Cerebral lateralization of praxis in right- and left-handedness: Same pattern, different strength
We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right‐handed and 14 left‐handed volunteers performed unimanual and bimanual tool‐use pantomimes with their dominant or nondominant hand during fMRI. A left hem...
Saved in:
| Published in: | Human brain mapping Vol. 33; no. 4; pp. 763 - 777 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2012
Wiley-Liss John Wiley & Sons, Inc |
| Subjects: | |
| ISSN: | 1065-9471, 1097-0193, 1097-0193 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right‐handed and 14 left‐handed volunteers performed unimanual and bimanual tool‐use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right‐ and left‐handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left‐ and right‐handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left‐ and right‐handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left‐handers showed a significantly reduced overall LI compared with right‐handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left‐handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left‐handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left‐handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. |
|---|---|
| AbstractList | We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right‐handed and 14 left‐handed volunteers performed unimanual and bimanual tool‐use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right‐ and left‐handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left‐ and right‐handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left‐ and right‐handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left‐handers showed a significantly reduced overall LI compared with right‐handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left‐handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left‐handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left‐handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans.We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans. We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and 14 left-handed volunteers performed unimanual and bimanual tool-use pantomimes with their dominant or nondominant hand during fMRI. A left hemispheric lateralization was observed in the right- and left-handed group regardless of which hand(s) performed the task. Asymmetry was most marked in the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PMC), and superior and inferior parietal lobules (SPL and IPL). Unimanual pantomimes did not reveal any significant differences in asymmetric cerebral activation patterns between left- and right-handers. Bimanual pantomimes showed increased left premotor and posterior parietal activation in left- and right-handers. Lateralization indices (LI) of the 10% most active voxels in DLPFC, PMC, SPL, and IPL were calculated for each individual in a contrast that compared all tool versus all control conditions. Left-handers showed a significantly reduced overall LI compared with right-handers. This was mainly due to diminished asymmetry in the IPL and SPL. We conclude that the recollection and pantomiming of learned gestures recruits a similar left lateralized activation pattern in right and left-handed individuals. Handedness only influences the strength (not the side) of the lateralization, with left-handers showing a reduced degree of asymmetry that is most readily observed over the posterior parietal region. Together with similar findings in language and visual processing, these results point to a lesser hemispheric specialization in left-handers that may be considered in the cost/benefit assessment to explain the disproportionate handedness polymorphism in humans. |
| Author | Nys, Jo Achten, Eric Acke, Frederic Alderweireldt, Ann-Sofie Vingerhoets, Guy Vandemaele, Pieter |
| AuthorAffiliation | 2 Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium 1 Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium 3 Department of Radiology, Ghent University, Ghent, Belgium |
| AuthorAffiliation_xml | – name: 1 Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium – name: 2 Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium – name: 3 Department of Radiology, Ghent University, Ghent, Belgium |
| Author_xml | – sequence: 1 givenname: Guy surname: Vingerhoets fullname: Vingerhoets, Guy email: guy.vingerhoets@ugent.be organization: Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium – sequence: 2 givenname: Frederic surname: Acke fullname: Acke, Frederic organization: Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium – sequence: 3 givenname: Ann-Sofie surname: Alderweireldt fullname: Alderweireldt, Ann-Sofie organization: Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium – sequence: 4 givenname: Jo surname: Nys fullname: Nys, Jo organization: Laboratory for Neuropsychology, Department of Internal Medicine, Ghent University, Ghent, Belgium – sequence: 5 givenname: Pieter surname: Vandemaele fullname: Vandemaele, Pieter organization: Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium – sequence: 6 givenname: Eric surname: Achten fullname: Achten, Eric organization: Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25638708$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21500314$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kt1u1DAQhS1URH_gghdAlhCqkEhrx4mdcIFEV3QLKiAEiEtr4p1sXBJnsb3Q8vR4u7sFKriakfyd4zP27JMdNzok5CFnR5yx_LhrhqOc54W6Q_Y4q1XGeC12Vr0ss7pQfJfsh3DBGOcl4_fIbp4qE7zYIzBBj42HnvYQMVX7E6IdHR1buvBwaQO1jno772JGwc1oj23MutThzGEIz-lHGJAuICa1e0Zntm2To4s0xFTmsbtP7rbQB3ywqQfk8-mrT5Oz7Pz99PXk5XlmZCFV1pR1kyvIC9HyqlJCMoklR9nUOasbIwELhYCzNl3MsSoMU6VpARo0xuQNFwfkxdp3sWwGnJmUIY2jF94O4K_0CFb_feJsp-fjdy0rxYRgyeBwY-DHb0sMUQ82GOx7cDgug65zVVeVUEUiH98iL8ald2k6zUuuRClZvqIe_RnoJsn28RPwZANAMNC3Hpyx4TdXSpGiVYk7XnPGjyF4bLWx8fqX0hy215zp1RrotAb6eg2S4uktxdb0X-zG_Yft8er_oD47ebtVZGuFDREvbxTgv2qphCr1l3dT_WH65rTm04kW4heC5tFn |
| CitedBy_id | crossref_primary_10_1007_s00221_013_3610_5 crossref_primary_10_1007_s00221_017_4919_2 crossref_primary_10_1088_1741_2552_ac0489 crossref_primary_10_1186_s12967_023_03989_9 crossref_primary_10_1093_cercor_bhs280 crossref_primary_10_1371_journal_pone_0070480 crossref_primary_10_3389_fnhum_2015_00166 crossref_primary_10_1016_j_cortex_2020_04_023 crossref_primary_10_1111_ejn_12888 crossref_primary_10_1017_S1355617716001120 crossref_primary_10_1016_j_earlhumdev_2024_106049 crossref_primary_10_1016_j_neuropsychologia_2015_05_016 crossref_primary_10_1016_j_nicl_2014_05_017 crossref_primary_10_3389_fneur_2018_00709 crossref_primary_10_1134_S0362119715040052 crossref_primary_10_1016_j_neuroimage_2022_119406 crossref_primary_10_1016_j_plrev_2019_06_002 crossref_primary_10_1016_j_neuroimage_2025_121081 crossref_primary_10_1134_S0362119717010029 crossref_primary_10_1007_s00221_017_5090_5 crossref_primary_10_3389_fnint_2024_1324581 crossref_primary_10_1038_s41598_019_56956_0 crossref_primary_10_1162_jocn_a_00634 crossref_primary_10_3758_s13415_022_01008_w crossref_primary_10_1016_j_bandc_2013_04_013 crossref_primary_10_1016_j_neuropsychologia_2012_11_002 crossref_primary_10_1371_journal_pone_0143476 crossref_primary_10_1016_j_cortex_2021_03_022 crossref_primary_10_3389_fnins_2017_00525 crossref_primary_10_1007_s00429_025_02980_y crossref_primary_10_1515_tnsci_2020_0189 crossref_primary_10_1016_j_bbr_2014_06_055 crossref_primary_10_1016_j_neuropsychologia_2016_01_023 crossref_primary_10_1080_1357650X_2021_1990312 crossref_primary_10_1007_s11065_014_9260_y crossref_primary_10_3390_sym15040940 crossref_primary_10_1016_j_biopsycho_2015_07_017 crossref_primary_10_1016_j_neuropsychologia_2022_108385 crossref_primary_10_1093_gigascience_giaf082 crossref_primary_10_1162_jocn_a_01690 crossref_primary_10_3390_jcm13195798 crossref_primary_10_1007_s00221_014_4121_8 crossref_primary_10_1371_journal_pone_0195831 crossref_primary_10_1093_cercor_bhad437 crossref_primary_10_3390_brainsci9090216 crossref_primary_10_1093_cercor_bhad242 crossref_primary_10_1002_dev_21078 crossref_primary_10_1016_j_neuropsychologia_2016_03_023 crossref_primary_10_1016_j_actpsy_2012_07_008 crossref_primary_10_3389_fpsyg_2014_00454 crossref_primary_10_3758_s13415_018_0633_1 crossref_primary_10_1007_s11065_024_09634_6 crossref_primary_10_1111_ejn_12742 crossref_primary_10_3390_sym13091602 crossref_primary_10_1016_j_bbr_2015_01_021 crossref_primary_10_1016_j_tics_2012_12_004 crossref_primary_10_1038_s41598_025_03989_3 crossref_primary_10_7554_eLife_69977 crossref_primary_10_3390_sym13040728 crossref_primary_10_3390_s20061722 crossref_primary_10_3390_s24041089 crossref_primary_10_1016_j_cortex_2014_01_019 crossref_primary_10_1016_j_plrev_2014_01_011 crossref_primary_10_1016_j_bbr_2019_02_021 crossref_primary_10_1016_j_bandl_2014_10_003 crossref_primary_10_1016_j_cortex_2016_06_003 crossref_primary_10_1080_1357650X_2015_1110161 crossref_primary_10_1371_journal_pbio_1001767 crossref_primary_10_1016_j_bandc_2024_106210 crossref_primary_10_1016_j_neuroimage_2025_121111 crossref_primary_10_1016_j_bandc_2016_07_005 crossref_primary_10_1016_j_neuroimage_2025_121230 crossref_primary_10_1007_s00221_016_4595_7 crossref_primary_10_1089_brain_2013_0215 crossref_primary_10_1073_pnas_2002981117 crossref_primary_10_1016_j_neuropsychologia_2013_02_013 crossref_primary_10_1016_j_ynirp_2021_100057 crossref_primary_10_1016_j_neuropsychologia_2023_108735 crossref_primary_10_1016_j_cortex_2018_04_012 crossref_primary_10_1007_s00429_018_1646_9 crossref_primary_10_1523_JNEUROSCI_0723_23_2023 crossref_primary_10_1016_j_bandc_2014_12_005 crossref_primary_10_1093_brain_aww035 crossref_primary_10_1371_journal_pone_0127594 crossref_primary_10_1109_TOH_2023_3272698 crossref_primary_10_1016_j_neuropsychologia_2024_108837 crossref_primary_10_3389_fpsyg_2014_00151 |
| Cites_doi | 10.1080/13576500412331325342 10.1016/S0010-9452(08)70010-8 10.1016/0028-3932(71)90032-7 10.1126/science.8342027 10.1016/S0006-8993(03)02249-2 10.1002/ana.410250214 10.1016/j.cogbrainres.2004.10.006 10.1002/hbm.20249 10.1016/j.neuroimage.2007.03.037 10.1016/S0959-4388(02)00308-2 10.1111/j.1749-6632.2010.05447.x 10.1016/0278-2626(87)90139-4 10.1016/j.neuroscience.2010.05.080 10.1016/j.cogbrainres.2005.05.014 10.1152/jn.1998.79.2.1092 10.1098/rstb.2008.0008 10.1093/brain/123.11.2306 10.1038/2245 10.1093/brain/97.1.337 10.1080/13854040601139310 10.1126/science.161.3837.186 10.1007/s00221-003-1588-0 10.1162/0898929053124974 10.1073/pnas.94.25.14015 10.1191/0269215504cr816oa 10.1093/cercor/bhm004 10.1016/S0010-9452(80)80062-1 10.1016/S0896-6273(03)00524-5 10.1073/pnas.0909197106 10.1046/j.1460-9568.1999.00753.x 10.1016/S0165-0173(99)00012-0 10.1016/j.neuroimage.2009.11.048 10.1016/S0010-9452(08)70261-2 10.1016/j.neuroimage.2006.06.019 10.1016/j.brainres.2006.08.010 10.1212/WNL.53.9.2028 10.1152/jn.1998.80.5.2657 10.1093/cercor/bhl179 10.1016/S0010-9452(08)70456-8 10.1523/JNEUROSCI.3303-08.2008 10.1177/1073858406288327 10.1076/clin.13.2.182.1966 10.1016/j.neuroimage.2007.12.058 10.1016/S0028-3932(03)00120-9 10.1001/archneur.1985.04060070024012 10.1093/brain/123.1.74 10.1046/j.1460-9568.2003.02695.x 10.1016/S0010-9452(08)70832-3 10.1080/13576500244000274 10.1098/rstb.2008.0235 10.1097/00001756-200408260-00014 10.1002/mrm.1910350219 10.1007/s002210100777 10.1016/j.neuroimage.2009.05.100 10.1016/S0028-3932(02)00314-7 10.1080/16501960310010115 10.1016/j.neuropsychologia.2004.09.004 10.1037/0033-2909.110.2.237 10.1007/s00221-002-1078-9 10.1016/S0010-9452(85)80014-9 10.1093/brain/123.12.2512 10.1016/j.neuroimage.2003.11.017 10.1098/rstb.2008.0244 10.1126/science.3576224 10.1016/j.neuroimage.2005.07.026 10.1212/WNL.54.6.1331 10.1098/rstb.1997.0128 10.1038/35037588 10.1016/S0010-9452(08)70793-7 10.1093/cercor/bhp234 10.1007/978-3-642-70877-0_10 10.1002/(SICI)1097-0193(1999)8:4<209::AID-HBM5>3.0.CO;2-0 10.1016/0093-934X(81)90018-3 10.1093/cercor/bhh169 10.1523/JNEUROSCI.4273-06.2007 10.1111/j.1469-1809.1973.tb01817.x 10.1098/rstb.2008.0232 10.1016/S0010-9452(08)70466-0 10.1016/0028-3932(71)90067-4 10.1016/S0149-7634(02)00003-9 10.1002/hbm.21078 10.1006/nimg.2001.1037 10.1371/journal.pone.0009682 |
| ContentType | Journal Article |
| Copyright | Copyright © 2011 Wiley Periodicals, Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
| DOI | 10.1002/hbm.21247 |
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Cerebral Lateralization of Praxis |
| EISSN | 1097-0193 |
| EndPage | 777 |
| ExternalDocumentID | PMC6870330 3278351931 21500314 25638708 10_1002_hbm_21247 HBM21247 ark_67375_WNG_QGJF91GC_3 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Fund for Scientific Research, Flanders funderid: G.0555.11 – fundername: Fund for Scientific Research, Flanders grantid: G.0555.11 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS AEFGJ AEIMD AENEX AFBPY AFFHD AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AGXDD AHMBA AIDQK AIDYY AIQQE AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAYXX CITATION O8X 33P AAHHS AAPBV ABHUG ACCFJ ACXME ADAWD ADZOD AEEZP AEQDE AEUQT AFPWT AFVGU AGJLS AIWBW AJBDE C45 IQODW RWD RWI WRC WUP ALIPV CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
| ID | FETCH-LOGICAL-c6467-b59b27a243f18873606e51e6b9209bc6ae47eaedfded1e84c075cfaabeccc2b13 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 100 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301341000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Tue Sep 30 16:40:15 EDT 2025 Sun Nov 09 11:34:18 EST 2025 Sat Nov 29 14:36:42 EST 2025 Mon Jul 21 06:04:39 EDT 2025 Sun Oct 22 16:06:10 EDT 2023 Sat Nov 29 06:33:42 EST 2025 Tue Nov 18 19:51:18 EST 2025 Tue Nov 11 03:07:59 EST 2025 Tue Nov 11 03:33:04 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Nervous system diseases Hemispheric specialization Radiodiagnosis Central nervous system pantomiming Encephalon Manual task Handedness lateralization unimanual gestures Asymmetry cerebral lateralization transitive gestures tool use functional asymmetry bimanual gestures Strength |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2011 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6467-b59b27a243f18873606e51e6b9209bc6ae47eaedfded1e84c075cfaabeccc2b13 |
| Notes | Fund for Scientific Research, Flanders - No. G.0555.11 ArticleID:HBM21247 istex:04FF6882D2379BA750D4A4CD445CCC75F02CEA0F ark:/67375/WNG-QGJF91GC-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.21247?download=true |
| PMID | 21500314 |
| PQID | 1517356024 |
| PQPubID | 996345 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870330 proquest_miscellaneous_927988374 proquest_journals_1517356024 pubmed_primary_21500314 pascalfrancis_primary_25638708 crossref_citationtrail_10_1002_hbm_21247 crossref_primary_10_1002_hbm_21247 wiley_primary_10_1002_hbm_21247_HBM21247 istex_primary_ark_67375_WNG_QGJF91GC_3 |
| PublicationCentury | 2000 |
| PublicationDate | April 2012 |
| PublicationDateYYYYMMDD | 2012-04-01 |
| PublicationDate_xml | – month: 04 year: 2012 text: April 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States – name: San Antonio |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum. Brain Mapp |
| PublicationYear | 2012 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss John Wiley & Sons, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss – name: John Wiley & Sons, Inc |
| References | Tanne-Gariepy J, Rouiller EM, Boussaoud D ( 2002): Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: Evidence for largely segregated visuomotor pathways. Exp Brain Res 145: 91-103. Moll J, de Oliveira-Souza R, Passman LJ, Cunha FC, Souza-Lima F, Andreiuolo PA ( 2000): Functional MRI correlates of real and imagined tool-use pantomimes. Neurology 54: 1331-1336. Rumiati RI, Weiss PH, Shallice T, Ottoboni G, Noth J, Zilles K, Fink GR ( 2004): Neural basis of pantomiming the use of visually presented objects. Neuroimage 21: 1224-1231. Vingerhoets G ( 2008): Knowing about tools: Neural correlates of tool familiarity and experience. Neuroimage 40: 1380-1391. Buxbaum LJ, Kyle KM, Tang K, Detre JA ( 2006): Neural substrates of knowledge of hand postures for object grasping and functional object use: Evidence from fMRI. Brain Res 1117: 175-185. Choi SH, Na DL, Kang E, Lee KM, Lee SW, Na DG ( 2001): Functional magnetic resonance imaging during pantomiming tool-use gestures. Exp Brain Res 139: 311-317. Vingerhoets G, Vandekerckhove E, Honoré P, Vandemaele P, Achten E ( 2011): Neural correlates of pantomiming familiar and unfamiliar tools: Action semantics versus mechanical problem solving? Hum Brain Mapp. Goldenberg G, Hermsdorfer J, Glindemann R, Rorden C, Karnath HO ( 2007): Pantomime of tool use depends on integrity of left inferior frontal cortex. Cereb Cortex 17: 2769-2776. Tunik E, Ortigue S, Adamovich SV, Grafton ST ( 2008): Differential recruitment of anterior intraparietal sulcus and superior parietal lobule during visually guided grasping revealed by electrical neuroimaging. J Neurosci 28: 13615-13620. Genovese CR, Lazar NA, Nichols T ( 2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878. Rapcsak SZ, Rothi LJG, Heilman KM ( 1987): Apraxia in a patient with atypical cerebral-dominance. Brain Cogn 6: 450-463. Raymond M, Pontier D ( 2004): Is there geographical variation in human handedness? Laterality 9: 35-51. Hermsdorfer J, Terlinden G, Muhlau M, Goldenberg G, Wohlschlager AM ( 2007): Neural representations of pantomimed and actual tool use: Evidence from an event-related fMRI study. Neuroimage 36: T109-T118. Fridman EA, Immisch I, Hanakawa T, Bohlhalter S, Waldvogel D, Kansaku K, Wheaton L, Wu T, Hallett M ( 2006): The role of the dorsal stream for gesture production. Neuroimage 29: 417-428. Schaafsma SM, Riedstra BJ, Pfannkuche KA, Bouma A, Groothuis TGG ( 2009): Epigenesis of behavioural lateralization in humans and other animals. Philos Trans R Soc B Biol Sci 364: 915-927. Buxbaum LJ, Kyle KM, Menon R ( 2005): On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled object-related actions in humans. Cogn Brain Res 25: 226-239. Badzakova-Trajkov G, Haberling IS, Roberts RP, Corballis MC ( 2010): Cerebral asymmetries: Complementary and independent processes. Plos One 5: e9682. Creem-Regehr SH, Lee JN ( 2005): Neural representations of graspable objects: Are tools special? Cogn Brain Res 22: 457-469. Buxbaum LJ, Kyle K, Grossman M, Coslett HB ( 2007): Left inferior parietal representations for skilled hand-object interactions: Evidence from stroke and corticobasal degeneration. Cortex 43: 411-423. Oldfield RC ( 1971): The assessment and analysis of handedness. Neuropsychologia 9: 97-113. Meador KJ, Loring DW, Lee K, Hughes M, Lee G, Nichols M, Heilman KM ( 1999): Cerebral lateralization-Relationship of language and ideomotor praxis. Neurology 53: 2028-2031. Wolpert DM, Goodbody SJ, Husain M ( 1998): Maintaining internal representations the role of the human superior parietal lobe. Nat Neurosci 1: 529-533. Llaurens V, Raymond M, Faurie C ( 2009): Why are some people left-handed? An evolutionary perspective. Philos Trans R Soc B Biol Sci 364: 881-894. Bartolo A, Cubelli R, Della Sala S ( 2008): Cognitive approach to the assessment of limb apraxia. Clin Neuropsychol 22: 27-45. Mai JK, Paxinos G, Voss T ( 2008): Atlas of the Human Brain, 3 ed. Amsterdam: Elsevier. Buxbaum LJ, Sirigu A, Schwartz MF, Klatzky R ( 2003): Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia 41: 1091-1113. Vingerhoets G, Honoré P, Vandekerckhove E, Nys J, Vandemaele P, Achten E ( 2010): Multifocal intraparietal activation during discrimination of action intention in observed tool grasping. Neuroscience 169: 1158-1167. Willems RM, Peelen MV, Hagoort P ( 2010): Cerebral lateralization of face-selective and body-selective visual areas depends on handedness. Cereb Cortex 20: 1719-1725. Xu J, Gannon PJ, Emmorey K, Smith JF, Braun AR ( 2009): Symbolic gestures and spoken language are processed by a common neural system. Proc Natl Acad Sci USA 106: 20664-20669. Basso A, Capitani E, Laiacona M, Zanobio ME ( 1985): Crossed Aphasia-One or more syndromes. Cortex 21: 25-45. Hammond G ( 2002): Correlates of human handedness in primary motor cortex: A review and hypothesis. Neurosci Biobehav Rev 26: 285-292. Goldenberg G, Hartmann K, Schlott I ( 2003): Defective pantomime of object use in left brain damage: Apraxia or asymbolia? Neuropsychologia 41: 1565-1573. Corballis MC ( 2009): The evolution and genetics of cerebral asymmetry. Philos Trans R Soc B Biol Sci 364: 867-879. Hecaen H, Deagostini M, Monzonmontes A ( 1981): Cerebral organization in left-handers. Brain Lang 12: 261-284. Frey SH ( 2008): Tool use, communicative gesture and cerebral asymmetries in the modern human brain. Philos Trans R Soc B Biol Sci 363: 1951-1957. Raymer AM, Merians AS, Adair JC, Schwartz RL, Williamson DJG, Rothi LJG, Poizner H, Heilman KM ( 1999): Crossed apraxia: Implications for handedness. Cortex 35: 183-199. Knecht S, Deppe M, Drager B, Bobe L, Lohmann H, Ringelstein EB, Henningsen H ( 2000a): Language lateralization in healthy right-handers. Brain 123: 74-81. Nakai T, Kato C, Glover GH, Toma K, Moriya T, Matsuo K ( 2003): A functional magnetic resonance imaging study of internal modulation of an external visual cue for motor execution. Brain Res 968: 238-247. Thoroughman KA, Shadmehr R ( 2000): Learning of action through adaptive combination of motor primitives. Nature 407: 742-747. Heiss WD, Thiel A, Winhuisen L, Muhlberger B, Kessler J, Herholz K ( 2003): Functional imaging in the assessment of capability for recovery after stroke. J Rehabil Med 35: 27-33. Annett M ( 1973): Handedness in families. Ann Hum Genet 37: 93-105. Jansen A, Menke R, Sommer J, Forster AF, Bruchmann S, Hempleman J, Weber B, Knecht S ( 2006): The assessment of hemispheric lateralization in functional MRI-Robustness and reproducibility. Neuroimage 33: 204-217. Kimura D, Archibal Y ( 1974): Motor functions of left hemisphere. Brain 97: 337-350. Haaland KY, Harrington DL, Knight RT ( 2000): Neural representations of skilled movement. Brain 123: 2306-2313. Abe M, Hanakawa T, Takayama Y, Kuroki C, Ogawa S, Fukuyama H ( 2007): Functional coupling of human prefrontal and premotor areas during cognitive manipulation. J Neurosci 27: 3429-3438. Marchetti C, Della Sala S ( 1997): On crossed apraxia. Description of a right-handed apraxic patient with right supplementary motor area damage. Cortex 33: 341-354. Zwinkels A, Geusgens C, van de Sande P, van Heugten C ( 2004): Assessment of apraxia: Inter-rater reliability of a new apraxia test, association between apraxia and other cognitive deficits and prevalence of apraxia in a rehabilitation setting. Clin Rehabil 18: 819-827. Liepmann H ( 1920): Apraxie. Ergeb Ges Med 516-540. Laimgruber K, Goldenberg G, Hermsdorfer J ( 2005): Manual and hemispheric asymmetries in the execution of actual and pantomimed prehension. Neuropsychologia 43: 682-692. Dassonville P, Zhu XH, Ugurbil K, Kim SG, Ashe J ( 1997): Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci USA 94: 14015-14018. Lewis JW ( 2006): Cortical networks related to human use of tools. Neuroscientist 12: 211-231. Goebel R, Esposito F, Formisano E ( 2006): Analysis of functional image analysis contest (FIAC) data with BrainVoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 27: 392-401. McManus IC, Bryden MP ( 1991): Geschwind theory of cerebral lateralization-Developing a formal, causal model. Psychol Bull 110: 237-253. van Heugten CM, Dekker J, Deelman BG, Stehmann-Saris FC, Kinebanian A ( 1999): A diagnostic test for apraxia in stroke patients: Internal consistency and diagnostic value. Clinical Neuropsychologist 13: 182-192. Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA ( 1999): Cortical networks subserving pursuit and saccadic eye movements in humans: An FMRI study. Hum Brain Mapp 8: 209-225. Bortoletto M, Cunnington R ( 2010): Motor timing and motor sequencing contribute differently to the preparation for voluntary movement. Neuroimage 49: 3338-3348. Geschwind N, Galaburda AM ( 1985): Cerebral lateralization-Biological mechanisms, associations, and pathology. III. A hypothesis and a program for research. Arch Neurol 42: 634-654. Grafton ST, Fagg AH, Arbib MA ( 1998): Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. J Neurophysiol 79: 1092-1097. Vingerhoets G, Acke F, Vandemaele P, Achten E ( 2009): Tool responsive regions in the posterior parietal cortex: Effect of differences in motor goal and target object during imagined transitive movements. Neuroimage 47: 1832-1843. Imazu S, Sugio T, Tanaka S, Inui T ( 2007): Differences between actual and imagined usage of chopsticks: An fMRI study. Cortex 43: 301-307. Johnson-Frey SH, Newman-Norlund R, Grafton ST ( 2005): A distributed left hemisphere network active during planning of everyday tool use skills. Cereb Cortex 15: 681-695. Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP ( 1993): Functional magnetic-resonance-imaging of motor cortex-Hemispheric-asymmetry and handedness 1991; 110 2004; 21 2009; 47 2002; 15 1974; 97 2006; 33 2002; 12 1997; 352 1987; 6 2004; 9 2003; 17 1998; 80 1996; 35 1985; 21 2005; 22 2007; 36 2003; 153 2005; 25 2000; 407 1971; 9 2003; 968 2010; 20 1997; 94 1987; 236 2006; 27 2000; 54 2003; 8 2000a; 123 2002; 145 2008; 28 1999; 13 2009; 364 1999; 11 2006; 1117 2006; 29 1999; 53 2008; 22 1968; 161 2000; 123 2010; 5 2003; 41 2001; 139 2007; 27 1988 2007; 17 2006; 12 2011 1973; 37 2010; 169 2003; 35 2008 1993; 261 2005; 43 2003; 39 1999; 8 2008; 363 1985; 42 1989; 25 1980; 16 2010; 1191 2002; 26 2010; 49 2000; 36 1997; 33 2004; 18 2004; 15 1999; 35 1920 2000b; 123 1999; 30 1998; 1 2005; 15 2007; 43 2008; 40 2005; 17 1981; 12 1998; 79 2009; 106 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_65_1 e_1_2_5_88_1 e_1_2_5_67_1 e_1_2_5_69_1 e_1_2_5_29_1 Liepmann H (e_1_2_5_52_1) 1920 e_1_2_5_80_1 e_1_2_5_82_1 e_1_2_5_61_1 e_1_2_5_84_1 e_1_2_5_63_1 e_1_2_5_86_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 Talairach J (e_1_2_5_74_1) 1988 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_76_1 e_1_2_5_3_1 e_1_2_5_78_1 e_1_2_5_19_1 e_1_2_5_70_1 e_1_2_5_72_1 e_1_2_5_30_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 Mai JK (e_1_2_5_55_1) 2008 e_1_2_5_66_1 e_1_2_5_87_1 e_1_2_5_68_1 e_1_2_5_81_1 e_1_2_5_60_1 Liepmann H (e_1_2_5_53_1) 1920 e_1_2_5_83_1 e_1_2_5_62_1 e_1_2_5_64_1 e_1_2_5_85_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_77_1 e_1_2_5_2_1 e_1_2_5_79_1 e_1_2_5_18_1 e_1_2_5_71_1 e_1_2_5_73_1 e_1_2_5_75_1 e_1_2_5_31_1 e_1_2_5_50_1 |
| References_xml | – reference: Tanne-Gariepy J, Rouiller EM, Boussaoud D ( 2002): Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: Evidence for largely segregated visuomotor pathways. Exp Brain Res 145: 91-103. – reference: Creem-Regehr SH, Lee JN ( 2005): Neural representations of graspable objects: Are tools special? Cogn Brain Res 22: 457-469. – reference: Hecaen H, Deagostini M, Monzonmontes A ( 1981): Cerebral organization in left-handers. Brain Lang 12: 261-284. – reference: Raymond M, Pontier D ( 2004): Is there geographical variation in human handedness? Laterality 9: 35-51. – reference: Tunik E, Ortigue S, Adamovich SV, Grafton ST ( 2008): Differential recruitment of anterior intraparietal sulcus and superior parietal lobule during visually guided grasping revealed by electrical neuroimaging. J Neurosci 28: 13615-13620. – reference: Meador KJ, Loring DW, Lee K, Hughes M, Lee G, Nichols M, Heilman KM ( 1999): Cerebral lateralization-Relationship of language and ideomotor praxis. Neurology 53: 2028-2031. – reference: Mai JK, Paxinos G, Voss T ( 2008): Atlas of the Human Brain, 3 ed. Amsterdam: Elsevier. – reference: Grezes J, Tucker M, Armony J, Ellis R, Passingham RE ( 2003): Objects automatically potentiate action: An fMRI study of implicit processing. Eur J Neurosci 17: 2735-2740. – reference: Vingerhoets G, Acke F, Vandemaele P, Achten E ( 2009): Tool responsive regions in the posterior parietal cortex: Effect of differences in motor goal and target object during imagined transitive movements. Neuroimage 47: 1832-1843. – reference: Gorynia I, Egenter D ( 2000): Intermanual coordination in relation to handedness, familial sinistrality and lateral preferences. Cortex 36: 1-18. – reference: Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP ( 1993): Functional magnetic-resonance-imaging of motor cortex-Hemispheric-asymmetry and handedness. Science 261: 615-617. – reference: Badzakova-Trajkov G, Haberling IS, Roberts RP, Corballis MC ( 2010): Cerebral asymmetries: Complementary and independent processes. Plos One 5: e9682. – reference: Rizzolatti G, Fogassi L, Gallese V ( 2002): Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12: 149-154. – reference: Corballis MC ( 2009): The evolution and genetics of cerebral asymmetry. Philos Trans R Soc B Biol Sci 364: 867-879. – reference: Abe M, Hanakawa T, Takayama Y, Kuroki C, Ogawa S, Fukuyama H ( 2007): Functional coupling of human prefrontal and premotor areas during cognitive manipulation. J Neurosci 27: 3429-3438. – reference: Goldenberg G, Hartmann K, Schlott I ( 2003): Defective pantomime of object use in left brain damage: Apraxia or asymbolia? Neuropsychologia 41: 1565-1573. – reference: Choi SH, Na DL, Kang E, Lee KM, Lee SW, Na DG ( 2001): Functional magnetic resonance imaging during pantomiming tool-use gestures. Exp Brain Res 139: 311-317. – reference: Marchetti C, Della Sala S ( 1997): On crossed apraxia. Description of a right-handed apraxic patient with right supplementary motor area damage. Cortex 33: 341-354. – reference: Lewis JW ( 2006): Cortical networks related to human use of tools. Neuroscientist 12: 211-231. – reference: Fridman EA, Immisch I, Hanakawa T, Bohlhalter S, Waldvogel D, Kansaku K, Wheaton L, Wu T, Hallett M ( 2006): The role of the dorsal stream for gesture production. Neuroimage 29: 417-428. – reference: Goebel R, Esposito F, Formisano E ( 2006): Analysis of functional image analysis contest (FIAC) data with BrainVoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 27: 392-401. – reference: Vingerhoets G, Vandekerckhove E, Honoré P, Vandemaele P, Achten E ( 2011): Neural correlates of pantomiming familiar and unfamiliar tools: Action semantics versus mechanical problem solving? Hum Brain Mapp. – reference: Bullmore E, Brammer M, Williams SCR, Rabehesketh S, Janot N, David A, Mellers J, Howard R, Sham P ( 1996): Statistical methods of estimation and inference for functional MR image analysis. Magn Reson Med 35: 261-277. – reference: Goldenberg G ( 2003): Apraxia and beyond: Life and work of Hugo Liepmann. Cortex 39: 509-524. – reference: Judge J, Stirling J ( 2003): Fine motor skill performance in left- and right-handers: Evidence of an advantage for left-handers. Laterality 8: 297-306. – reference: Buxbaum LJ, Kyle KM, Tang K, Detre JA ( 2006): Neural substrates of knowledge of hand postures for object grasping and functional object use: Evidence from fMRI. Brain Res 1117: 175-185. – reference: Ochipa C, Rothi LJG, Heilman KM ( 1989): Ideational apraxia-A deficit in tool selection and use. Ann Neurol 25: 190-193. – reference: Jansen A, Menke R, Sommer J, Forster AF, Bruchmann S, Hempleman J, Weber B, Knecht S ( 2006): The assessment of hemispheric lateralization in functional MRI-Robustness and reproducibility. Neuroimage 33: 204-217. – reference: Kimura D, Archibal Y ( 1974): Motor functions of left hemisphere. Brain 97: 337-350. – reference: Vingerhoets G ( 2008): Knowing about tools: Neural correlates of tool familiarity and experience. Neuroimage 40: 1380-1391. – reference: Grafton ST, Fagg AH, Arbib MA ( 1998): Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. J Neurophysiol 79: 1092-1097. – reference: Frey SH ( 2008): Tool use, communicative gesture and cerebral asymmetries in the modern human brain. Philos Trans R Soc B Biol Sci 363: 1951-1957. – reference: Xu J, Gannon PJ, Emmorey K, Smith JF, Braun AR ( 2009): Symbolic gestures and spoken language are processed by a common neural system. Proc Natl Acad Sci USA 106: 20664-20669. – reference: Buxbaum LJ, Kalenine S ( 2010): Action knowledge, visuomotor activation, and embodiment in the two action systems. Ann NY Acad Sci 1191: 201-218 – reference: Geschwind N, Galaburda AM ( 1985): Cerebral lateralization-Biological mechanisms, associations, and pathology. III. A hypothesis and a program for research. Arch Neurol 42: 634-654. – reference: Goldenberg G, Hermsdorfer J, Glindemann R, Rorden C, Karnath HO ( 2007): Pantomime of tool use depends on integrity of left inferior frontal cortex. Cereb Cortex 17: 2769-2776. – reference: Imazu S, Sugio T, Tanaka S, Inui T ( 2007): Differences between actual and imagined usage of chopsticks: An fMRI study. Cortex 43: 301-307. – reference: Rumiati RI, Weiss PH, Shallice T, Ottoboni G, Noth J, Zilles K, Fink GR ( 2004): Neural basis of pantomiming the use of visually presented objects. Neuroimage 21: 1224-1231. – reference: Vallortigara G, Rogers LJ, Bisazza A ( 1999): Possible evolutionary origins of cognitive brain lateralization. Brain Res Rev 30: 164-175. – reference: Johnson-Frey SH, Newman-Norlund R, Grafton ST ( 2005): A distributed left hemisphere network active during planning of everyday tool use skills. Cereb Cortex 15: 681-695. – reference: Genovese CR, Lazar NA, Nichols T ( 2002): Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15: 870-878. – reference: Poeck K, Kerschen M ( 1971): Ideomotor apraxia following right-sided cerebral lesion in a left-handed subject. Neuropsychologia 9: 359. – reference: Rizzolatti G, Matelli M ( 2003): Two different streams form the dorsal visual system: Anatomy and functions. Exp Brain Res 153: 146-157. – reference: Laimgruber K, Goldenberg G, Hermsdorfer J ( 2005): Manual and hemispheric asymmetries in the execution of actual and pantomimed prehension. Neuropsychologia 43: 682-692. – reference: Berman RA, Colby CL, Genovese CR, Voyvodic JT, Luna B, Thulborn KR, Sweeney JA ( 1999): Cortical networks subserving pursuit and saccadic eye movements in humans: An FMRI study. Hum Brain Mapp 8: 209-225. – reference: Talairach J, Tournoux P ( 1988): Co-Planar Sereotaxic Atlas of the Human Brain. Stuttgart: G. Thieme. – reference: Bartolo A, Cubelli R, Della Sala S ( 2008): Cognitive approach to the assessment of limb apraxia. Clin Neuropsychol 22: 27-45. – reference: Moll J, de Oliveira-Souza R, Passman LJ, Cunha FC, Souza-Lima F, Andreiuolo PA ( 2000): Functional MRI correlates of real and imagined tool-use pantomimes. Neurology 54: 1331-1336. – reference: Llaurens V, Raymond M, Faurie C ( 2009): Why are some people left-handed? An evolutionary perspective. Philos Trans R Soc B Biol Sci 364: 881-894. – reference: McManus IC, Bryden MP ( 1991): Geschwind theory of cerebral lateralization-Developing a formal, causal model. Psychol Bull 110: 237-253. – reference: Haaland KY, Harrington DL, Knight RT ( 2000): Neural representations of skilled movement. Brain 123: 2306-2313. – reference: Schaafsma SM, Riedstra BJ, Pfannkuche KA, Bouma A, Groothuis TGG ( 2009): Epigenesis of behavioural lateralization in humans and other animals. Philos Trans R Soc B Biol Sci 364: 915-927. – reference: Thoroughman KA, Shadmehr R ( 2000): Learning of action through adaptive combination of motor primitives. Nature 407: 742-747. – reference: Andersen RA ( 1997): Multimodal integration for the representation of space in the posterior parietal cortex. Philos Trans R Soc Lon Ser B Biol Sci 352: 1421-1428. – reference: Molenberghs P, Mesulam MM, Peeters R, Vandenberghe RRC ( 2007): Remapping attentional priorities: Differential contribution of superior parietal lobule and intraparietal sulcus. Cereb Cortex 17: 2703-2712. – reference: Culham JC, Brandt SA, Cavanagh P, Kanwisher NG, Dale AM, Tootell RBH ( 1998): Cortical fMRI activation produced by attentive tracking of moving targets. J Neurophysiol 80: 2657-2670. – reference: Dassonville P, Zhu XH, Ugurbil K, Kim SG, Ashe J ( 1997): Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci USA 94: 14015-14018. – reference: Knecht S, Deppe M, Drager B, Bobe L, Lohmann H, Ringelstein EB, Henningsen H ( 2000a): Language lateralization in healthy right-handers. Brain 123: 74-81. – reference: Ohgami Y, Matsuo K, Uchida N, Nakai T ( 2004): An fMRI study of tool-use gestures: Body part as object and pantomime. Neuroreport 15: 1903-1906. – reference: Poeck K, Lehmkuhl G ( 1980): Ideatory apraxia in a left-handed patient with right-sided brain lesion. Cortex 16: 273-284. – reference: Buxbaum LJ, Kyle K, Grossman M, Coslett HB ( 2007): Left inferior parietal representations for skilled hand-object interactions: Evidence from stroke and corticobasal degeneration. Cortex 43: 411-423. – reference: Annett M ( 1973): Handedness in families. Ann Hum Genet 37: 93-105. – reference: Willems RM, Peelen MV, Hagoort P ( 2010): Cerebral lateralization of face-selective and body-selective visual areas depends on handedness. Cereb Cortex 20: 1719-1725. – reference: Nakai T, Kato C, Glover GH, Toma K, Moriya T, Matsuo K ( 2003): A functional magnetic resonance imaging study of internal modulation of an external visual cue for motor execution. Brain Res 968: 238-247. – reference: Bortoletto M, Cunnington R ( 2010): Motor timing and motor sequencing contribute differently to the preparation for voluntary movement. Neuroimage 49: 3338-3348. – reference: Knecht S, Drager B, Deppe M, Bobe L, Lohmann H, Floel A, Ringelstein EB, Henningsen H ( 2000b): Handedness and hemispheric language dominance in healthy humans. Brain 123: 2512-2518. – reference: Frey SH, Funnell MG, Gerry VE, Gazzaniga MS ( 2005): A dissociation between the representation of tool-use skills and hand dominance: Insights from left- and right-handed callosotomy patients. J Cogn Neurosci 17: 262-272. – reference: Heiss WD, Thiel A, Winhuisen L, Muhlberger B, Kessler J, Herholz K ( 2003): Functional imaging in the assessment of capability for recovery after stroke. J Rehabil Med 35: 27-33. – reference: Geschwind N, Levitsky W ( 1968): Human brain-Left-right asymmetries in temporal speech region. Science 161: 186-187. – reference: Johnson-Frey SH, Maloof FR, Newman-Norlund R, Farrer C, Inati S, Grafton ST ( 2003): Actions or hand-object interactions? Human inferior frontal cortex and action observation. Neuron 39: 1053-1058. – reference: Raymer AM, Merians AS, Adair JC, Schwartz RL, Williamson DJG, Rothi LJG, Poizner H, Heilman KM ( 1999): Crossed apraxia: Implications for handedness. Cortex 35: 183-199. – reference: Wolpert DM, Goodbody SJ, Husain M ( 1998): Maintaining internal representations the role of the human superior parietal lobe. Nat Neurosci 1: 529-533. – reference: Zwinkels A, Geusgens C, van de Sande P, van Heugten C ( 2004): Assessment of apraxia: Inter-rater reliability of a new apraxia test, association between apraxia and other cognitive deficits and prevalence of apraxia in a rehabilitation setting. Clin Rehabil 18: 819-827. – reference: Oldfield RC ( 1971): The assessment and analysis of handedness. Neuropsychologia 9: 97-113. – reference: Thatcher RW, Walker RA, Giudice S ( 1987): Human cerebral hemispheres develop at different rates and ages. Science 236: 1110-1113. – reference: Basso A, Capitani E, Laiacona M, Zanobio ME ( 1985): Crossed Aphasia-One or more syndromes. Cortex 21: 25-45. – reference: Buxbaum LJ, Sirigu A, Schwartz MF, Klatzky R ( 2003): Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia 41: 1091-1113. – reference: Liepmann H ( 1920): Apraxie. Ergeb Ges Med 516-540. – reference: Hermsdorfer J, Terlinden G, Muhlau M, Goldenberg G, Wohlschlager AM ( 2007): Neural representations of pantomimed and actual tool use: Evidence from an event-related fMRI study. Neuroimage 36: T109-T118. – reference: Hammond G ( 2002): Correlates of human handedness in primary motor cortex: A review and hypothesis. Neurosci Biobehav Rev 26: 285-292. – reference: Rapcsak SZ, Rothi LJG, Heilman KM ( 1987): Apraxia in a patient with atypical cerebral-dominance. Brain Cogn 6: 450-463. – reference: van Heugten CM, Dekker J, Deelman BG, Stehmann-Saris FC, Kinebanian A ( 1999): A diagnostic test for apraxia in stroke patients: Internal consistency and diagnostic value. Clinical Neuropsychologist 13: 182-192. – reference: Vingerhoets G, Honoré P, Vandekerckhove E, Nys J, Vandemaele P, Achten E ( 2010): Multifocal intraparietal activation during discrimination of action intention in observed tool grasping. Neuroscience 169: 1158-1167. – reference: Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund HJ ( 1999): A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11: 3276-3286. – reference: Buxbaum LJ, Kyle KM, Menon R ( 2005): On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled object-related actions in humans. Cogn Brain Res 25: 226-239. – start-page: 157 year: 1988 end-page: 173 – volume: 968 start-page: 238 year: 2003 end-page: 247 article-title: A functional magnetic resonance imaging study of internal modulation of an external visual cue for motor execution publication-title: Brain Res – volume: 236 start-page: 1110 year: 1987 end-page: 1113 article-title: Human cerebral hemispheres develop at different rates and ages publication-title: Science – volume: 261 start-page: 615 year: 1993 end-page: 617 article-title: Functional magnetic‐resonance‐imaging of motor cortex—Hemispheric‐asymmetry and handedness publication-title: Science – volume: 110 start-page: 237 year: 1991 end-page: 253 article-title: Geschwind theory of cerebral lateralization—Developing a formal, causal model publication-title: Psychol Bull – volume: 17 start-page: 2703 year: 2007 end-page: 2712 article-title: Remapping attentional priorities: Differential contribution of superior parietal lobule and intraparietal sulcus publication-title: Cereb Cortex – volume: 1117 start-page: 175 year: 2006 end-page: 185 article-title: Neural substrates of knowledge of hand postures for object grasping and functional object use: Evidence from fMRI publication-title: Brain Res – volume: 42 start-page: 634 year: 1985 end-page: 654 article-title: Cerebral lateralization—Biological mechanisms, associations, and pathology. III. A hypothesis and a program for research publication-title: Arch Neurol – volume: 47 start-page: 1832 year: 2009 end-page: 1843 article-title: Tool responsive regions in the posterior parietal cortex: Effect of differences in motor goal and target object during imagined transitive movements publication-title: Neuroimage – start-page: 516 year: 1920 end-page: 540 article-title: Apraxie publication-title: Ergeb Ges Med – volume: 22 start-page: 457 year: 2005 end-page: 469 article-title: Neural representations of graspable objects: Are tools special? publication-title: Cogn Brain Res – volume: 352 start-page: 1421 year: 1997 end-page: 1428 article-title: Multimodal integration for the representation of space in the posterior parietal cortex publication-title: Philos Trans R Soc Lon Ser B Biol Sci – volume: 17 start-page: 262 year: 2005 end-page: 272 article-title: A dissociation between the representation of tool‐use skills and hand dominance: Insights from left‐ and right‐handed callosotomy patients publication-title: J Cogn Neurosci – volume: 43 start-page: 682 year: 2005 end-page: 692 article-title: Manual and hemispheric asymmetries in the execution of actual and pantomimed prehension publication-title: Neuropsychologia – volume: 139 start-page: 311 year: 2001 end-page: 317 article-title: Functional magnetic resonance imaging during pantomiming tool‐use gestures publication-title: Exp Brain Res – volume: 33 start-page: 204 year: 2006 end-page: 217 article-title: The assessment of hemispheric lateralization in functional MRI—Robustness and reproducibility publication-title: Neuroimage – volume: 97 start-page: 337 year: 1974 end-page: 350 article-title: Motor functions of left hemisphere publication-title: Brain – volume: 169 start-page: 1158 year: 2010 end-page: 1167 article-title: Multifocal intraparietal activation during discrimination of action intention in observed tool grasping publication-title: Neuroscience – volume: 363 start-page: 1951 year: 2008 end-page: 1957 article-title: Tool use, communicative gesture and cerebral asymmetries in the modern human brain publication-title: Philos Trans R Soc B Biol Sci – volume: 9 start-page: 35 year: 2004 end-page: 51 article-title: Is there geographical variation in human handedness? publication-title: Laterality – volume: 21 start-page: 1224 year: 2004 end-page: 1231 article-title: Neural basis of pantomiming the use of visually presented objects publication-title: Neuroimage – volume: 29 start-page: 417 year: 2006 end-page: 428 article-title: The role of the dorsal stream for gesture production publication-title: Neuroimage – volume: 1 start-page: 529 year: 1998 end-page: 533 article-title: Maintaining internal representations the role of the human superior parietal lobe publication-title: Nat Neurosci – volume: 6 start-page: 450 year: 1987 end-page: 463 article-title: Apraxia in a patient with atypical cerebral‐dominance publication-title: Brain Cogn – volume: 49 start-page: 3338 year: 2010 end-page: 3348 article-title: Motor timing and motor sequencing contribute differently to the preparation for voluntary movement publication-title: Neuroimage – volume: 8 start-page: 209 year: 1999 end-page: 225 article-title: Cortical networks subserving pursuit and saccadic eye movements in humans: An FMRI study publication-title: Hum Brain Mapp – volume: 39 start-page: 509 year: 2003 end-page: 524 article-title: Apraxia and beyond: Life and work of Hugo Liepmann publication-title: Cortex – year: 2011 article-title: Neural correlates of pantomiming familiar and unfamiliar tools: Action semantics versus mechanical problem solving? publication-title: Hum Brain Mapp – volume: 39 start-page: 1053 year: 2003 end-page: 1058 article-title: Actions or hand‐object interactions? Human inferior frontal cortex and action observation publication-title: Neuron – volume: 25 start-page: 190 year: 1989 end-page: 193 article-title: Ideational apraxia—A deficit in tool selection and use publication-title: Ann Neurol – volume: 35 start-page: 261 year: 1996 end-page: 277 article-title: Statistical methods of estimation and inference for functional MR image analysis publication-title: Magn Reson Med – volume: 54 start-page: 1331 year: 2000 end-page: 1336 article-title: Functional MRI correlates of real and imagined tool‐use pantomimes publication-title: Neurology – volume: 17 start-page: 2769 year: 2007 end-page: 2776 article-title: Pantomime of tool use depends on integrity of left inferior frontal cortex publication-title: Cereb Cortex – volume: 17 start-page: 2735 year: 2003 end-page: 2740 article-title: Objects automatically potentiate action: An fMRI study of implicit processing publication-title: Eur J Neurosci – volume: 12 start-page: 261 year: 1981 end-page: 284 article-title: Cerebral organization in left‐handers publication-title: Brain Lang – year: 2008 – volume: 123 start-page: 2306 year: 2000 end-page: 2313 article-title: Neural representations of skilled movement publication-title: Brain – volume: 53 start-page: 2028 year: 1999 end-page: 2031 article-title: Cerebral lateralization—Relationship of language and ideomotor praxis publication-title: Neurology – volume: 25 start-page: 226 year: 2005 end-page: 239 article-title: On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled object‐related actions in humans publication-title: Cogn Brain Res – start-page: 516 year: 1920 end-page: 543 – volume: 37 start-page: 93 year: 1973 end-page: 105 article-title: Handedness in families publication-title: Ann Hum Genet – volume: 161 start-page: 186 year: 1968 end-page: 187 article-title: Human brain—Left‐right asymmetries in temporal speech region publication-title: Science – volume: 1191 start-page: 201 year: 2010 end-page: 218 article-title: Action knowledge, visuomotor activation, and embodiment in the two action systems publication-title: Ann NY Acad Sci – volume: 145 start-page: 91 year: 2002 end-page: 103 article-title: Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: Evidence for largely segregated visuomotor pathways publication-title: Exp Brain Res – volume: 15 start-page: 1903 year: 2004 end-page: 1906 article-title: An fMRI study of tool‐use gestures: Body part as object and pantomime publication-title: Neuroreport – volume: 407 start-page: 742 year: 2000 end-page: 747 article-title: Learning of action through adaptive combination of motor primitives publication-title: Nature – volume: 9 start-page: 359 year: 1971 article-title: Ideomotor apraxia following right‐sided cerebral lesion in a left‐handed subject publication-title: Neuropsychologia – volume: 11 start-page: 3276 year: 1999 end-page: 3286 article-title: A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study publication-title: Eur J Neurosci – volume: 18 start-page: 819 year: 2004 end-page: 827 article-title: Assessment of apraxia: Inter‐rater reliability of a new apraxia test, association between apraxia and other cognitive deficits and prevalence of apraxia in a rehabilitation setting publication-title: Clin Rehabil – volume: 22 start-page: 27 year: 2008 end-page: 45 article-title: Cognitive approach to the assessment of limb apraxia publication-title: Clin Neuropsychol – volume: 94 start-page: 14015 year: 1997 end-page: 14018 article-title: Functional activation in motor cortex reflects the direction and the degree of handedness publication-title: Proc Natl Acad Sci USA – volume: 41 start-page: 1091 year: 2003 end-page: 1113 article-title: Cognitive representations of hand posture in ideomotor apraxia publication-title: Neuropsychologia – volume: 12 start-page: 149 year: 2002 end-page: 154 article-title: Motor and cognitive functions of the ventral premotor cortex publication-title: Curr Opin Neurobiol – volume: 13 start-page: 182 year: 1999 end-page: 192 article-title: A diagnostic test for apraxia in stroke patients: Internal consistency and diagnostic value publication-title: Clinical Neuropsychologist – volume: 80 start-page: 2657 year: 1998 end-page: 2670 article-title: Cortical fMRI activation produced by attentive tracking of moving targets publication-title: J Neurophysiol – volume: 43 start-page: 411 year: 2007 end-page: 423 article-title: Left inferior parietal representations for skilled hand‐object interactions: Evidence from stroke and corticobasal degeneration publication-title: Cortex – volume: 27 start-page: 392 year: 2006 end-page: 401 article-title: Analysis of functional image analysis contest (FIAC) data with BrainVoyager QX: From single‐subject to cortically aligned group general linear model analysis and self‐organizing group independent component analysis publication-title: Hum Brain Mapp – volume: 123 start-page: 2512 year: 2000b end-page: 2518 article-title: Handedness and hemispheric language dominance in healthy humans publication-title: Brain – volume: 26 start-page: 285 year: 2002 end-page: 292 article-title: Correlates of human handedness in primary motor cortex: A review and hypothesis publication-title: Neurosci Biobehav Rev – volume: 21 start-page: 25 year: 1985 end-page: 45 article-title: Crossed Aphasia—One or more syndromes publication-title: Cortex – volume: 79 start-page: 1092 year: 1998 end-page: 1097 article-title: Dorsal premotor cortex and conditional movement selection: A PET functional mapping study publication-title: J Neurophysiol – volume: 123 start-page: 74 year: 2000a end-page: 81 article-title: Language lateralization in healthy right‐handers publication-title: Brain – volume: 27 start-page: 3429 year: 2007 end-page: 3438 article-title: Functional coupling of human prefrontal and premotor areas during cognitive manipulation publication-title: J Neurosci – volume: 364 start-page: 867 year: 2009 end-page: 879 article-title: The evolution and genetics of cerebral asymmetry publication-title: Philos Trans R Soc B Biol Sci – volume: 15 start-page: 870 year: 2002 end-page: 878 article-title: Thresholding of statistical maps in functional neuroimaging using the false discovery rate publication-title: Neuroimage – volume: 36 start-page: T109 year: 2007 end-page: T118 article-title: Neural representations of pantomimed and actual tool use: Evidence from an event‐related fMRI study publication-title: Neuroimage – volume: 106 start-page: 20664 year: 2009 end-page: 20669 article-title: Symbolic gestures and spoken language are processed by a common neural system publication-title: Proc Natl Acad Sci USA – volume: 35 start-page: 27 year: 2003 end-page: 33 article-title: Functional imaging in the assessment of capability for recovery after stroke publication-title: J Rehabil Med – volume: 40 start-page: 1380 year: 2008 end-page: 1391 article-title: Knowing about tools: Neural correlates of tool familiarity and experience publication-title: Neuroimage – volume: 35 start-page: 183 year: 1999 end-page: 199 article-title: Crossed apraxia: Implications for handedness publication-title: Cortex – volume: 15 start-page: 681 year: 2005 end-page: 695 article-title: A distributed left hemisphere network active during planning of everyday tool use skills publication-title: Cereb Cortex – volume: 364 start-page: 881 year: 2009 end-page: 894 article-title: Why are some people left‐handed? An evolutionary perspective publication-title: Philos Trans R Soc B Biol Sci – volume: 153 start-page: 146 year: 2003 end-page: 157 article-title: Two different streams form the dorsal visual system: Anatomy and functions publication-title: Exp Brain Res – volume: 9 start-page: 97 year: 1971 end-page: 113 article-title: The assessment and analysis of handedness publication-title: Neuropsychologia – volume: 16 start-page: 273 year: 1980 end-page: 284 article-title: Ideatory apraxia in a left‐handed patient with right‐sided brain lesion publication-title: Cortex – volume: 30 start-page: 164 year: 1999 end-page: 175 article-title: Possible evolutionary origins of cognitive brain lateralization publication-title: Brain Res Rev – volume: 12 start-page: 211 year: 2006 end-page: 231 article-title: Cortical networks related to human use of tools publication-title: Neuroscientist – volume: 28 start-page: 13615 year: 2008 end-page: 13620 article-title: Differential recruitment of anterior intraparietal sulcus and superior parietal lobule during visually guided grasping revealed by electrical neuroimaging publication-title: J Neurosci – volume: 41 start-page: 1565 year: 2003 end-page: 1573 article-title: Defective pantomime of object use in left brain damage: Apraxia or asymbolia? publication-title: Neuropsychologia – year: 1988 – volume: 364 start-page: 915 year: 2009 end-page: 927 article-title: Epigenesis of behavioural lateralization in humans and other animals publication-title: Philos Trans R Soc B Biol Sci – volume: 36 start-page: 1 year: 2000 end-page: 18 article-title: Intermanual coordination in relation to handedness, familial sinistrality and lateral preferences publication-title: Cortex – volume: 5 start-page: e9682 year: 2010 article-title: Cerebral asymmetries: Complementary and independent processes publication-title: Plos One – volume: 33 start-page: 341 year: 1997 end-page: 354 article-title: On crossed apraxia. Description of a right‐handed apraxic patient with right supplementary motor area damage publication-title: Cortex – volume: 43 start-page: 301 year: 2007 end-page: 307 article-title: Differences between actual and imagined usage of chopsticks: An fMRI study publication-title: Cortex – volume: 8 start-page: 297 year: 2003 end-page: 306 article-title: Fine motor skill performance in left‐ and right‐handers: Evidence of an advantage for left‐handers publication-title: Laterality – volume: 20 start-page: 1719 year: 2010 end-page: 1725 article-title: Cerebral lateralization of face‐selective and body‐selective visual areas depends on handedness publication-title: Cereb Cortex – ident: e_1_2_5_44_1 doi: 10.1080/13576500412331325342 – ident: e_1_2_5_56_1 doi: 10.1016/S0010-9452(08)70010-8 – start-page: 516 year: 1920 ident: e_1_2_5_53_1 article-title: Apraxie publication-title: Ergeb Ges Med – ident: e_1_2_5_65_1 doi: 10.1016/0028-3932(71)90032-7 – ident: e_1_2_5_45_1 doi: 10.1126/science.8342027 – ident: e_1_2_5_61_1 doi: 10.1016/S0006-8993(03)02249-2 – ident: e_1_2_5_62_1 doi: 10.1002/ana.410250214 – ident: e_1_2_5_19_1 doi: 10.1016/j.cogbrainres.2004.10.006 – ident: e_1_2_5_28_1 doi: 10.1002/hbm.20249 – ident: e_1_2_5_39_1 doi: 10.1016/j.neuroimage.2007.03.037 – ident: e_1_2_5_71_1 doi: 10.1016/S0959-4388(02)00308-2 – ident: e_1_2_5_12_1 doi: 10.1111/j.1749-6632.2010.05447.x – ident: e_1_2_5_67_1 doi: 10.1016/0278-2626(87)90139-4 – ident: e_1_2_5_84_1 doi: 10.1016/j.neuroscience.2010.05.080 – ident: e_1_2_5_14_1 doi: 10.1016/j.cogbrainres.2005.05.014 – ident: e_1_2_5_33_1 doi: 10.1152/jn.1998.79.2.1092 – ident: e_1_2_5_22_1 doi: 10.1098/rstb.2008.0008 – ident: e_1_2_5_35_1 doi: 10.1093/brain/123.11.2306 – ident: e_1_2_5_86_1 doi: 10.1038/2245 – ident: e_1_2_5_46_1 doi: 10.1093/brain/97.1.337 – ident: e_1_2_5_6_1 doi: 10.1080/13854040601139310 – ident: e_1_2_5_26_1 doi: 10.1126/science.161.3837.186 – ident: e_1_2_5_70_1 doi: 10.1007/s00221-003-1588-0 – ident: e_1_2_5_23_1 doi: 10.1162/0898929053124974 – ident: e_1_2_5_21_1 doi: 10.1073/pnas.94.25.14015 – ident: e_1_2_5_88_1 doi: 10.1191/0269215504cr816oa – ident: e_1_2_5_31_1 doi: 10.1093/cercor/bhm004 – ident: e_1_2_5_66_1 doi: 10.1016/S0010-9452(80)80062-1 – ident: e_1_2_5_42_1 doi: 10.1016/S0896-6273(03)00524-5 – ident: e_1_2_5_87_1 doi: 10.1073/pnas.0909197106 – ident: e_1_2_5_9_1 doi: 10.1046/j.1460-9568.1999.00753.x – ident: e_1_2_5_79_1 doi: 10.1016/S0165-0173(99)00012-0 – ident: e_1_2_5_10_1 doi: 10.1016/j.neuroimage.2009.11.048 – ident: e_1_2_5_29_1 doi: 10.1016/S0010-9452(08)70261-2 – ident: e_1_2_5_41_1 doi: 10.1016/j.neuroimage.2006.06.019 – ident: e_1_2_5_15_1 doi: 10.1016/j.brainres.2006.08.010 – ident: e_1_2_5_58_1 doi: 10.1212/WNL.53.9.2028 – ident: e_1_2_5_20_1 doi: 10.1152/jn.1998.80.5.2657 – ident: e_1_2_5_59_1 doi: 10.1093/cercor/bhl179 – ident: e_1_2_5_40_1 doi: 10.1016/S0010-9452(08)70456-8 – ident: e_1_2_5_78_1 doi: 10.1523/JNEUROSCI.3303-08.2008 – ident: e_1_2_5_51_1 doi: 10.1177/1073858406288327 – ident: e_1_2_5_80_1 doi: 10.1076/clin.13.2.182.1966 – ident: e_1_2_5_81_1 doi: 10.1016/j.neuroimage.2007.12.058 – ident: e_1_2_5_30_1 doi: 10.1016/S0028-3932(03)00120-9 – ident: e_1_2_5_27_1 doi: 10.1001/archneur.1985.04060070024012 – start-page: 516 volume-title: Ergebnisse der gesamten Medizin year: 1920 ident: e_1_2_5_52_1 – ident: e_1_2_5_47_1 doi: 10.1093/brain/123.1.74 – ident: e_1_2_5_34_1 doi: 10.1046/j.1460-9568.2003.02695.x – ident: e_1_2_5_32_1 doi: 10.1016/S0010-9452(08)70832-3 – ident: e_1_2_5_69_1 doi: 10.1080/13576500244000274 – ident: e_1_2_5_54_1 doi: 10.1098/rstb.2008.0235 – volume-title: Atlas of the Human Brain year: 2008 ident: e_1_2_5_55_1 – volume-title: Co‐Planar Sereotaxic Atlas of the Human Brain year: 1988 ident: e_1_2_5_74_1 – ident: e_1_2_5_63_1 doi: 10.1097/00001756-200408260-00014 – ident: e_1_2_5_11_1 doi: 10.1002/mrm.1910350219 – ident: e_1_2_5_17_1 doi: 10.1007/s002210100777 – ident: e_1_2_5_82_1 doi: 10.1016/j.neuroimage.2009.05.100 – ident: e_1_2_5_13_1 doi: 10.1016/S0028-3932(02)00314-7 – ident: e_1_2_5_38_1 doi: 10.1080/16501960310010115 – ident: e_1_2_5_49_1 doi: 10.1016/j.neuropsychologia.2004.09.004 – ident: e_1_2_5_57_1 doi: 10.1037/0033-2909.110.2.237 – ident: e_1_2_5_75_1 doi: 10.1007/s00221-002-1078-9 – ident: e_1_2_5_7_1 doi: 10.1016/S0010-9452(85)80014-9 – ident: e_1_2_5_48_1 doi: 10.1093/brain/123.12.2512 – ident: e_1_2_5_72_1 doi: 10.1016/j.neuroimage.2003.11.017 – ident: e_1_2_5_73_1 doi: 10.1098/rstb.2008.0244 – ident: e_1_2_5_76_1 doi: 10.1126/science.3576224 – ident: e_1_2_5_24_1 doi: 10.1016/j.neuroimage.2005.07.026 – ident: e_1_2_5_60_1 doi: 10.1212/WNL.54.6.1331 – ident: e_1_2_5_3_1 doi: 10.1098/rstb.1997.0128 – ident: e_1_2_5_77_1 doi: 10.1038/35037588 – ident: e_1_2_5_68_1 doi: 10.1016/S0010-9452(08)70793-7 – ident: e_1_2_5_85_1 doi: 10.1093/cercor/bhp234 – ident: e_1_2_5_50_1 doi: 10.1007/978-3-642-70877-0_10 – ident: e_1_2_5_8_1 doi: 10.1002/(SICI)1097-0193(1999)8:4<209::AID-HBM5>3.0.CO;2-0 – ident: e_1_2_5_37_1 doi: 10.1016/0093-934X(81)90018-3 – ident: e_1_2_5_43_1 doi: 10.1093/cercor/bhh169 – ident: e_1_2_5_2_1 doi: 10.1523/JNEUROSCI.4273-06.2007 – ident: e_1_2_5_4_1 doi: 10.1111/j.1469-1809.1973.tb01817.x – ident: e_1_2_5_18_1 doi: 10.1098/rstb.2008.0232 – ident: e_1_2_5_16_1 doi: 10.1016/S0010-9452(08)70466-0 – ident: e_1_2_5_64_1 doi: 10.1016/0028-3932(71)90067-4 – ident: e_1_2_5_36_1 doi: 10.1016/S0149-7634(02)00003-9 – ident: e_1_2_5_83_1 doi: 10.1002/hbm.21078 – ident: e_1_2_5_25_1 doi: 10.1006/nimg.2001.1037 – ident: e_1_2_5_5_1 doi: 10.1371/journal.pone.0009682 |
| SSID | ssj0011501 |
| Score | 2.3799164 |
| Snippet | We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right‐handed and... We aimed to investigate the effect of hand effector and handedness on the cerebral lateralization of pantomiming learned movements. Fourteen right-handed and... |
| SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 763 |
| SubjectTerms | Adult bimanual gestures Biological and medical sciences Brain Mapping Cerebral Cortex - physiology cerebral lateralization Cognition. Intelligence Female functional asymmetry Functional Laterality - physiology Fundamental and applied biological sciences. Psychology Gestures handedness hemispheric specialization Humans Image Interpretation, Computer-Assisted Investigative techniques, diagnostic techniques (general aspects) lateralization Magnetic Resonance Imaging Male Medical sciences Mental imagery. Mental representation Movement - physiology Nervous system pantomiming Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Radiodiagnosis. Nmr imagery. Nmr spectrometry tool use transitive gestures unimanual gestures Young Adult |
| Title | Cerebral lateralization of praxis in right- and left-handedness: Same pattern, different strength |
| URI | https://api.istex.fr/ark:/67375/WNG-QGJF91GC-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21247 https://www.ncbi.nlm.nih.gov/pubmed/21500314 https://www.proquest.com/docview/1517356024 https://www.proquest.com/docview/927988374 https://pubmed.ncbi.nlm.nih.gov/PMC6870330 |
| Volume | 33 |
| WOSCitedRecordID | wos000301341000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: WIN dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VghAXHi0PQ4lWCFUccOv3euFUIpKC1AgEqLmtdtdrEuE4kZ2icuMn8Bv5JcyuHyWiSEjcLHmcxJOZ2W92Z74BeBpIqWUcUTfXNDa7Vb6bxtR3E08goEgli1Rmh03QySSdTtm7LXjZ9cI0_BD9hpvxDBuvjYMLWR9ekIbO5OIA425kOsn9yDrl6ZtJf4KAQMcmW7jEugwjcMcq5AWH_ZMba9FVo9ZzUxspalRP3sy1uAx4_lk_-TuutQvT6NZ_vdJtuNniUXLUGNAd2NLlDuwelZiLL76RfWIrRO3W-w5cP2kP4ndBD3VljpwLUgjTw1y07ZxkmZNVJc7nNZmXxGb-P7__IKLMSKFzc2126nVmAuwL8kEsNFlZhs_yOelmtayJaWApP69nd-HT6PXH4bHbTmxwVWIiroyZDKgIojD3MXqFmB3p2NeJZIHHpEqEjqgWOsvxi3ydRgoBi8qFMIakAumH92C7XJb6ARAqlScx3ZGZEJGkGWOxyKXKdSIk80LpwLPuv-OqpTM3UzUK3hAxBxy1ya02HXjSi64aDo_LhPatAfQSovpiit5ozE8nY_5-_HbE_PGQhw4MNiykfwDBY4jRL3VgrzMZ3gaEmiOwoiGiyyBygPS30ZXN-Ywo9fKs5iww5HEhRZH7jYFdfDaasxk04ADdML1ewLCEb94p5zPLFp7gbwpDD_VlTe_vGuDHr07sxcN_F30ENxBBBk0p0x5sr6sz_Riuqa_reV0N4AqdpgPrl78Aync93g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VFlEuPFoehlJWCFUcMPV7vYhLiUhSaCIQRfS22rXXTUTiREmKyo2fwG_klzCzdlwiioTEzZLHSTyZnf1mduYbgKeB1kbHEXcLw2PKVvluGnPfTTyFgCLVIspyO2yC9_vpyYl4vwavlr0wFT9Ek3CjlWH9NS1wSkjvX7CGDvT4BTreiF-BjShB5E79JIf95gwBoY4Nt3CTdQX64CWvkBfsN4-u7EYbpNhzqo5Uc1RQUU22uAx6_llB-TuytVtT--b_vdQtuFFDUnZQ2dBtWDPlFmwflBiOj7-xPWaLRG32fQuu9eqz-G0wLTOjU-cRGylqYx7VHZ1sUrDpTJ0P52xYMhv8__z-g6kyZyNT0DUl601OPvYl-6jGhk0tyWf5nC3HtSwY9bCUp4vBHfjUfnPc6rr10AY3S8jp6ljogKsgCgsfHViIAZKJfZNoEXhCZ4kyETfK5AV-kW_SKEPMkhVKkS1lgfbDu7BeTkpzHxjXmacx4tG5UpHmuRCxKnRWmERp4YXagWfLP09mNaM5DdYYyYqLOZCoTWm16cCTRnRa0XhcJrRnLaCRULMvVPfGY_m535EfOm_bwu-0ZOjA7oqJNA8gfgzRAaYO7CxtRtY-YS4RW_EQAWYQOcCa27ia6YhGlWZyNpciIP64kKPIvcrCLj4b7ZlmDTjAV2yvESCi8NU75XBgCcMT_E1h6KG-rO39XQOy-7pnLx78u-hj2Owe947k0WH_3UO4joAyqCqbdmB9MTszj-Bq9nUxnM927fL8BThOQSY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFlW98Gh5BEqxEKo4EJq3Y8SlLOy2QKMiQPRm2YnTXZHNrpItKjd-Ar-RX8LYeZQVRULiFimT12Q8_sae-QbgsSelkmFA7VzRUK9WuXYcUteOHIGAIpYsSDPTbIImSXxywo5X4EVXC9PwQ_QLbnpkGH-tB7iaZ_neBWvoWE6foeMN6BVYCyKc-nQ9yWHS7yEg1DHhFk6yNkMf3PEKOd5ef-nSbLSmFXuusyNFjQrKm84Wl0HPPzMof0e2ZmoaXv-_j7oB11pISvYbG7oJK6rchK39EsPx6TeyS0ySqFl934T1o3YvfgvUQFV617kghdBlzEVb0UlmOZlX4nxSk0lJTPD_8_sPIsqMFCrXx3qxXmXaxz4nH8RUkbkh-Syfkq5dy4LoGpbydDG-BZ-Grz8ODuy2aYOdRtrpypBJjwov8HMXHZiPAZIKXRVJ5jlMppFQAVVCZTk-yFVxkOKPS3MhtC2lnnT927Bazkp1FwiVqSMx4pGZEIGkGWOhyGWaq0hI5vjSgifdz-Npy2iuG2sUvOFi9jhqkxttWvCoF503NB6XCe0aC-glRPVF573RkH9ORvz96M2QuaMB9y3YWTKR_gLEjz46wNiC7c5meOsTao7YivoIML3AAtKfxtGst2hEqWZnNWee5o_zKYrcaSzs4t5oz7rXgAV0yfZ6AU0UvnymnIwNYXiE7-T7DurL2N7fNcAPXh6Zg3v_LvoQ1o9fDfm7w-TtfdhAPOk1iU3bsLqoztQDuJp-XUzqaseMzl9Hv0CY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerebral+lateralization+of+praxis+in+right-+and+left-handedness%3A+same+pattern%2C+different+strength&rft.jtitle=Human+brain+mapping&rft.au=Vingerhoets%2C+Guy&rft.au=Acke%2C+Frederic&rft.au=Alderweireldt%2C+Ann-Sofie&rft.au=Nys%2C+Jo&rft.date=2012-04-01&rft.eissn=1097-0193&rft.volume=33&rft.issue=4&rft.spage=763&rft_id=info:doi/10.1002%2Fhbm.21247&rft_id=info%3Apmid%2F21500314&rft.externalDocID=21500314 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |