj_15823
proquest_miscellaneous_35682042
pascalfrancis_primary_20832969
crossref_citationtrail_10_1002_cnm_1041
crossref_primary_10_1002_cnm_1041
wiley_primary_10_1002_cnm_1041_CNM1041
istex_primary_ark_67375_WNG_J4HT5J56_H
PublicationCentury 2000
PublicationDate November 2008
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: November 2008
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Communications in numerical methods in engineering
PublicationTitleAlternate Commun. Numer. Meth. Engng
PublicationYear 2008
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Girault V, Raviart PA. Finite Elements for the Navier-Stokes Equations. Springer: Berlin, 1986.
Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer: New York, 1991.
Codina R, Blasco J. A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Computer Methods in Applied Mechanics and Engineering 1997; 143:373-391.
Löhner R, Morgan K, Peraire J, Vahdati M. Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. International Journal for Numerical Methods in Fluids 1987; 7:1093-1109.
Hughes TJR, Franca LP, Balestra M. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation for the Stokes problem accommodating equal order interpolation. Computer Methods in Applied Mechanics and Engineering 1986; 59:89-99.
Dohrmann C, Bochev P. A stabilized finite element method for the Stokes problem based on polynomial pressure projections. International Journal for Numerical Methods in Fluids 2004; 46:183-201.
Li J, He Y. A stabilized finite element method based on two local Gauss integrations for the Stokes equations. Journal of Computational and Applied Mathematics 2007; DOI: 10.1016/j.cam.2007.02.015.
Becker R, Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 2001; 38(4):173-199.
Burman E, Hansbo P. Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Computer Methods in Applied Mechanics and Engineering 2006; 195:2393-2410.
1986
2006; 195
2007
2001; 38
1991
1984; 10
1997; 143
1986; 59
2004; 46
1987; 7
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_10_2
Brezzi F (e_1_2_1_3_2) 1984
e_1_2_1_8_2
e_1_2_1_9_2
References_xml – reference: Li J, He Y. A stabilized finite element method based on two local Gauss integrations for the Stokes equations. Journal of Computational and Applied Mathematics 2007; DOI: 10.1016/j.cam.2007.02.015.
– reference: Codina R, Blasco J. A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Computer Methods in Applied Mechanics and Engineering 1997; 143:373-391.
– reference: Burman E, Hansbo P. Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Computer Methods in Applied Mechanics and Engineering 2006; 195:2393-2410.
– reference: Löhner R, Morgan K, Peraire J, Vahdati M. Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. International Journal for Numerical Methods in Fluids 1987; 7:1093-1109.
– reference: Dohrmann C, Bochev P. A stabilized finite element method for the Stokes problem based on polynomial pressure projections. International Journal for Numerical Methods in Fluids 2004; 46:183-201.
– reference: Girault V, Raviart PA. Finite Elements for the Navier-Stokes Equations. Springer: Berlin, 1986.
– reference: Hughes TJR, Franca LP, Balestra M. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation for the Stokes problem accommodating equal order interpolation. Computer Methods in Applied Mechanics and Engineering 1986; 59:89-99.
– reference: Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer: New York, 1991.
– reference: Becker R, Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 2001; 38(4):173-199.
– volume: 59
  start-page: 89
  year: 1986
  end-page: 99
  article-title: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska–Brezzi condition: a stable Petrov–Galerkin formulation for the Stokes problem accommodating equal order interpolation
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 1986
– volume: 38
  start-page: 173
  issue: 4
  year: 2001
  end-page: 199
  article-title: A finite element pressure gradient stabilization for the Stokes equations based on local projections
  publication-title: Calcolo
– volume: 10
  year: 1984
– year: 1991
– volume: 46
  start-page: 183
  year: 2004
  end-page: 201
  article-title: A stabilized finite element method for the Stokes problem based on polynomial pressure projections
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 143
  start-page: 373
  year: 1997
  end-page: 391
  article-title: A finite element formulation for the Stokes problem allowing equal velocity–pressure interpolation
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 195
  start-page: 2393
  year: 2006
  end-page: 2410
  article-title: Edge stabilization for the generalized Stokes problem: a continuous interior penalty method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 7
  start-page: 1093
  year: 1987
  end-page: 1109
  article-title: Finite element flux‐corrected transport (FEM‐FCT) for the Euler and Navier–Stokes equations
  publication-title: International Journal for Numerical Methods in Fluids
– year: 2007
  article-title: A stabilized finite element method based on two local Gauss integrations for the Stokes equations
  publication-title: Journal of Computational and Applied Mathematics
– ident: e_1_2_1_6_2
  doi: 10.1007/s10092-001-8180-4
– ident: e_1_2_1_4_2
  doi: 10.1016/0045-7825(86)90025-3
– ident: e_1_2_1_5_2
  doi: 10.1016/S0045-7825(96)01154-1
– ident: e_1_2_1_9_2
  doi: 10.1002/fld.1650071007
– ident: e_1_2_1_7_2
  doi: 10.1016/j.cma.2005.05.009
– volume-title: Notes on Numerical Fluid Mechanics, Efficient Solutions of Elliptic Systems
  year: 1984
  ident: e_1_2_1_3_2
– ident: e_1_2_1_8_2
  doi: 10.1002/fld.752
– ident: e_1_2_1_2_2
  doi: 10.1007/978-3-642-61623-5
– ident: e_1_2_1_11_2
  doi: 10.1007/978-1-4612-3172-1
– ident: e_1_2_1_10_2
  doi: 10.1016/j.cam.2007.02.015
SSID ssj0009080
Score 2.0020163
Snippet In this paper, we consider a stabilization method for the Stokes problem, using equal‐order interpolation of the pressure and velocity, which avoids the use of...
In this paper, we consider a stabilization method for the Stokes problem, using equal-order interpolation of the pressure and velocity, which avoids the use of...
SourceID swepub
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1421
SubjectTerms Beräkningsmatematik
Computational Mathematics
Computational techniques
equal-order interpolation
Exact sciences and technology
Fluid dynamics
Fluid Mechanics
Fundamental areas of phenomenology (including applications)
General theory
Mathematical methods in physics
Physics
stabilization
Stokes problem
Strömningsmekanik
Title A simple pressure stabilization method for the Stokes equation
URI https://api.istex.fr/ark:/67375/WNG-J4HT5J56-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1041
https://www.proquest.com/docview/35682042
https://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-15823
https://gup.ub.gu.se/publication/77887
https://research.chalmers.se/publication/77887
Volume 24
WOSCitedRecordID wos000261200200038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-0887
  dateEnd: 20091231
  omitProxy: false
  ssIdentifier: ssj0009080
  issn: 1069-8299
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwELZQywM8MBigZcAw0oCnaInjJM4LUrVRqqmrEBTYm-XYl7YaS0fTIH4-5zjNqFQkJJ6iRHcPOd_F38V33xFyrAVwI3ThJ0lW-JzHdsxLmviGIzzhCQNwJK7jdDIRl5fZx7aq0vbCOH6I7oebjYzme20DXOXVyS1pqC6v7QElZj59hm7Le6R_9mn4ZXxLuRsIx0WQZL7Ar-6GejZgJxvdrc2ob-36yxZHqgrtU7jBFtvI07GJbgPZZica7v3POzwkD1r8SQfOYR6RO1Duk70Wi9I20qt9cv8PokK8u-jYXavH5N2AVgvLKkybKtp6BRQxpq2ydT2d1I2lpoiHKarRz-vlFVQUfjha8SdkOnw_PR357RwGXye4d_nMFCbQdtJkKCDFBM0YplQBBTehtp29YZ6rTIVKiRgNzQ2PmIHc6DiAMNLRU9IrlyUcEJoKCLgWGkyhOSIxTM54iCJgDxsF1x55u1kPqVuOcjsq47t07MpMosWktZhHXnWSN46XY4fMm2ZJOwG1urJ1bGksv00-yHM-msbncSJHHjnaWvNOgSFAZVmSeeTlxgkkhp89U1ElLOtKRnGCGIozjxw73-h0LW_32eLrQC5XMznHHAttE3nk9Q6xWX0j8dGslhXI1NZ3emS8Q67lf5pLPW-G61RWXqvACFCRLIpcSR5FqVQhMzJikEGug4wBR0s0bvhXU8nTyYW9Hv6r4DNyr6mcaboyn5PeelXDC3JX_1wvqtVRG4q_Af_hObI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5NKxLwwGCACD-2IA14ipY4TuIICanaKGW0FYLC9ma59qWtBu1oWsSfzzlOMyoVCYmnKNHdQ8539mf77juAIy2QG6GLIE3zIuA8sW1esjQwnOAJTxmiI3HtZYOBuLjIP-7A63UtjOOHaA7cbGRU87UNcHsgfXzNGqpn3-0NJW19Wpy8KNmF1umnzpfeNeduKBwZQZoHgqbdNfdsyI7XuhurUcsa9pfNjlQlGahwnS02oaejE91EstVS1Nn7r5-4C3dqBOq3ncvcgx2c7cNejUb9OtbLfbj9B1UhvfUbftfyPrxp--XU8gr7VR7taoE-oUybZ-uqOn3XmNonROyTmv95Ob_E0scfjlj8AQw7b4cn3aDuxBDolFavgJnChNr2mowEZrRFM4YpVWDBTaRtbW80GqlcRUqJhCzNDY-ZwZHRSYhRrOOHsDubz_AR-JnAkGuh0RSaExaj7RmPSATtdaPg2oNX6wGRumYpt80yvknHr8wkWUxai3nwvJG8cswcW2ReVmPaCKjFpc1kyxJ5Pngnz3h3mJwlqex6cLAx6I0CI4jK8jT34HDtBZIC0N6qqBnOV6WMk5RQFGceHDnnaHQtc_fp9GtbzhdjOaFdFtkm9uDFFrHx6krSp_FKligzm-HpQW-LXM0ANZF6UrXXKa28VqERqGJZFCMleRxnUkXMyJhhjiMd5gw5WaLyw7-aSp4M-vb5-F8FD-Fmd9jvyd77wYcncKvKo6lqNJ_C7nKxwmdwQ_9cTsvFQR2XvwGnSj2i
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NK0LwwGCACB-bkQY8RUsc50tISNVKKaOrJhiwN8u1L201aEvTIv58znGaUalISDxFie4ecr6Lfxff_Q7gSGcoTKYLP0nywhcitmNe0sQ3guCJSDiiI3Htp4NBdnmZn-_A63UvjOOHaH642ciovtc2wHFuiuNr1lA9_W5PKCn1aYk4TygqW52P3c_9a87dIHNkBEnuZ_TZXXPPBvx4rbuxG7WsYX_Z6khVkoEKN9liE3o6OtFNJFttRd29_3qJu3CnRqCs7VzmHuzgdB_2ajTK6lgv9-H2H1SFdHfW8LuW9-FNm5UTyyvMqjra1QIZoUxbZ-u6OpkbTM0IETNSY5-WsyssGf5wxOIP4KL79uKk59eTGHyd0O7lc1OYQNtZk2GGKaVoxnClCiyECbXt7Q2HQ5WrUKksJksLIyJucGh0HGAY6egh7E5nU3wELM0wEDrTaAotCItReiZCEkF73JgJ7cGr9YJIXbOU22EZ36TjV-aSLCatxTx43kjOHTPHFpmX1Zo2AmpxZSvZ0lh-HbyTp6J3EZ_Giex5cLCx6I0CJ4jK8yT34HDtBZIC0J6qqCnOVqWM4oRQlOAeHDnnaHQtc3dn8qUtZ4uRHFOWRbaJPHixRWy0mkt6NFrJEmVqKzw96G-RqxmgxlKPq_E6pZXXKjAZqkgWxVBJEUWpVCE3MuKY41AHOUdBlqj88K-mkieDM3t9_K-Ch3DzvNOV_feDD0_gVlVGU7VoPoXd5WKFz-CG_rmclIuDOix_A9quPR0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+pressure+stabilization+method+for+the+Stokes+equation&rft.jtitle=Communications+in+numerical+methods+in+engineering&rft.au=Becker%2C+Roland&rft.au=Hansbo%2C+Peter&rft.date=2008-11-01&rft.issn=1069-8299&rft.volume=24&rft.issue=11&rft.spage=1421&rft.epage=1430&rft_id=info:doi/10.1002%2Fcnm.1041&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-8299&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-8299&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-8299&client=summon