Cerebral lateralization of praxis in right- and left-handedness: Same pattern, different strength

We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right‐handed and 14 left‐handed volunteers performed unimanual and bimanual tool‐use pantomimes with their dominant or nondominant hand during fMRI. A left hem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Human brain mapping Ročník 33; číslo 4; s. 763 - 777
Hlavní autoři: Vingerhoets, Guy, Acke, Frederic, Alderweireldt, Ann-Sofie, Nys, Jo, Vandemaele, Pieter, Achten, Eric
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2012
Wiley-Liss
John Wiley & Sons, Inc
Témata:
ISSN:1065-9471, 1097-0193, 1097-0193
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right‐handed and 14 left‐handed volunteers performed unimanual and bimanual tool‐use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right‐ and left‐handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left‐ and right‐handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left‐ and right‐handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left‐handers showed a significantly reduced overall LI compared with right‐handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left‐handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left‐handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left‐handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
AbstractList We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right‐handed and 14 left‐handed volunteers performed unimanual and bimanual tool‐use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right‐ and left‐handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left‐ and right‐handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left‐ and right‐handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left‐handers showed a significantly reduced overall LI compared with right‐handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left‐handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left‐handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left‐handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans.We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans.
We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans.
Author Nys, Jo
Achten, Eric
Acke, Frederic
Alderweireldt, Ann-Sofie
Vingerhoets, Guy
Vandemaele, Pieter
AuthorAffiliation 2 Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium
1 Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium
3 Department of Radiology, Ghent University, Ghent, Belgium
AuthorAffiliation_xml – name: 1 Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium
– name: 2 Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium
– name: 3 Department of Radiology, Ghent University, Ghent, Belgium
Author_xml – sequence: 1
  givenname: Guy
  surname: Vingerhoets
  fullname: Vingerhoets, Guy
  email: guy.vingerhoets@ugent.be
  organization: Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium
– sequence: 2
  givenname: Frederic
  surname: Acke
  fullname: Acke, Frederic
  organization: Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium
– sequence: 3
  givenname: Ann-Sofie
  surname: Alderweireldt
  fullname: Alderweireldt, Ann-Sofie
  organization: Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium
– sequence: 4
  givenname: Jo
  surname: Nys
  fullname: Nys, Jo
  organization: Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium
– sequence: 5
  givenname: Pieter
  surname: Vandemaele
  fullname: Vandemaele, Pieter
  organization: Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium
– sequence: 6
  givenname: Eric
  surname: Achten
  fullname: Achten, Eric
  organization: Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25638708$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21500314$$D View this record in MEDLINE/PubMed
BookMark eNp1kt1u1DAQhS1URH_gghdAlhCqkEhrx4mdcIFEV3QLKiAEiEtr4p1sXBJnsb3Q8vR4u7sFKriakfyd4zP27JMdNzok5CFnR5yx_LhrhqOc54W6Q_Y4q1XGeC12Vr0ss7pQfJfsh3DBGOcl4_fIbp4qE7zYIzBBj42HnvYQMVX7E6IdHR1buvBwaQO1jno772JGwc1oj23MutThzGEIz-lHGJAuICa1e0Zntm2To4s0xFTmsbtP7rbQB3ywqQfk8-mrT5Oz7Pz99PXk5XlmZCFV1pR1kyvIC9HyqlJCMoklR9nUOasbIwELhYCzNl3MsSoMU6VpARo0xuQNFwfkxdp3sWwGnJmUIY2jF94O4K_0CFb_feJsp-fjdy0rxYRgyeBwY-DHb0sMUQ82GOx7cDgug65zVVeVUEUiH98iL8ald2k6zUuuRClZvqIe_RnoJsn28RPwZANAMNC3Hpyx4TdXSpGiVYk7XnPGjyF4bLWx8fqX0hy215zp1RrotAb6eg2S4uktxdb0X-zG_Yft8er_oD47ebtVZGuFDREvbxTgv2qphCr1l3dT_WH65rTm04kW4heC5tFn
CitedBy_id crossref_primary_10_1007_s00221_013_3610_5
crossref_primary_10_1007_s00221_017_4919_2
crossref_primary_10_1088_1741_2552_ac0489
crossref_primary_10_1186_s12967_023_03989_9
crossref_primary_10_1093_cercor_bhs280
crossref_primary_10_1371_journal_pone_0070480
crossref_primary_10_3389_fnhum_2015_00166
crossref_primary_10_1016_j_cortex_2020_04_023
crossref_primary_10_1111_ejn_12888
crossref_primary_10_1017_S1355617716001120
crossref_primary_10_1016_j_earlhumdev_2024_106049
crossref_primary_10_1016_j_neuropsychologia_2015_05_016
crossref_primary_10_1016_j_nicl_2014_05_017
crossref_primary_10_3389_fneur_2018_00709
crossref_primary_10_1134_S0362119715040052
crossref_primary_10_1016_j_neuroimage_2022_119406
crossref_primary_10_1016_j_plrev_2019_06_002
crossref_primary_10_1016_j_neuroimage_2025_121081
crossref_primary_10_1134_S0362119717010029
crossref_primary_10_1007_s00221_017_5090_5
crossref_primary_10_3389_fnint_2024_1324581
crossref_primary_10_1038_s41598_019_56956_0
crossref_primary_10_1162_jocn_a_00634
crossref_primary_10_3758_s13415_022_01008_w
crossref_primary_10_1016_j_bandc_2013_04_013
crossref_primary_10_1016_j_neuropsychologia_2012_11_002
crossref_primary_10_1371_journal_pone_0143476
crossref_primary_10_1016_j_cortex_2021_03_022
crossref_primary_10_3389_fnins_2017_00525
crossref_primary_10_1007_s00429_025_02980_y
crossref_primary_10_1515_tnsci_2020_0189
crossref_primary_10_1016_j_bbr_2014_06_055
crossref_primary_10_1016_j_neuropsychologia_2016_01_023
crossref_primary_10_1080_1357650X_2021_1990312
crossref_primary_10_1007_s11065_014_9260_y
crossref_primary_10_3390_sym15040940
crossref_primary_10_1016_j_biopsycho_2015_07_017
crossref_primary_10_1016_j_neuropsychologia_2022_108385
crossref_primary_10_1093_gigascience_giaf082
crossref_primary_10_1162_jocn_a_01690
crossref_primary_10_3390_jcm13195798
crossref_primary_10_1007_s00221_014_4121_8
crossref_primary_10_1371_journal_pone_0195831
crossref_primary_10_1093_cercor_bhad437
crossref_primary_10_3390_brainsci9090216
crossref_primary_10_1093_cercor_bhad242
crossref_primary_10_1002_dev_21078
crossref_primary_10_1016_j_neuropsychologia_2016_03_023
crossref_primary_10_1016_j_actpsy_2012_07_008
crossref_primary_10_3389_fpsyg_2014_00454
crossref_primary_10_3758_s13415_018_0633_1
crossref_primary_10_1007_s11065_024_09634_6
crossref_primary_10_1111_ejn_12742
crossref_primary_10_3390_sym13091602
crossref_primary_10_1016_j_bbr_2015_01_021
crossref_primary_10_1016_j_tics_2012_12_004
crossref_primary_10_1038_s41598_025_03989_3
crossref_primary_10_7554_eLife_69977
crossref_primary_10_3390_sym13040728
crossref_primary_10_3390_s20061722
crossref_primary_10_3390_s24041089
crossref_primary_10_1016_j_cortex_2014_01_019
crossref_primary_10_1016_j_plrev_2014_01_011
crossref_primary_10_1016_j_bbr_2019_02_021
crossref_primary_10_1016_j_bandl_2014_10_003
crossref_primary_10_1016_j_cortex_2016_06_003
crossref_primary_10_1080_1357650X_2015_1110161
crossref_primary_10_1371_journal_pbio_1001767
crossref_primary_10_1016_j_bandc_2024_106210
crossref_primary_10_1016_j_neuroimage_2025_121111
crossref_primary_10_1016_j_bandc_2016_07_005
crossref_primary_10_1016_j_neuroimage_2025_121230
crossref_primary_10_1007_s00221_016_4595_7
crossref_primary_10_1089_brain_2013_0215
crossref_primary_10_1073_pnas_2002981117
crossref_primary_10_1016_j_neuropsychologia_2013_02_013
crossref_primary_10_1016_j_ynirp_2021_100057
crossref_primary_10_1016_j_neuropsychologia_2023_108735
crossref_primary_10_1016_j_cortex_2018_04_012
crossref_primary_10_1007_s00429_018_1646_9
crossref_primary_10_1523_JNEUROSCI_0723_23_2023
crossref_primary_10_1016_j_bandc_2014_12_005
crossref_primary_10_1093_brain_aww035
crossref_primary_10_1371_journal_pone_0127594
crossref_primary_10_1109_TOH_2023_3272698
crossref_primary_10_1016_j_neuropsychologia_2024_108837
crossref_primary_10_3389_fpsyg_2014_00151
Cites_doi 10.1080/13576500412331325342
10.1016/S0010-9452(08)70010-8
10.1016/0028-3932(71)90032-7
10.1126/science.8342027
10.1016/S0006-8993(03)02249-2
10.1002/ana.410250214
10.1016/j.cogbrainres.2004.10.006
10.1002/hbm.20249
10.1016/j.neuroimage.2007.03.037
10.1016/S0959-4388(02)00308-2
10.1111/j.1749-6632.2010.05447.x
10.1016/0278-2626(87)90139-4
10.1016/j.neuroscience.2010.05.080
10.1016/j.cogbrainres.2005.05.014
10.1152/jn.1998.79.2.1092
10.1098/rstb.2008.0008
10.1093/brain/123.11.2306
10.1038/2245
10.1093/brain/97.1.337
10.1080/13854040601139310
10.1126/science.161.3837.186
10.1007/s00221-003-1588-0
10.1162/0898929053124974
10.1073/pnas.94.25.14015
10.1191/0269215504cr816oa
10.1093/cercor/bhm004
10.1016/S0010-9452(80)80062-1
10.1016/S0896-6273(03)00524-5
10.1073/pnas.0909197106
10.1046/j.1460-9568.1999.00753.x
10.1016/S0165-0173(99)00012-0
10.1016/j.neuroimage.2009.11.048
10.1016/S0010-9452(08)70261-2
10.1016/j.neuroimage.2006.06.019
10.1016/j.brainres.2006.08.010
10.1212/WNL.53.9.2028
10.1152/jn.1998.80.5.2657
10.1093/cercor/bhl179
10.1016/S0010-9452(08)70456-8
10.1523/JNEUROSCI.3303-08.2008
10.1177/1073858406288327
10.1076/clin.13.2.182.1966
10.1016/j.neuroimage.2007.12.058
10.1016/S0028-3932(03)00120-9
10.1001/archneur.1985.04060070024012
10.1093/brain/123.1.74
10.1046/j.1460-9568.2003.02695.x
10.1016/S0010-9452(08)70832-3
10.1080/13576500244000274
10.1098/rstb.2008.0235
10.1097/00001756-200408260-00014
10.1002/mrm.1910350219
10.1007/s002210100777
10.1016/j.neuroimage.2009.05.100
10.1016/S0028-3932(02)00314-7
10.1080/16501960310010115
10.1016/j.neuropsychologia.2004.09.004
10.1037/0033-2909.110.2.237
10.1007/s00221-002-1078-9
10.1016/S0010-9452(85)80014-9
10.1093/brain/123.12.2512
10.1016/j.neuroimage.2003.11.017
10.1098/rstb.2008.0244
10.1126/science.3576224
10.1016/j.neuroimage.2005.07.026
10.1212/WNL.54.6.1331
10.1098/rstb.1997.0128
10.1038/35037588
10.1016/S0010-9452(08)70793-7
10.1093/cercor/bhp234
10.1007/978-3-642-70877-0_10
10.1002/(SICI)1097-0193(1999)8:4<209::AID-HBM5>3.0.CO;2-0
10.1016/0093-934X(81)90018-3
10.1093/cercor/bhh169
10.1523/JNEUROSCI.4273-06.2007
10.1111/j.1469-1809.1973.tb01817.x
10.1098/rstb.2008.0232
10.1016/S0010-9452(08)70466-0
10.1016/0028-3932(71)90067-4
10.1016/S0149-7634(02)00003-9
10.1002/hbm.21078
10.1006/nimg.2001.1037
10.1371/journal.pone.0009682
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.21247
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Technology Research Database
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Cerebral Lateralization of Praxis
EISSN 1097-0193
EndPage 777
ExternalDocumentID PMC6870330
3278351931
21500314
25638708
10_1002_hbm_21247
HBM21247
ark_67375_WNG_QGJF91GC_3
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fund for Scientific Research, Flanders
  funderid: G.0555.11
– fundername: Fund for Scientific Research, Flanders
  grantid: G.0555.11
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFFHD
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
33P
AAHHS
AAPBV
ABHUG
ACCFJ
ACXME
ADAWD
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AFVGU
AGJLS
AIWBW
AJBDE
C45
IQODW
RWD
RWI
WRC
WUP
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c6467-b59b27a243f18873606e51e6b9209bc6ae47eaedfded1e84c075cfaabeccc2b13
IEDL.DBID WIN
ISICitedReferencesCount 100
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301341000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1065-9471
1097-0193
IngestDate Tue Sep 30 16:40:15 EDT 2025
Sun Nov 09 11:34:18 EST 2025
Sat Nov 29 14:36:42 EST 2025
Mon Jul 21 06:04:39 EDT 2025
Sun Oct 22 16:06:10 EDT 2023
Sat Nov 29 06:33:42 EST 2025
Tue Nov 18 19:51:18 EST 2025
Tue Nov 11 03:07:59 EST 2025
Tue Nov 11 03:33:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Nervous system diseases
Hemispheric specialization
Radiodiagnosis
Central nervous system
pantomiming
Encephalon
Manual task
Handedness
lateralization
unimanual gestures
Asymmetry
cerebral lateralization
transitive gestures
tool use
functional asymmetry
bimanual gestures
Strength
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6467-b59b27a243f18873606e51e6b9209bc6ae47eaedfded1e84c075cfaabeccc2b13
Notes Fund for Scientific Research, Flanders - No. G.0555.11
ArticleID:HBM21247
istex:04FF6882D2379BA750D4A4CD445CCC75F02CEA0F
ark:/67375/WNG-QGJF91GC-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.21247?download=true
PMID 21500314
PQID 1517356024
PQPubID 996345
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870330
proquest_miscellaneous_927988374
proquest_journals_1517356024
pubmed_primary_21500314
pascalfrancis_primary_25638708
crossref_citationtrail_10_1002_hbm_21247
crossref_primary_10_1002_hbm_21247
wiley_primary_10_1002_hbm_21247_HBM21247
istex_primary_ark_67375_WNG_QGJF91GC_3
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
John Wiley & Sons, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
– name: John Wiley & Sons, Inc
References Tanne-Gariepy J, Rouiller EM, Boussaoud D ( 2002): Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: Evidence for largely segregated visuomotor pathways. Exp Brain Res 145: 91-103.
Moll J, de Oliveira-Souza R, Passman LJ, Cunha FC, Souza-Lima F, Andreiuolo PA ( 2000): Functional MRI correlates of real and imagined tool-use pantomimes. Neurology 54: 1331-1336.
Rumiati RI, Weiss PH, Shallice T, Ottoboni G, Noth J, Zilles K, Fink GR ( 2004): Neural basis of pantomiming the use of visually presented objects. Neuroimage 21: 1224-1231.
Vingerhoets G ( 2008): Knowing about tools: Neural correlates of tool familiarity and experience. Neuroimage 40: 1380-1391.
Buxbaum LJ, Kyle KM, Tang K, Detre JA ( 2006): Neural substrates of knowledge of hand postures for object grasping and functional object use: Evidence from fMRI. Brain Res 1117: 175-185.
Choi SH, Na DL, Kang E, Lee KM, Lee SW, Na DG ( 2001): Functional magnetic resonance imaging during pantomiming tool-use gestures. Exp Brain Res 139: 311-317.
Vingerhoets G, Vandekerckhove E, Honoré P, Vandemaele P, Achten E ( 2011): Neural correlates of pantomiming familiar and unfamiliar tools: Action semantics versus mechanical problem solving? Hum Brain Mapp.
Goldenberg G, Hermsdorfer J, Glindemann R, Rorden C, Karnath HO ( 2007): Pantomime of tool use depends on integrity of left inferior frontal cortex. Cereb Cortex 17: 2769-2776.
Tunik E, Ortigue S, Adamovich SV, Grafton ST ( 2008): Differential recruitment of anterior intraparietal sulcus and superior parietal lobule during visually guided grasping revealed by electrical neuroimaging. J Neurosci 28: 13615-13620.
Genovese CR, Lazar NA, Nichols T ( 2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878.
Rapcsak SZ, Rothi LJG, Heilman KM ( 1987): Apraxia in a patient with atypical cerebral-dominance. Brain Cogn 6: 450-463.
Raymond M, Pontier D ( 2004): Is there geographical variation in human handedness? Laterality 9: 35-51.
Hermsdorfer J, Terlinden G, Muhlau M, Goldenberg G, Wohlschlager AM ( 2007): Neural representations of pantomimed and actual tool use: Evidence from an event-related fMRI study. Neuroimage 36: T109-T118.
Fridman EA, Immisch I, Hanakawa T, Bohlhalter S, Waldvogel D, Kansaku K, Wheaton L, Wu T, Hallett M ( 2006): The role of the dorsal stream for gesture production. Neuroimage 29: 417-428.
Schaafsma SM, Riedstra BJ, Pfannkuche KA, Bouma A, Groothuis TGG ( 2009): Epigenesis of behavioural lateralization in humans and other animals. Philos Trans R Soc B Biol Sci 364: 915-927.
Buxbaum LJ, Kyle KM, Menon R ( 2005): On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled object-related actions in humans. Cogn Brain Res 25: 226-239.
Badzakova-Trajkov G, Haberling IS, Roberts RP, Corballis MC ( 2010): Cerebral asymmetries: Complementary and independent processes. Plos One 5: e9682.
Creem-Regehr SH, Lee JN ( 2005): Neural representations of graspable objects: Are tools special? Cogn Brain Res 22: 457-469.
Buxbaum LJ, Kyle K, Grossman M, Coslett HB ( 2007): Left inferior parietal representations for skilled hand-object interactions: Evidence from stroke and corticobasal degeneration. Cortex 43: 411-423.
Oldfield RC ( 1971): The assessment and analysis of handedness. Neuropsychologia 9: 97-113.
Meador KJ, Loring DW, Lee K, Hughes M, Lee G, Nichols M, Heilman KM ( 1999): Cerebral lateralization-Relationship of language and ideomotor praxis. Neurology 53: 2028-2031.
Wolpert DM, Goodbody SJ, Husain M ( 1998): Maintaining internal representations the role of the human superior parietal lobe. Nat Neurosci 1: 529-533.
Llaurens V, Raymond M, Faurie C ( 2009): Why are some people left-handed? An evolutionary perspective. Philos Trans R Soc B Biol Sci 364: 881-894.
Bartolo A, Cubelli R, Della Sala S ( 2008): Cognitive approach to the assessment of limb apraxia. Clin Neuropsychol 22: 27-45.
Mai JK, Paxinos G, Voss T ( 2008): Atlas of the Human Brain, 3 ed. Amsterdam: Elsevier.
Buxbaum LJ, Sirigu A, Schwartz MF, Klatzky R ( 2003): Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia 41: 1091-1113.
Vingerhoets G, Honoré P, Vandekerckhove E, Nys J, Vandemaele P, Achten E ( 2010): Multifocal intraparietal activation during discrimination of action intention in observed tool grasping. Neuroscience 169: 1158-1167.
Willems RM, Peelen MV, Hagoort P ( 2010): Cerebral lateralization of face-selective and body-selective visual areas depends on handedness. Cereb Cortex 20: 1719-1725.
Xu J, Gannon PJ, Emmorey K, Smith JF, Braun AR ( 2009): Symbolic gestures and spoken language are processed by a common neural system. Proc Natl Acad Sci USA 106: 20664-20669.
Basso A, Capitani E, Laiacona M, Zanobio ME ( 1985): Crossed Aphasia-One or more syndromes. Cortex 21: 25-45.
Hammond G ( 2002): Correlates of human handedness in primary motor cortex: A review and hypothesis. Neurosci Biobehav Rev 26: 285-292.
Goldenberg G, Hartmann K, Schlott I ( 2003): Defective pantomime of object use in left brain damage: Apraxia or asymbolia? Neuropsychologia 41: 1565-1573.
Corballis MC ( 2009): The evolution and genetics of cerebral asymmetry. Philos Trans R Soc B Biol Sci 364: 867-879.
Hecaen H, Deagostini M, Monzonmontes A ( 1981): Cerebral organization in left-handers. Brain Lang 12: 261-284.
Frey SH ( 2008): Tool use, communicative gesture and cerebral asymmetries in the modern human brain. Philos Trans R Soc B Biol Sci 363: 1951-1957.
Raymer AM, Merians AS, Adair JC, Schwartz RL, Williamson DJG, Rothi LJG, Poizner H, Heilman KM ( 1999): Crossed apraxia: Implications for handedness. Cortex 35: 183-199.
Knecht S, Deppe M, Drager B, Bobe L, Lohmann H, Ringelstein EB, Henningsen H ( 2000a): Language lateralization in healthy right-handers. Brain 123: 74-81.
Nakai T, Kato C, Glover GH, Toma K, Moriya T, Matsuo K ( 2003): A functional magnetic resonance imaging study of internal modulation of an external visual cue for motor execution. Brain Res 968: 238-247.
Thoroughman KA, Shadmehr R ( 2000): Learning of action through adaptive combination of motor primitives. Nature 407: 742-747.
Heiss WD, Thiel A, Winhuisen L, Muhlberger B, Kessler J, Herholz K ( 2003): Functional imaging in the assessment of capability for recovery after stroke. J Rehabil Med 35: 27-33.
Annett M ( 1973): Handedness in families. Ann Hum Genet 37: 93-105.
Jansen A, Menke R, Sommer J, Forster AF, Bruchmann S, Hempleman J, Weber B, Knecht S ( 2006): The assessment of hemispheric lateralization in functional MRI-Robustness and reproducibility. Neuroimage 33: 204-217.
Kimura D, Archibal Y ( 1974): Motor functions of left hemisphere. Brain 97: 337-350.
Haaland KY, Harrington DL, Knight RT ( 2000): Neural representations of skilled movement. Brain 123: 2306-2313.
Abe M, Hanakawa T, Takayama Y, Kuroki C, Ogawa S, Fukuyama H ( 2007): Functional coupling of human prefrontal and premotor areas during cognitive manipulation. J Neurosci 27: 3429-3438.
Marchetti C, Della Sala S ( 1997): On crossed apraxia. Description of a right-handed apraxic patient with right supplementary motor area damage. Cortex 33: 341-354.
Zwinkels A, Geusgens C, van de Sande P, van Heugten C ( 2004): Assessment of apraxia: Inter-rater reliability of a new apraxia test, association between apraxia and other cognitive deficits and prevalence of apraxia in a rehabilitation setting. Clin Rehabil 18: 819-827.
Liepmann H ( 1920): Apraxie. Ergeb Ges Med 516-540.
Laimgruber K, Goldenberg G, Hermsdorfer J ( 2005): Manual and hemispheric asymmetries in the execution of actual and pantomimed prehension. Neuropsychologia 43: 682-692.
Dassonville P, Zhu XH, Ugurbil K, Kim SG, Ashe J ( 1997): Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci USA 94: 14015-14018.
Lewis JW ( 2006): Cortical networks related to human use of tools. Neuroscientist 12: 211-231.
Goebel R, Esposito F, Formisano E ( 2006): Analysis of functional image analysis contest (FIAC) data with BrainVoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 27: 392-401.
McManus IC, Bryden MP ( 1991): Geschwind theory of cerebral lateralization-Developing a formal, causal model. Psychol Bull 110: 237-253.
van Heugten CM, Dekker J, Deelman BG, Stehmann-Saris FC, Kinebanian A ( 1999): A diagnostic test for apraxia in stroke patients: Internal consistency and diagnostic value. Clinical Neuropsychologist 13: 182-192.
Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA ( 1999): Cortical networks subserving pursuit and saccadic eye movements in humans: An FMRI study. Hum Brain Mapp 8: 209-225.
Bortoletto M, Cunnington R ( 2010): Motor timing and motor sequencing contribute differently to the preparation for voluntary movement. Neuroimage 49: 3338-3348.
Geschwind N, Galaburda AM ( 1985): Cerebral lateralization-Biological mechanisms, associations, and pathology. III. A hypothesis and a program for research. Arch Neurol 42: 634-654.
Grafton ST, Fagg AH, Arbib MA ( 1998): Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. J Neurophysiol 79: 1092-1097.
Vingerhoets G, Acke F, Vandemaele P, Achten E ( 2009): Tool responsive regions in the posterior parietal cortex: Effect of differences in motor goal and target object during imagined transitive movements. Neuroimage 47: 1832-1843.
Imazu S, Sugio T, Tanaka S, Inui T ( 2007): Differences between actual and imagined usage of chopsticks: An fMRI study. Cortex 43: 301-307.
Johnson-Frey SH, Newman-Norlund R, Grafton ST ( 2005): A distributed left hemisphere network active during planning of everyday tool use skills. Cereb Cortex 15: 681-695.
Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP ( 1993): Functional magnetic-resonance-imaging of motor cortex-Hemispheric-asymmetry and handedness
1991; 110
2004; 21
2009; 47
2002; 15
1974; 97
2006; 33
2002; 12
1997; 352
1987; 6
2004; 9
2003; 17
1998; 80
1996; 35
1985; 21
2005; 22
2007; 36
2003; 153
2005; 25
2000; 407
1971; 9
2003; 968
2010; 20
1997; 94
1987; 236
2006; 27
2000; 54
2003; 8
2000a; 123
2002; 145
2008; 28
1999; 13
2009; 364
1999; 11
2006; 1117
2006; 29
1999; 53
2008; 22
1968; 161
2000; 123
2010; 5
2003; 41
2001; 139
2007; 27
1988
2007; 17
2006; 12
2011
1973; 37
2010; 169
2003; 35
2008
1993; 261
2005; 43
2003; 39
1999; 8
2008; 363
1985; 42
1989; 25
1980; 16
2010; 1191
2002; 26
2010; 49
2000; 36
1997; 33
2004; 18
2004; 15
1999; 35
1920
2000b; 123
1999; 30
1998; 1
2005; 15
2007; 43
2008; 40
2005; 17
1981; 12
1998; 79
2009; 106
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_88_1
e_1_2_5_67_1
e_1_2_5_69_1
e_1_2_5_29_1
Liepmann H (e_1_2_5_52_1) 1920
e_1_2_5_80_1
e_1_2_5_82_1
e_1_2_5_61_1
e_1_2_5_84_1
e_1_2_5_63_1
e_1_2_5_86_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
Talairach J (e_1_2_5_74_1) 1988
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_76_1
e_1_2_5_3_1
e_1_2_5_78_1
e_1_2_5_19_1
e_1_2_5_70_1
e_1_2_5_72_1
e_1_2_5_30_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
Mai JK (e_1_2_5_55_1) 2008
e_1_2_5_66_1
e_1_2_5_87_1
e_1_2_5_68_1
e_1_2_5_81_1
e_1_2_5_60_1
Liepmann H (e_1_2_5_53_1) 1920
e_1_2_5_83_1
e_1_2_5_62_1
e_1_2_5_64_1
e_1_2_5_85_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_77_1
e_1_2_5_2_1
e_1_2_5_79_1
e_1_2_5_18_1
e_1_2_5_71_1
e_1_2_5_73_1
e_1_2_5_75_1
e_1_2_5_31_1
e_1_2_5_50_1
References_xml – reference: Tanne-Gariepy J, Rouiller EM, Boussaoud D ( 2002): Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: Evidence for largely segregated visuomotor pathways. Exp Brain Res 145: 91-103.
– reference: Creem-Regehr SH, Lee JN ( 2005): Neural representations of graspable objects: Are tools special? Cogn Brain Res 22: 457-469.
– reference: Hecaen H, Deagostini M, Monzonmontes A ( 1981): Cerebral organization in left-handers. Brain Lang 12: 261-284.
– reference: Raymond M, Pontier D ( 2004): Is there geographical variation in human handedness? Laterality 9: 35-51.
– reference: Tunik E, Ortigue S, Adamovich SV, Grafton ST ( 2008): Differential recruitment of anterior intraparietal sulcus and superior parietal lobule during visually guided grasping revealed by electrical neuroimaging. J Neurosci 28: 13615-13620.
– reference: Meador KJ, Loring DW, Lee K, Hughes M, Lee G, Nichols M, Heilman KM ( 1999): Cerebral lateralization-Relationship of language and ideomotor praxis. Neurology 53: 2028-2031.
– reference: Mai JK, Paxinos G, Voss T ( 2008): Atlas of the Human Brain, 3 ed. Amsterdam: Elsevier.
– reference: Grezes J, Tucker M, Armony J, Ellis R, Passingham RE ( 2003): Objects automatically potentiate action: An fMRI study of implicit processing. Eur J Neurosci 17: 2735-2740.
– reference: Vingerhoets G, Acke F, Vandemaele P, Achten E ( 2009): Tool responsive regions in the posterior parietal cortex: Effect of differences in motor goal and target object during imagined transitive movements. Neuroimage 47: 1832-1843.
– reference: Gorynia I, Egenter D ( 2000): Intermanual coordination in relation to handedness, familial sinistrality and lateral preferences. Cortex 36: 1-18.
– reference: Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP ( 1993): Functional magnetic-resonance-imaging of motor cortex-Hemispheric-asymmetry and handedness. Science 261: 615-617.
– reference: Badzakova-Trajkov G, Haberling IS, Roberts RP, Corballis MC ( 2010): Cerebral asymmetries: Complementary and independent processes. Plos One 5: e9682.
– reference: Rizzolatti G, Fogassi L, Gallese V ( 2002): Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12: 149-154.
– reference: Corballis MC ( 2009): The evolution and genetics of cerebral asymmetry. Philos Trans R Soc B Biol Sci 364: 867-879.
– reference: Abe M, Hanakawa T, Takayama Y, Kuroki C, Ogawa S, Fukuyama H ( 2007): Functional coupling of human prefrontal and premotor areas during cognitive manipulation. J Neurosci 27: 3429-3438.
– reference: Goldenberg G, Hartmann K, Schlott I ( 2003): Defective pantomime of object use in left brain damage: Apraxia or asymbolia? Neuropsychologia 41: 1565-1573.
– reference: Choi SH, Na DL, Kang E, Lee KM, Lee SW, Na DG ( 2001): Functional magnetic resonance imaging during pantomiming tool-use gestures. Exp Brain Res 139: 311-317.
– reference: Marchetti C, Della Sala S ( 1997): On crossed apraxia. Description of a right-handed apraxic patient with right supplementary motor area damage. Cortex 33: 341-354.
– reference: Lewis JW ( 2006): Cortical networks related to human use of tools. Neuroscientist 12: 211-231.
– reference: Fridman EA, Immisch I, Hanakawa T, Bohlhalter S, Waldvogel D, Kansaku K, Wheaton L, Wu T, Hallett M ( 2006): The role of the dorsal stream for gesture production. Neuroimage 29: 417-428.
– reference: Goebel R, Esposito F, Formisano E ( 2006): Analysis of functional image analysis contest (FIAC) data with BrainVoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 27: 392-401.
– reference: Vingerhoets G, Vandekerckhove E, Honoré P, Vandemaele P, Achten E ( 2011): Neural correlates of pantomiming familiar and unfamiliar tools: Action semantics versus mechanical problem solving? Hum Brain Mapp.
– reference: Bullmore E, Brammer M, Williams SCR, Rabehesketh S, Janot N, David A, Mellers J, Howard R, Sham P ( 1996): Statistical methods of estimation and inference for functional MR image analysis. Magn Reson Med 35: 261-277.
– reference: Goldenberg G ( 2003): Apraxia and beyond: Life and work of Hugo Liepmann. Cortex 39: 509-524.
– reference: Judge J, Stirling J ( 2003): Fine motor skill performance in left- and right-handers: Evidence of an advantage for left-handers. Laterality 8: 297-306.
– reference: Buxbaum LJ, Kyle KM, Tang K, Detre JA ( 2006): Neural substrates of knowledge of hand postures for object grasping and functional object use: Evidence from fMRI. Brain Res 1117: 175-185.
– reference: Ochipa C, Rothi LJG, Heilman KM ( 1989): Ideational apraxia-A deficit in tool selection and use. Ann Neurol 25: 190-193.
– reference: Jansen A, Menke R, Sommer J, Forster AF, Bruchmann S, Hempleman J, Weber B, Knecht S ( 2006): The assessment of hemispheric lateralization in functional MRI-Robustness and reproducibility. Neuroimage 33: 204-217.
– reference: Kimura D, Archibal Y ( 1974): Motor functions of left hemisphere. Brain 97: 337-350.
– reference: Vingerhoets G ( 2008): Knowing about tools: Neural correlates of tool familiarity and experience. Neuroimage 40: 1380-1391.
– reference: Grafton ST, Fagg AH, Arbib MA ( 1998): Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. J Neurophysiol 79: 1092-1097.
– reference: Frey SH ( 2008): Tool use, communicative gesture and cerebral asymmetries in the modern human brain. Philos Trans R Soc B Biol Sci 363: 1951-1957.
– reference: Xu J, Gannon PJ, Emmorey K, Smith JF, Braun AR ( 2009): Symbolic gestures and spoken language are processed by a common neural system. Proc Natl Acad Sci USA 106: 20664-20669.
– reference: Buxbaum LJ, Kalenine S ( 2010): Action knowledge, visuomotor activation, and embodiment in the two action systems. Ann NY Acad Sci 1191: 201-218
– reference: Geschwind N, Galaburda AM ( 1985): Cerebral lateralization-Biological mechanisms, associations, and pathology. III. A hypothesis and a program for research. Arch Neurol 42: 634-654.
– reference: Goldenberg G, Hermsdorfer J, Glindemann R, Rorden C, Karnath HO ( 2007): Pantomime of tool use depends on integrity of left inferior frontal cortex. Cereb Cortex 17: 2769-2776.
– reference: Imazu S, Sugio T, Tanaka S, Inui T ( 2007): Differences between actual and imagined usage of chopsticks: An fMRI study. Cortex 43: 301-307.
– reference: Rumiati RI, Weiss PH, Shallice T, Ottoboni G, Noth J, Zilles K, Fink GR ( 2004): Neural basis of pantomiming the use of visually presented objects. Neuroimage 21: 1224-1231.
– reference: Vallortigara G, Rogers LJ, Bisazza A ( 1999): Possible evolutionary origins of cognitive brain lateralization. Brain Res Rev 30: 164-175.
– reference: Johnson-Frey SH, Newman-Norlund R, Grafton ST ( 2005): A distributed left hemisphere network active during planning of everyday tool use skills. Cereb Cortex 15: 681-695.
– reference: Genovese CR, Lazar NA, Nichols T ( 2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878.
– reference: Poeck K, Kerschen M ( 1971): Ideomotor apraxia following right-sided cerebral lesion in a left-handed subject. Neuropsychologia 9: 359.
– reference: Rizzolatti G, Matelli M ( 2003): Two different streams form the dorsal visual system: Anatomy and functions. Exp Brain Res 153: 146-157.
– reference: Laimgruber K, Goldenberg G, Hermsdorfer J ( 2005): Manual and hemispheric asymmetries in the execution of actual and pantomimed prehension. Neuropsychologia 43: 682-692.
– reference: Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA ( 1999): Cortical networks subserving pursuit and saccadic eye movements in humans: An FMRI study. Hum Brain Mapp 8: 209-225.
– reference: Talairach J, Tournoux P ( 1988): Co-Planar Sereotaxic Atlas of the Human Brain. Stuttgart: G. Thieme.
– reference: Bartolo A, Cubelli R, Della Sala S ( 2008): Cognitive approach to the assessment of limb apraxia. Clin Neuropsychol 22: 27-45.
– reference: Moll J, de Oliveira-Souza R, Passman LJ, Cunha FC, Souza-Lima F, Andreiuolo PA ( 2000): Functional MRI correlates of real and imagined tool-use pantomimes. Neurology 54: 1331-1336.
– reference: Llaurens V, Raymond M, Faurie C ( 2009): Why are some people left-handed? An evolutionary perspective. Philos Trans R Soc B Biol Sci 364: 881-894.
– reference: McManus IC, Bryden MP ( 1991): Geschwind theory of cerebral lateralization-Developing a formal, causal model. Psychol Bull 110: 237-253.
– reference: Haaland KY, Harrington DL, Knight RT ( 2000): Neural representations of skilled movement. Brain 123: 2306-2313.
– reference: Schaafsma SM, Riedstra BJ, Pfannkuche KA, Bouma A, Groothuis TGG ( 2009): Epigenesis of behavioural lateralization in humans and other animals. Philos Trans R Soc B Biol Sci 364: 915-927.
– reference: Thoroughman KA, Shadmehr R ( 2000): Learning of action through adaptive combination of motor primitives. Nature 407: 742-747.
– reference: Andersen RA ( 1997): Multimodal integration for the representation of space in the posterior parietal cortex. Philos Trans R Soc Lon Ser B Biol Sci 352: 1421-1428.
– reference: Molenberghs P, Mesulam MM, Peeters R, Vandenberghe RRC ( 2007): Remapping attentional priorities: Differential contribution of superior parietal lobule and intraparietal sulcus. Cereb Cortex 17: 2703-2712.
– reference: Culham JC, Brandt SA, Cavanagh P, Kanwisher NG, Dale AM, Tootell RBH ( 1998): Cortical fMRI activation produced by attentive tracking of moving targets. J Neurophysiol 80: 2657-2670.
– reference: Dassonville P, Zhu XH, Ugurbil K, Kim SG, Ashe J ( 1997): Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci USA 94: 14015-14018.
– reference: Knecht S, Deppe M, Drager B, Bobe L, Lohmann H, Ringelstein EB, Henningsen H ( 2000a): Language lateralization in healthy right-handers. Brain 123: 74-81.
– reference: Ohgami Y, Matsuo K, Uchida N, Nakai T ( 2004): An fMRI study of tool-use gestures: Body part as object and pantomime. Neuroreport 15: 1903-1906.
– reference: Poeck K, Lehmkuhl G ( 1980): Ideatory apraxia in a left-handed patient with right-sided brain lesion. Cortex 16: 273-284.
– reference: Buxbaum LJ, Kyle K, Grossman M, Coslett HB ( 2007): Left inferior parietal representations for skilled hand-object interactions: Evidence from stroke and corticobasal degeneration. Cortex 43: 411-423.
– reference: Annett M ( 1973): Handedness in families. Ann Hum Genet 37: 93-105.
– reference: Willems RM, Peelen MV, Hagoort P ( 2010): Cerebral lateralization of face-selective and body-selective visual areas depends on handedness. Cereb Cortex 20: 1719-1725.
– reference: Nakai T, Kato C, Glover GH, Toma K, Moriya T, Matsuo K ( 2003): A functional magnetic resonance imaging study of internal modulation of an external visual cue for motor execution. Brain Res 968: 238-247.
– reference: Bortoletto M, Cunnington R ( 2010): Motor timing and motor sequencing contribute differently to the preparation for voluntary movement. Neuroimage 49: 3338-3348.
– reference: Knecht S, Drager B, Deppe M, Bobe L, Lohmann H, Floel A, Ringelstein EB, Henningsen H ( 2000b): Handedness and hemispheric language dominance in healthy humans. Brain 123: 2512-2518.
– reference: Frey SH, Funnell MG, Gerry VE, Gazzaniga MS ( 2005): A dissociation between the representation of tool-use skills and hand dominance: Insights from left- and right-handed callosotomy patients. J Cogn Neurosci 17: 262-272.
– reference: Heiss WD, Thiel A, Winhuisen L, Muhlberger B, Kessler J, Herholz K ( 2003): Functional imaging in the assessment of capability for recovery after stroke. J Rehabil Med 35: 27-33.
– reference: Geschwind N, Levitsky W ( 1968): Human brain-Left-right asymmetries in temporal speech region. Science 161: 186-187.
– reference: Johnson-Frey SH, Maloof FR, Newman-Norlund R, Farrer C, Inati S, Grafton ST ( 2003): Actions or hand-object interactions? Human inferior frontal cortex and action observation. Neuron 39: 1053-1058.
– reference: Raymer AM, Merians AS, Adair JC, Schwartz RL, Williamson DJG, Rothi LJG, Poizner H, Heilman KM ( 1999): Crossed apraxia: Implications for handedness. Cortex 35: 183-199.
– reference: Wolpert DM, Goodbody SJ, Husain M ( 1998): Maintaining internal representations the role of the human superior parietal lobe. Nat Neurosci 1: 529-533.
– reference: Zwinkels A, Geusgens C, van de Sande P, van Heugten C ( 2004): Assessment of apraxia: Inter-rater reliability of a new apraxia test, association between apraxia and other cognitive deficits and prevalence of apraxia in a rehabilitation setting. Clin Rehabil 18: 819-827.
– reference: Oldfield RC ( 1971): The assessment and analysis of handedness. Neuropsychologia 9: 97-113.
– reference: Thatcher RW, Walker RA, Giudice S ( 1987): Human cerebral hemispheres develop at different rates and ages. Science 236: 1110-1113.
– reference: Basso A, Capitani E, Laiacona M, Zanobio ME ( 1985): Crossed Aphasia-One or more syndromes. Cortex 21: 25-45.
– reference: Buxbaum LJ, Sirigu A, Schwartz MF, Klatzky R ( 2003): Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia 41: 1091-1113.
– reference: Liepmann H ( 1920): Apraxie. Ergeb Ges Med 516-540.
– reference: Hermsdorfer J, Terlinden G, Muhlau M, Goldenberg G, Wohlschlager AM ( 2007): Neural representations of pantomimed and actual tool use: Evidence from an event-related fMRI study. Neuroimage 36: T109-T118.
– reference: Hammond G ( 2002): Correlates of human handedness in primary motor cortex: A review and hypothesis. Neurosci Biobehav Rev 26: 285-292.
– reference: Rapcsak SZ, Rothi LJG, Heilman KM ( 1987): Apraxia in a patient with atypical cerebral-dominance. Brain Cogn 6: 450-463.
– reference: van Heugten CM, Dekker J, Deelman BG, Stehmann-Saris FC, Kinebanian A ( 1999): A diagnostic test for apraxia in stroke patients: Internal consistency and diagnostic value. Clinical Neuropsychologist 13: 182-192.
– reference: Vingerhoets G, Honoré P, Vandekerckhove E, Nys J, Vandemaele P, Achten E ( 2010): Multifocal intraparietal activation during discrimination of action intention in observed tool grasping. Neuroscience 169: 1158-1167.
– reference: Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund HJ ( 1999): A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11: 3276-3286.
– reference: Buxbaum LJ, Kyle KM, Menon R ( 2005): On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled object-related actions in humans. Cogn Brain Res 25: 226-239.
– start-page: 157
  year: 1988
  end-page: 173
– volume: 968
  start-page: 238
  year: 2003
  end-page: 247
  article-title: A functional magnetic resonance imaging study of internal modulation of an external visual cue for motor execution
  publication-title: Brain Res
– volume: 236
  start-page: 1110
  year: 1987
  end-page: 1113
  article-title: Human cerebral hemispheres develop at different rates and ages
  publication-title: Science
– volume: 261
  start-page: 615
  year: 1993
  end-page: 617
  article-title: Functional magnetic‐resonance‐imaging of motor cortex—Hemispheric‐asymmetry and handedness
  publication-title: Science
– volume: 110
  start-page: 237
  year: 1991
  end-page: 253
  article-title: Geschwind theory of cerebral lateralization—Developing a formal, causal model
  publication-title: Psychol Bull
– volume: 17
  start-page: 2703
  year: 2007
  end-page: 2712
  article-title: Remapping attentional priorities: Differential contribution of superior parietal lobule and intraparietal sulcus
  publication-title: Cereb Cortex
– volume: 1117
  start-page: 175
  year: 2006
  end-page: 185
  article-title: Neural substrates of knowledge of hand postures for object grasping and functional object use: Evidence from fMRI
  publication-title: Brain Res
– volume: 42
  start-page: 634
  year: 1985
  end-page: 654
  article-title: Cerebral lateralization—Biological mechanisms, associations, and pathology. III. A hypothesis and a program for research
  publication-title: Arch Neurol
– volume: 47
  start-page: 1832
  year: 2009
  end-page: 1843
  article-title: Tool responsive regions in the posterior parietal cortex: Effect of differences in motor goal and target object during imagined transitive movements
  publication-title: Neuroimage
– start-page: 516
  year: 1920
  end-page: 540
  article-title: Apraxie
  publication-title: Ergeb Ges Med
– volume: 22
  start-page: 457
  year: 2005
  end-page: 469
  article-title: Neural representations of graspable objects: Are tools special?
  publication-title: Cogn Brain Res
– volume: 352
  start-page: 1421
  year: 1997
  end-page: 1428
  article-title: Multimodal integration for the representation of space in the posterior parietal cortex
  publication-title: Philos Trans R Soc Lon Ser B Biol Sci
– volume: 17
  start-page: 262
  year: 2005
  end-page: 272
  article-title: A dissociation between the representation of tool‐use skills and hand dominance: Insights from left‐ and right‐handed callosotomy patients
  publication-title: J Cogn Neurosci
– volume: 43
  start-page: 682
  year: 2005
  end-page: 692
  article-title: Manual and hemispheric asymmetries in the execution of actual and pantomimed prehension
  publication-title: Neuropsychologia
– volume: 139
  start-page: 311
  year: 2001
  end-page: 317
  article-title: Functional magnetic resonance imaging during pantomiming tool‐use gestures
  publication-title: Exp Brain Res
– volume: 33
  start-page: 204
  year: 2006
  end-page: 217
  article-title: The assessment of hemispheric lateralization in functional MRI—Robustness and reproducibility
  publication-title: Neuroimage
– volume: 97
  start-page: 337
  year: 1974
  end-page: 350
  article-title: Motor functions of left hemisphere
  publication-title: Brain
– volume: 169
  start-page: 1158
  year: 2010
  end-page: 1167
  article-title: Multifocal intraparietal activation during discrimination of action intention in observed tool grasping
  publication-title: Neuroscience
– volume: 363
  start-page: 1951
  year: 2008
  end-page: 1957
  article-title: Tool use, communicative gesture and cerebral asymmetries in the modern human brain
  publication-title: Philos Trans R Soc B Biol Sci
– volume: 9
  start-page: 35
  year: 2004
  end-page: 51
  article-title: Is there geographical variation in human handedness?
  publication-title: Laterality
– volume: 21
  start-page: 1224
  year: 2004
  end-page: 1231
  article-title: Neural basis of pantomiming the use of visually presented objects
  publication-title: Neuroimage
– volume: 29
  start-page: 417
  year: 2006
  end-page: 428
  article-title: The role of the dorsal stream for gesture production
  publication-title: Neuroimage
– volume: 1
  start-page: 529
  year: 1998
  end-page: 533
  article-title: Maintaining internal representations the role of the human superior parietal lobe
  publication-title: Nat Neurosci
– volume: 6
  start-page: 450
  year: 1987
  end-page: 463
  article-title: Apraxia in a patient with atypical cerebral‐dominance
  publication-title: Brain Cogn
– volume: 49
  start-page: 3338
  year: 2010
  end-page: 3348
  article-title: Motor timing and motor sequencing contribute differently to the preparation for voluntary movement
  publication-title: Neuroimage
– volume: 8
  start-page: 209
  year: 1999
  end-page: 225
  article-title: Cortical networks subserving pursuit and saccadic eye movements in humans: An FMRI study
  publication-title: Hum Brain Mapp
– volume: 39
  start-page: 509
  year: 2003
  end-page: 524
  article-title: Apraxia and beyond: Life and work of Hugo Liepmann
  publication-title: Cortex
– year: 2011
  article-title: Neural correlates of pantomiming familiar and unfamiliar tools: Action semantics versus mechanical problem solving?
  publication-title: Hum Brain Mapp
– volume: 39
  start-page: 1053
  year: 2003
  end-page: 1058
  article-title: Actions or hand‐object interactions? Human inferior frontal cortex and action observation
  publication-title: Neuron
– volume: 25
  start-page: 190
  year: 1989
  end-page: 193
  article-title: Ideational apraxia—A deficit in tool selection and use
  publication-title: Ann Neurol
– volume: 35
  start-page: 261
  year: 1996
  end-page: 277
  article-title: Statistical methods of estimation and inference for functional MR image analysis
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1331
  year: 2000
  end-page: 1336
  article-title: Functional MRI correlates of real and imagined tool‐use pantomimes
  publication-title: Neurology
– volume: 17
  start-page: 2769
  year: 2007
  end-page: 2776
  article-title: Pantomime of tool use depends on integrity of left inferior frontal cortex
  publication-title: Cereb Cortex
– volume: 17
  start-page: 2735
  year: 2003
  end-page: 2740
  article-title: Objects automatically potentiate action: An fMRI study of implicit processing
  publication-title: Eur J Neurosci
– volume: 12
  start-page: 261
  year: 1981
  end-page: 284
  article-title: Cerebral organization in left‐handers
  publication-title: Brain Lang
– year: 2008
– volume: 123
  start-page: 2306
  year: 2000
  end-page: 2313
  article-title: Neural representations of skilled movement
  publication-title: Brain
– volume: 53
  start-page: 2028
  year: 1999
  end-page: 2031
  article-title: Cerebral lateralization—Relationship of language and ideomotor praxis
  publication-title: Neurology
– volume: 25
  start-page: 226
  year: 2005
  end-page: 239
  article-title: On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled object‐related actions in humans
  publication-title: Cogn Brain Res
– start-page: 516
  year: 1920
  end-page: 543
– volume: 37
  start-page: 93
  year: 1973
  end-page: 105
  article-title: Handedness in families
  publication-title: Ann Hum Genet
– volume: 161
  start-page: 186
  year: 1968
  end-page: 187
  article-title: Human brain—Left‐right asymmetries in temporal speech region
  publication-title: Science
– volume: 1191
  start-page: 201
  year: 2010
  end-page: 218
  article-title: Action knowledge, visuomotor activation, and embodiment in the two action systems
  publication-title: Ann NY Acad Sci
– volume: 145
  start-page: 91
  year: 2002
  end-page: 103
  article-title: Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: Evidence for largely segregated visuomotor pathways
  publication-title: Exp Brain Res
– volume: 15
  start-page: 1903
  year: 2004
  end-page: 1906
  article-title: An fMRI study of tool‐use gestures: Body part as object and pantomime
  publication-title: Neuroreport
– volume: 407
  start-page: 742
  year: 2000
  end-page: 747
  article-title: Learning of action through adaptive combination of motor primitives
  publication-title: Nature
– volume: 9
  start-page: 359
  year: 1971
  article-title: Ideomotor apraxia following right‐sided cerebral lesion in a left‐handed subject
  publication-title: Neuropsychologia
– volume: 11
  start-page: 3276
  year: 1999
  end-page: 3286
  article-title: A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study
  publication-title: Eur J Neurosci
– volume: 18
  start-page: 819
  year: 2004
  end-page: 827
  article-title: Assessment of apraxia: Inter‐rater reliability of a new apraxia test, association between apraxia and other cognitive deficits and prevalence of apraxia in a rehabilitation setting
  publication-title: Clin Rehabil
– volume: 22
  start-page: 27
  year: 2008
  end-page: 45
  article-title: Cognitive approach to the assessment of limb apraxia
  publication-title: Clin Neuropsychol
– volume: 94
  start-page: 14015
  year: 1997
  end-page: 14018
  article-title: Functional activation in motor cortex reflects the direction and the degree of handedness
  publication-title: Proc Natl Acad Sci USA
– volume: 41
  start-page: 1091
  year: 2003
  end-page: 1113
  article-title: Cognitive representations of hand posture in ideomotor apraxia
  publication-title: Neuropsychologia
– volume: 12
  start-page: 149
  year: 2002
  end-page: 154
  article-title: Motor and cognitive functions of the ventral premotor cortex
  publication-title: Curr Opin Neurobiol
– volume: 13
  start-page: 182
  year: 1999
  end-page: 192
  article-title: A diagnostic test for apraxia in stroke patients: Internal consistency and diagnostic value
  publication-title: Clinical Neuropsychologist
– volume: 80
  start-page: 2657
  year: 1998
  end-page: 2670
  article-title: Cortical fMRI activation produced by attentive tracking of moving targets
  publication-title: J Neurophysiol
– volume: 43
  start-page: 411
  year: 2007
  end-page: 423
  article-title: Left inferior parietal representations for skilled hand‐object interactions: Evidence from stroke and corticobasal degeneration
  publication-title: Cortex
– volume: 27
  start-page: 392
  year: 2006
  end-page: 401
  article-title: Analysis of functional image analysis contest (FIAC) data with BrainVoyager QX: From single‐subject to cortically aligned group general linear model analysis and self‐organizing group independent component analysis
  publication-title: Hum Brain Mapp
– volume: 123
  start-page: 2512
  year: 2000b
  end-page: 2518
  article-title: Handedness and hemispheric language dominance in healthy humans
  publication-title: Brain
– volume: 26
  start-page: 285
  year: 2002
  end-page: 292
  article-title: Correlates of human handedness in primary motor cortex: A review and hypothesis
  publication-title: Neurosci Biobehav Rev
– volume: 21
  start-page: 25
  year: 1985
  end-page: 45
  article-title: Crossed Aphasia—One or more syndromes
  publication-title: Cortex
– volume: 79
  start-page: 1092
  year: 1998
  end-page: 1097
  article-title: Dorsal premotor cortex and conditional movement selection: A PET functional mapping study
  publication-title: J Neurophysiol
– volume: 123
  start-page: 74
  year: 2000a
  end-page: 81
  article-title: Language lateralization in healthy right‐handers
  publication-title: Brain
– volume: 27
  start-page: 3429
  year: 2007
  end-page: 3438
  article-title: Functional coupling of human prefrontal and premotor areas during cognitive manipulation
  publication-title: J Neurosci
– volume: 364
  start-page: 867
  year: 2009
  end-page: 879
  article-title: The evolution and genetics of cerebral asymmetry
  publication-title: Philos Trans R Soc B Biol Sci
– volume: 15
  start-page: 870
  year: 2002
  end-page: 878
  article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate
  publication-title: Neuroimage
– volume: 36
  start-page: T109
  year: 2007
  end-page: T118
  article-title: Neural representations of pantomimed and actual tool use: Evidence from an event‐related fMRI study
  publication-title: Neuroimage
– volume: 106
  start-page: 20664
  year: 2009
  end-page: 20669
  article-title: Symbolic gestures and spoken language are processed by a common neural system
  publication-title: Proc Natl Acad Sci USA
– volume: 35
  start-page: 27
  year: 2003
  end-page: 33
  article-title: Functional imaging in the assessment of capability for recovery after stroke
  publication-title: J Rehabil Med
– volume: 40
  start-page: 1380
  year: 2008
  end-page: 1391
  article-title: Knowing about tools: Neural correlates of tool familiarity and experience
  publication-title: Neuroimage
– volume: 35
  start-page: 183
  year: 1999
  end-page: 199
  article-title: Crossed apraxia: Implications for handedness
  publication-title: Cortex
– volume: 15
  start-page: 681
  year: 2005
  end-page: 695
  article-title: A distributed left hemisphere network active during planning of everyday tool use skills
  publication-title: Cereb Cortex
– volume: 364
  start-page: 881
  year: 2009
  end-page: 894
  article-title: Why are some people left‐handed? An evolutionary perspective
  publication-title: Philos Trans R Soc B Biol Sci
– volume: 153
  start-page: 146
  year: 2003
  end-page: 157
  article-title: Two different streams form the dorsal visual system: Anatomy and functions
  publication-title: Exp Brain Res
– volume: 9
  start-page: 97
  year: 1971
  end-page: 113
  article-title: The assessment and analysis of handedness
  publication-title: Neuropsychologia
– volume: 16
  start-page: 273
  year: 1980
  end-page: 284
  article-title: Ideatory apraxia in a left‐handed patient with right‐sided brain lesion
  publication-title: Cortex
– volume: 30
  start-page: 164
  year: 1999
  end-page: 175
  article-title: Possible evolutionary origins of cognitive brain lateralization
  publication-title: Brain Res Rev
– volume: 12
  start-page: 211
  year: 2006
  end-page: 231
  article-title: Cortical networks related to human use of tools
  publication-title: Neuroscientist
– volume: 28
  start-page: 13615
  year: 2008
  end-page: 13620
  article-title: Differential recruitment of anterior intraparietal sulcus and superior parietal lobule during visually guided grasping revealed by electrical neuroimaging
  publication-title: J Neurosci
– volume: 41
  start-page: 1565
  year: 2003
  end-page: 1573
  article-title: Defective pantomime of object use in left brain damage: Apraxia or asymbolia?
  publication-title: Neuropsychologia
– year: 1988
– volume: 364
  start-page: 915
  year: 2009
  end-page: 927
  article-title: Epigenesis of behavioural lateralization in humans and other animals
  publication-title: Philos Trans R Soc B Biol Sci
– volume: 36
  start-page: 1
  year: 2000
  end-page: 18
  article-title: Intermanual coordination in relation to handedness, familial sinistrality and lateral preferences
  publication-title: Cortex
– volume: 5
  start-page: e9682
  year: 2010
  article-title: Cerebral asymmetries: Complementary and independent processes
  publication-title: Plos One
– volume: 33
  start-page: 341
  year: 1997
  end-page: 354
  article-title: On crossed apraxia. Description of a right‐handed apraxic patient with right supplementary motor area damage
  publication-title: Cortex
– volume: 43
  start-page: 301
  year: 2007
  end-page: 307
  article-title: Differences between actual and imagined usage of chopsticks: An fMRI study
  publication-title: Cortex
– volume: 8
  start-page: 297
  year: 2003
  end-page: 306
  article-title: Fine motor skill performance in left‐ and right‐handers: Evidence of an advantage for left‐handers
  publication-title: Laterality
– volume: 20
  start-page: 1719
  year: 2010
  end-page: 1725
  article-title: Cerebral lateralization of face‐selective and body‐selective visual areas depends on handedness
  publication-title: Cereb Cortex
– ident: e_1_2_5_44_1
  doi: 10.1080/13576500412331325342
– ident: e_1_2_5_56_1
  doi: 10.1016/S0010-9452(08)70010-8
– start-page: 516
  year: 1920
  ident: e_1_2_5_53_1
  article-title: Apraxie
  publication-title: Ergeb Ges Med
– ident: e_1_2_5_65_1
  doi: 10.1016/0028-3932(71)90032-7
– ident: e_1_2_5_45_1
  doi: 10.1126/science.8342027
– ident: e_1_2_5_61_1
  doi: 10.1016/S0006-8993(03)02249-2
– ident: e_1_2_5_62_1
  doi: 10.1002/ana.410250214
– ident: e_1_2_5_19_1
  doi: 10.1016/j.cogbrainres.2004.10.006
– ident: e_1_2_5_28_1
  doi: 10.1002/hbm.20249
– ident: e_1_2_5_39_1
  doi: 10.1016/j.neuroimage.2007.03.037
– ident: e_1_2_5_71_1
  doi: 10.1016/S0959-4388(02)00308-2
– ident: e_1_2_5_12_1
  doi: 10.1111/j.1749-6632.2010.05447.x
– ident: e_1_2_5_67_1
  doi: 10.1016/0278-2626(87)90139-4
– ident: e_1_2_5_84_1
  doi: 10.1016/j.neuroscience.2010.05.080
– ident: e_1_2_5_14_1
  doi: 10.1016/j.cogbrainres.2005.05.014
– ident: e_1_2_5_33_1
  doi: 10.1152/jn.1998.79.2.1092
– ident: e_1_2_5_22_1
  doi: 10.1098/rstb.2008.0008
– ident: e_1_2_5_35_1
  doi: 10.1093/brain/123.11.2306
– ident: e_1_2_5_86_1
  doi: 10.1038/2245
– ident: e_1_2_5_46_1
  doi: 10.1093/brain/97.1.337
– ident: e_1_2_5_6_1
  doi: 10.1080/13854040601139310
– ident: e_1_2_5_26_1
  doi: 10.1126/science.161.3837.186
– ident: e_1_2_5_70_1
  doi: 10.1007/s00221-003-1588-0
– ident: e_1_2_5_23_1
  doi: 10.1162/0898929053124974
– ident: e_1_2_5_21_1
  doi: 10.1073/pnas.94.25.14015
– ident: e_1_2_5_88_1
  doi: 10.1191/0269215504cr816oa
– ident: e_1_2_5_31_1
  doi: 10.1093/cercor/bhm004
– ident: e_1_2_5_66_1
  doi: 10.1016/S0010-9452(80)80062-1
– ident: e_1_2_5_42_1
  doi: 10.1016/S0896-6273(03)00524-5
– ident: e_1_2_5_87_1
  doi: 10.1073/pnas.0909197106
– ident: e_1_2_5_9_1
  doi: 10.1046/j.1460-9568.1999.00753.x
– ident: e_1_2_5_79_1
  doi: 10.1016/S0165-0173(99)00012-0
– ident: e_1_2_5_10_1
  doi: 10.1016/j.neuroimage.2009.11.048
– ident: e_1_2_5_29_1
  doi: 10.1016/S0010-9452(08)70261-2
– ident: e_1_2_5_41_1
  doi: 10.1016/j.neuroimage.2006.06.019
– ident: e_1_2_5_15_1
  doi: 10.1016/j.brainres.2006.08.010
– ident: e_1_2_5_58_1
  doi: 10.1212/WNL.53.9.2028
– ident: e_1_2_5_20_1
  doi: 10.1152/jn.1998.80.5.2657
– ident: e_1_2_5_59_1
  doi: 10.1093/cercor/bhl179
– ident: e_1_2_5_40_1
  doi: 10.1016/S0010-9452(08)70456-8
– ident: e_1_2_5_78_1
  doi: 10.1523/JNEUROSCI.3303-08.2008
– ident: e_1_2_5_51_1
  doi: 10.1177/1073858406288327
– ident: e_1_2_5_80_1
  doi: 10.1076/clin.13.2.182.1966
– ident: e_1_2_5_81_1
  doi: 10.1016/j.neuroimage.2007.12.058
– ident: e_1_2_5_30_1
  doi: 10.1016/S0028-3932(03)00120-9
– ident: e_1_2_5_27_1
  doi: 10.1001/archneur.1985.04060070024012
– start-page: 516
  volume-title: Ergebnisse der gesamten Medizin
  year: 1920
  ident: e_1_2_5_52_1
– ident: e_1_2_5_47_1
  doi: 10.1093/brain/123.1.74
– ident: e_1_2_5_34_1
  doi: 10.1046/j.1460-9568.2003.02695.x
– ident: e_1_2_5_32_1
  doi: 10.1016/S0010-9452(08)70832-3
– ident: e_1_2_5_69_1
  doi: 10.1080/13576500244000274
– ident: e_1_2_5_54_1
  doi: 10.1098/rstb.2008.0235
– volume-title: Atlas of the Human Brain
  year: 2008
  ident: e_1_2_5_55_1
– volume-title: Co‐Planar Sereotaxic Atlas of the Human Brain
  year: 1988
  ident: e_1_2_5_74_1
– ident: e_1_2_5_63_1
  doi: 10.1097/00001756-200408260-00014
– ident: e_1_2_5_11_1
  doi: 10.1002/mrm.1910350219
– ident: e_1_2_5_17_1
  doi: 10.1007/s002210100777
– ident: e_1_2_5_82_1
  doi: 10.1016/j.neuroimage.2009.05.100
– ident: e_1_2_5_13_1
  doi: 10.1016/S0028-3932(02)00314-7
– ident: e_1_2_5_38_1
  doi: 10.1080/16501960310010115
– ident: e_1_2_5_49_1
  doi: 10.1016/j.neuropsychologia.2004.09.004
– ident: e_1_2_5_57_1
  doi: 10.1037/0033-2909.110.2.237
– ident: e_1_2_5_75_1
  doi: 10.1007/s00221-002-1078-9
– ident: e_1_2_5_7_1
  doi: 10.1016/S0010-9452(85)80014-9
– ident: e_1_2_5_48_1
  doi: 10.1093/brain/123.12.2512
– ident: e_1_2_5_72_1
  doi: 10.1016/j.neuroimage.2003.11.017
– ident: e_1_2_5_73_1
  doi: 10.1098/rstb.2008.0244
– ident: e_1_2_5_76_1
  doi: 10.1126/science.3576224
– ident: e_1_2_5_24_1
  doi: 10.1016/j.neuroimage.2005.07.026
– ident: e_1_2_5_60_1
  doi: 10.1212/WNL.54.6.1331
– ident: e_1_2_5_3_1
  doi: 10.1098/rstb.1997.0128
– ident: e_1_2_5_77_1
  doi: 10.1038/35037588
– ident: e_1_2_5_68_1
  doi: 10.1016/S0010-9452(08)70793-7
– ident: e_1_2_5_85_1
  doi: 10.1093/cercor/bhp234
– ident: e_1_2_5_50_1
  doi: 10.1007/978-3-642-70877-0_10
– ident: e_1_2_5_8_1
  doi: 10.1002/(SICI)1097-0193(1999)8:4<209::AID-HBM5>3.0.CO;2-0
– ident: e_1_2_5_37_1
  doi: 10.1016/0093-934X(81)90018-3
– ident: e_1_2_5_43_1
  doi: 10.1093/cercor/bhh169
– ident: e_1_2_5_2_1
  doi: 10.1523/JNEUROSCI.4273-06.2007
– ident: e_1_2_5_4_1
  doi: 10.1111/j.1469-1809.1973.tb01817.x
– ident: e_1_2_5_18_1
  doi: 10.1098/rstb.2008.0232
– ident: e_1_2_5_16_1
  doi: 10.1016/S0010-9452(08)70466-0
– ident: e_1_2_5_64_1
  doi: 10.1016/0028-3932(71)90067-4
– ident: e_1_2_5_36_1
  doi: 10.1016/S0149-7634(02)00003-9
– ident: e_1_2_5_83_1
  doi: 10.1002/hbm.21078
– ident: e_1_2_5_25_1
  doi: 10.1006/nimg.2001.1037
– ident: e_1_2_5_5_1
  doi: 10.1371/journal.pone.0009682
SSID ssj0011501
Score 2.3799164
Snippet We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right‐handed and...
We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 763
SubjectTerms Adult
bimanual gestures
Biological and medical sciences
Brain Mapping
Cerebral Cortex - physiology
cerebral lateralization
Cognition. Intelligence
Female
functional asymmetry
Functional Laterality - physiology
Fundamental and applied biological sciences. Psychology
Gestures
handedness
hemispheric specialization
Humans
Image Interpretation, Computer-Assisted
Investigative techniques, diagnostic techniques (general aspects)
lateralization
Magnetic Resonance Imaging
Male
Medical sciences
Mental imagery. Mental representation
Movement - physiology
Nervous system
pantomiming
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
tool use
transitive gestures
unimanual gestures
Young Adult
Title Cerebral lateralization of praxis in right- and left-handedness: Same pattern, different strength
URI https://api.istex.fr/ark:/67375/WNG-QGJF91GC-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21247
https://www.ncbi.nlm.nih.gov/pubmed/21500314
https://www.proquest.com/docview/1517356024
https://www.proquest.com/docview/927988374
https://pubmed.ncbi.nlm.nih.gov/PMC6870330
Volume 33
WOSCitedRecordID wos000301341000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VghAXHi0PQ4lWCFUcMI29fsKpRCQF0QgEqLmtdu1dEpE4kZ2icuMn8Bv5JcysHyWiSEjcLHkcJ5OZ2W92Z74BeKxyRazanhtFUmKCokJXhVy7iJ2j0KQyD7WlzH8bj8fJZJK-24IXbS9MzQ_RbbiRZ9h4TQ4uVXVwTho6VYtnGHcD6iTHl5FTnrwedycICHRssoVLrJtiBG5Zhfr-Qffkxlp0mdR6RrWRskL1mHquxUXA88_6yd9xrV2Yhjf-6yfdhOsNHmWHtQHdgi1d7MDuYYG5-OIb22e2QtRuve_A1ePmIH4X9ECXdOQ8Z3NJPczzpp2TLQ1blfJsVrFZwWzm__P7DyaLnM21oWvaqdc5Bdjn7INcaLayDJ_FU9bOalkzamApPq-nt-HT8NXHwZHbTGxws4girgpT5cfSD7jxMHpxzI506OlIpX4_VVkkdRBrqXODL_J0EmQIWDIjJRlS5iuP34HtYlnoe8BSaQKZmyg3CSKQJJfKeMbLMRwjYA0y34En7X8nsobOnKZqzEVNxOwL1Kaw2nTgUSe6qjk8LhLatwbQScjyCxW9xaE4GY_E-9GbYeqNBoI70NuwkO4BBI8co1_iwF5rMqIJCJVAYBVzRJd-4ADrbqMr0_mMLPTytBKpT-RxPEaRu7WBnX82mjMNGnAg3jC9ToBYwjfvFLOpZQuP8Dtx3kd9WdP7uwbE0ctje3H_30UfwDVEkH5dyrQH2-vyVD-EK9nX9awqe3ApniQ965e_ALg-PgI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VFgEXHi0PQykrhCoOmMbvGHEpEUkKiQWiiN5Wu_YuiUicyE5RufET-I38EmbWjxJRJCRuljx-jWdnv9md-QbgicwksWo7dhgKgQGKDGwZeMpG7BwGOhZZoAxl_ihKku7JSfxuA142tTAVP0S74EYjw_hrGuC0IH1wzho6kfPn6Hj96BJs-SEid6onOUraPQSEOibcwknWjtEHN7xCHfegvXRtNtoixZ5RdqQoUUG66mxxEfT8M4Pyd2Rrpqb-jf_7qJtwvYak7LCyoVuwofJt2DnMMRyff2P7zCSJmtX3bbgyrvfid0D1VEG7zjM2E1TGPKsrOtlCs2UhzqYlm-bMBP8_v_9gIs_YTGk6psV6lZGPfcE-iLliS0PymT9jTbuWFaMalvzzanIbPvZfH_eGdt20wU5DcroyiKUbCdf3tIMOzMMASQWOCmXsdmKZhkL5kRIq0_ggR3X9FDFLqoUgW0pd6Xh3YDNf5OoesFhoX2Q6zHQXQUg3E1I72snQIyNm9VPXgqfNz-NpzWhOjTVmvOJidjlqkxttWvC4FV1WNB4XCe0bC2glRPGF8t6igH9KBvz94E0_dgY97lmwt2Yi7QWIHz10gF0Ldhub4bVPKDliq8hDgOn6FrD2NI5m2qIRuVqcljx2iT_Oi1DkbmVh5_dGe6ZeAxZEa7bXChBR-PqZfDoxhOEhvpPndVBfxvb-rgE-fDU2B_f_XfQRXB0ej0d8dJS8fQDXEFC6VWbTLmyuilP1EC6nX1fTstgzw_MXJ9RBSg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFlVceLQ8AqVYCFUcCN04b8SlLOy20EZFFNGbZSc2uyLrXW22qNz4CfxGfglj51FWFAmJW6RMXpPx-Bt75huAJ6IQhlXbc6OIcwxQROiK0JcuYucoVCkvQmkp8w_jLEtOT9PjFXjZ1sLU_BDdgpsZGdZfmwEuZ4XavWANHYnJc3S8QXwF1oIIpz5TT3KQdXsICHVsuIWTrJuiD255hXp0t7t0aTZaM4o9N9mRvEIFqbqzxWXQ888Myt-RrZ2aBjf-76NuwvUGkpK92oZuwYrUG7C5pzEcn3wjO8QmidrV9w1YP2r24jdB9uXc7DqXpOSmjLlsKjrJVJHZnJ-PKzLWxAb_P7__IFwXpJTKHJvFelkYH_uCfOATSWaW5FM_I227lgUxNSz682J0Gz4O3pz0992maYObR8bpijAVNOY08JWHDszHAEmGnoxESnupyCMug1hyWSh8kCeTIMcflyvOjS3lVHj-HVjVUy3vAUm5CnihokIlCEKSggvlKa9Aj4yYNcipA0_bn8fyhtHcNNYoWc3FTBlqk1ltOvC4E53VNB6XCe1YC-gk-PyLyXuLQ_YpG7L3w7eD1Bv2me_A9pKJdBcgfvTRASYObLU2wxqfUDHEVrGPAJMGDpDuNI5ms0XDtZyeVSylhj_Oj1Hkbm1hF_dGeza9BhyIl2yvEzBE4ctn9HhkCcMjfCff76G-rO39XQNs_9WRPbj_76KPYP349YAdHmTvHsA1xJO0TmzagtXF_Ew-hKv518W4mm_b0fkLNyFAvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerebral+Lateralization+of+Praxis+in+Right-+and+Left-Handedness%3A+Same+Pattern%2C+Different+Strength&rft.jtitle=Human+brain+mapping&rft.au=VINGERHOETS%2C+Guy&rft.au=ACKE%2C+Frederic&rft.au=AIDERWEIRELDT%2C+Ann-Sofie&rft.au=NYS%2C+Jo&rft.date=2012-04-01&rft.pub=Wiley-Liss&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=33&rft.issue=4&rft.spage=763&rft.epage=777&rft_id=info:doi/10.1002%2Fhbm.21247&rft.externalDBID=n%2Fa&rft.externalDocID=25638708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon