Microfluidic formulation of nanoparticles for biomedical applications

Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials Vol. 274; p. 120826
Main Authors: Shepherd, Sarah J., Issadore, David, Mitchell, Michael J.
Format: Journal Article
Language:English
Published: Netherlands Elsevier Ltd 01.07.2021
Subjects:
ISSN:0142-9612, 1878-5905, 1878-5905
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics—devices that manipulate fluids on a micrometer scale—have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques—such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets.
AbstractList Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics—devices that manipulate fluids on a micrometer scale—have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques—such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets.
Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics-devices that manipulate fluids on a micrometer scale-have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques-such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets.Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics-devices that manipulate fluids on a micrometer scale-have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques-such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets.
Nanomedicine has made significant advances in clinical applications since its introduction in the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics—devices that manipulate fluids on a micrometer scale—have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques—such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets.
ArticleNumber 120826
Author Shepherd, Sarah J.
Mitchell, Michael J.
Issadore, David
AuthorAffiliation 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
5 Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA
6 Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA
4 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA
2 Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA
3 Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA
7 Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA
AuthorAffiliation_xml – name: 7 Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA
– name: 2 Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA
– name: 3 Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA
– name: 4 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA
– name: 6 Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA
– name: 5 Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA
– name: 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA
Author_xml – sequence: 1
  givenname: Sarah J.
  surname: Shepherd
  fullname: Shepherd, Sarah J.
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
– sequence: 2
  givenname: David
  orcidid: 0000-0002-5461-8653
  surname: Issadore
  fullname: Issadore, David
  email: issadore@seas.upenn.edu
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
– sequence: 3
  givenname: Michael J.
  surname: Mitchell
  fullname: Mitchell, Michael J.
  email: mjmitch@seas.upenn.edu
  organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33965797$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFvFSEUhYmpsa_Vv2AmrtzMKzDAMC6Mtba1SRs3uiYM3FGePBhhpkn_vYyvNW1Xb3Uh9_Ddk3s4QgchBkDoHcFrgok42ax7F7d6guS0z2uKKVkTiiUVL9CKyFbWvMP8AK0wYbTuBKGH6CjnDS53zOgrdNg0neBt167Q-Y0zKQ5-dtaZaohpO3s9uRiqOFRBhzjqNDnjIS_NahkMRal9pcfRl8Oiza_Ry6FYgTf39Rj9uDj_fva1vv52eXV2el0bwfhUS0ksdLrtW0LIQG3XYGYMs0C0GESPgQsGlFo7AJZQqua20T0HMG1Lbd8co4877jj3xYeBMCXt1ZjcVqc7FbVTTzvB_VI_462SLaeENgXw_h6Q4p8Z8qS2LhvwXgeIc1aUc9JhKQXbQ0qZlJSzRfr2sa3_fh7WXASfdoKy65wTDMq46d_qikvnFcFqSVZt1ONk1ZKs2iVbEB-eIR6m7PX4y-4xlHBuHSSVjYNgSpQJzKRsdPthPj_DGO_C8ht-w92-kL8FBeBQ
CitedBy_id crossref_primary_10_1021_cbe_5c00059
crossref_primary_10_1016_j_tifs_2023_03_025
crossref_primary_10_1038_s41596_022_00755_x
crossref_primary_10_3390_pharmaceutics16010131
crossref_primary_10_1016_j_agrcom_2024_100040
crossref_primary_10_1016_j_cherd_2023_03_049
crossref_primary_10_1016_j_ijpx_2025_100399
crossref_primary_10_3390_pharmaceutics13081292
crossref_primary_10_1016_j_ceja_2025_100853
crossref_primary_10_1016_j_ijpharm_2024_124460
crossref_primary_10_1007_s40242_025_4203_0
crossref_primary_10_1016_j_foodres_2025_116171
crossref_primary_10_1016_j_ijpharm_2025_125297
crossref_primary_10_1016_j_jddst_2024_106063
crossref_primary_10_3390_pharmaceutics17091231
crossref_primary_10_1038_s41578_025_00831_0
crossref_primary_10_1097_TP_0000000000005025
crossref_primary_10_1007_s10404_022_02595_3
crossref_primary_10_1016_j_ijbiomac_2021_12_129
crossref_primary_10_1007_s10544_023_00671_1
crossref_primary_10_1016_j_ijpharm_2022_121762
crossref_primary_10_1002_anbr_202100109
crossref_primary_10_1016_j_ijpharm_2022_122299
crossref_primary_10_1007_s40820_025_01717_0
crossref_primary_10_1063_5_0281437
crossref_primary_10_1002_SMMD_20220027
crossref_primary_10_1039_D2NR00124A
crossref_primary_10_3390_pharmaceutics16091159
crossref_primary_10_1016_j_colsurfa_2022_129216
crossref_primary_10_1016_j_ijbiomac_2024_136392
crossref_primary_10_1039_D4NR00019F
crossref_primary_10_1016_j_tifs_2024_104626
crossref_primary_10_1016_j_ijbiomac_2024_137121
crossref_primary_10_1016_j_ijpharm_2022_121857
crossref_primary_10_1016_j_biotechadv_2025_108715
crossref_primary_10_1002_EXP_20230147
crossref_primary_10_1016_j_biomaterials_2023_122345
crossref_primary_10_1016_j_cej_2025_161972
crossref_primary_10_3390_molecules29020398
crossref_primary_10_1016_j_apmt_2025_102786
crossref_primary_10_1016_j_cis_2022_102640
crossref_primary_10_1016_j_colsurfb_2025_114598
crossref_primary_10_1016_j_rineng_2025_106296
crossref_primary_10_1016_j_bioadv_2023_213649
crossref_primary_10_1016_j_colsurfa_2022_129107
crossref_primary_10_1016_j_foodres_2021_110885
crossref_primary_10_1038_s41573_021_00283_5
crossref_primary_10_1039_D4RA08284B
crossref_primary_10_1063_5_0228447
crossref_primary_10_15541_jim20240431
crossref_primary_10_1186_s12967_024_05160_4
crossref_primary_10_1016_j_colsurfa_2025_137466
crossref_primary_10_1016_j_ejpb_2023_05_010
crossref_primary_10_1038_s41587_025_02675_z
crossref_primary_10_1016_j_ijpx_2024_100309
crossref_primary_10_1007_s44395_025_00018_0
crossref_primary_10_3390_polym16233396
crossref_primary_10_1016_j_ijpharm_2024_124371
crossref_primary_10_3390_nano15090637
crossref_primary_10_1088_2043_6262_aca023
crossref_primary_10_1002_adhm_202203033
crossref_primary_10_3390_nano11123440
crossref_primary_10_1038_s42003_024_06589_5
crossref_primary_10_1016_j_heliyon_2024_e26616
crossref_primary_10_1039_D4NR04778H
crossref_primary_10_1186_s12951_024_02328_4
crossref_primary_10_1007_s40964_025_01140_2
crossref_primary_10_3390_mi15010090
crossref_primary_10_1007_s13346_024_01523_y
crossref_primary_10_1002_adma_202308977
crossref_primary_10_1016_j_apmt_2025_102672
crossref_primary_10_1016_j_matdes_2024_112735
crossref_primary_10_1515_revce_2024_0016
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104923
crossref_primary_10_3390_pharmaceutics14091940
crossref_primary_10_1002_jbm_a_37356
crossref_primary_10_3390_biology12010082
crossref_primary_10_1016_j_ijpharm_2022_122370
crossref_primary_10_1002_mco2_253
crossref_primary_10_1080_14760584_2024_2320327
crossref_primary_10_1016_j_jddst_2025_107120
crossref_primary_10_1038_s41467_022_35637_z
crossref_primary_10_1007_s10404_022_02534_2
crossref_primary_10_3390_molecules27186029
crossref_primary_10_1016_j_microc_2025_113831
crossref_primary_10_1016_j_jconrel_2024_07_019
crossref_primary_10_1016_j_trac_2024_118124
crossref_primary_10_1002_crat_202300007
crossref_primary_10_1016_j_jconrel_2023_07_054
crossref_primary_10_1038_s44222_025_00314_5
crossref_primary_10_1016_j_addr_2024_115291
crossref_primary_10_1007_s00259_024_06967_5
crossref_primary_10_1016_j_biomaterials_2022_121570
crossref_primary_10_3389_fphar_2025_1528752
crossref_primary_10_1007_s40005_025_00737_7
crossref_primary_10_1002_smll_202410522
crossref_primary_10_3390_pharmaceutics14061297
crossref_primary_10_1002_mog2_67
crossref_primary_10_1007_s13204_021_01899_0
crossref_primary_10_1039_D3NH00217A
crossref_primary_10_1039_D4TB02314E
crossref_primary_10_1016_j_microc_2025_114061
crossref_primary_10_1021_acsabm_5c00123
crossref_primary_10_2217_nnm_2023_0345
crossref_primary_10_1016_j_mam_2024_101290
crossref_primary_10_3390_ijms24032700
crossref_primary_10_1016_j_xphs_2024_09_015
crossref_primary_10_1016_j_jconrel_2023_04_024
crossref_primary_10_1002_agt2_70054
crossref_primary_10_1002_adhm_202302302
crossref_primary_10_1016_j_ymthe_2022_05_023
crossref_primary_10_1016_j_engmed_2024_100052
crossref_primary_10_1016_j_aej_2025_02_023
crossref_primary_10_1016_j_drudis_2024_103936
crossref_primary_10_1038_s41427_022_00416_1
crossref_primary_10_1080_08982104_2025_2504018
crossref_primary_10_1016_j_ejps_2025_107239
crossref_primary_10_1016_j_foodchem_2025_146260
crossref_primary_10_3390_ma14123164
crossref_primary_10_3390_mi12091079
crossref_primary_10_1002_smll_202403463
crossref_primary_10_1073_pnas_2303567120
crossref_primary_10_1002_adhm_202304615
crossref_primary_10_1016_j_cej_2024_155625
crossref_primary_10_1016_j_nano_2023_102711
crossref_primary_10_1080_20415990_2024_2415281
crossref_primary_10_3390_vaccines13020148
crossref_primary_10_1016_j_jddst_2024_106346
crossref_primary_10_1186_s12951_024_02526_0
crossref_primary_10_1021_acs_biomac_4c01712
crossref_primary_10_1016_j_ces_2024_120190
crossref_primary_10_1016_j_ijbiomac_2023_127358
crossref_primary_10_1039_D2NR00827K
crossref_primary_10_1016_j_colsurfb_2024_113829
crossref_primary_10_1002_adma_202209672
crossref_primary_10_1016_j_jcis_2024_04_061
crossref_primary_10_3390_ijms24031875
crossref_primary_10_1016_j_addr_2024_115419
crossref_primary_10_1016_j_jddst_2022_103526
crossref_primary_10_1002_adtp_202400342
crossref_primary_10_1002_cplu_202300660
crossref_primary_10_1088_2752_5724_ac39ff
crossref_primary_10_1016_j_ijpharm_2024_124641
crossref_primary_10_1063_5_0223938
crossref_primary_10_3390_life13112158
crossref_primary_10_1016_j_jconrel_2025_113707
crossref_primary_10_1039_D4NR01487A
crossref_primary_10_3389_fchem_2022_1013994
crossref_primary_10_3390_technologies11040093
crossref_primary_10_1002_mco2_167
crossref_primary_10_1080_08982104_2023_2285973
crossref_primary_10_1039_D4NR00278D
crossref_primary_10_1007_s10544_023_00649_z
crossref_primary_10_1016_j_jconrel_2025_113932
crossref_primary_10_1002_adfm_202514387
crossref_primary_10_1016_j_ijpharm_2023_122732
crossref_primary_10_3390_gels11050309
crossref_primary_10_1002_smll_202106580
crossref_primary_10_1002_wnan_1856
crossref_primary_10_1002_adfm_202203669
crossref_primary_10_1208_s12248_021_00645_2
crossref_primary_10_1002_adma_202403116
crossref_primary_10_1016_j_addr_2022_114197
crossref_primary_10_1039_D3SD00302G
crossref_primary_10_1177_08839115221121862
crossref_primary_10_1002_btpr_3325
crossref_primary_10_1021_acsabm_5c00041
crossref_primary_10_1002_jemt_24444
crossref_primary_10_1080_17435889_2025_2555507
crossref_primary_10_1002_smll_202406521
crossref_primary_10_2174_0109298673285199231210170549
crossref_primary_10_1016_j_foodchem_2023_137582
crossref_primary_10_3390_pharmaceutics14010141
crossref_primary_10_3390_ijms22179149
crossref_primary_10_1016_j_heliyon_2023_e18318
crossref_primary_10_3390_polym13244307
crossref_primary_10_1007_s10404_023_02671_2
crossref_primary_10_1016_j_bioadv_2023_213309
crossref_primary_10_1016_j_ijpharm_2025_126181
crossref_primary_10_1021_acs_biomac_5c00088
crossref_primary_10_1016_j_actbio_2023_09_011
crossref_primary_10_3389_fonc_2024_1296091
crossref_primary_10_1016_j_jddst_2025_106880
crossref_primary_10_1002_smll_202205498
crossref_primary_10_1016_j_ces_2023_119052
crossref_primary_10_1016_j_ijpharm_2025_125532
crossref_primary_10_3390_pharmaceutics17091150
crossref_primary_10_1016_j_ijbiomac_2025_139532
crossref_primary_10_3390_pharmaceutics16121521
crossref_primary_10_1016_j_susmat_2023_e00763
crossref_primary_10_1002_adtp_202400130
crossref_primary_10_1016_j_cis_2023_102871
crossref_primary_10_1016_j_ejpb_2022_07_015
crossref_primary_10_3390_ph16010069
crossref_primary_10_1021_acs_langmuir_5c01992
crossref_primary_10_1016_j_omtm_2025_101463
crossref_primary_10_1021_acsomega_4c09806
crossref_primary_10_37349_ei_2025_1003212
crossref_primary_10_1007_s10404_025_02817_4
crossref_primary_10_1016_j_jconrel_2022_06_017
crossref_primary_10_1016_j_expthermflusci_2024_111296
crossref_primary_10_3390_bioengineering9110625
crossref_primary_10_1007_s10068_024_01518_y
crossref_primary_10_1007_s12274_023_6031_1
crossref_primary_10_1016_j_ijpharm_2024_124163
crossref_primary_10_1016_j_cej_2024_155938
crossref_primary_10_1002_jbm_b_35530
crossref_primary_10_1002_admt_202101588
crossref_primary_10_1016_j_nantod_2024_102314
crossref_primary_10_1021_jacs_4c04565
crossref_primary_10_1002_anbr_202300041
crossref_primary_10_1016_j_ejpb_2023_08_002
crossref_primary_10_1002_cben_70015
crossref_primary_10_1080_10717544_2022_2108523
crossref_primary_10_1016_j_jddst_2024_105956
Cites_doi 10.1016/S0169-409X(97)00049-5
10.1016/j.nantod.2016.04.006
10.1016/S0142-9612(02)00578-1
10.1021/ja0318030
10.1016/j.cbpa.2004.04.009
10.1021/ac0346712
10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
10.1016/j.jconrel.2019.10.028
10.1039/C7NR03272B
10.1007/s12551-016-0218-6
10.1039/C7NR01593C
10.1016/j.ijpharm.2015.02.063
10.1103/PhysRevLett.87.274501
10.1016/j.xphs.2018.05.003
10.1021/ac053496h
10.1002/btm2.10143
10.1016/j.ejpb.2018.06.017
10.3390/pharmaceutics8040036
10.1016/j.nano.2013.08.003
10.1021/acsabm.9b00853
10.1002/admt.201900488
10.1007/s13346-021-00911-y
10.1038/s41565-019-0591-y
10.1016/j.ejpb.2010.12.029
10.1007/s40259-018-0290-5
10.1007/s13346-019-00699-y
10.3390/inventions3030060
10.1021/ja301621z
10.1038/s41565-020-00822-y
10.1038/nature05058
10.1016/j.canlet.2019.04.040
10.1038/nature04688
10.1021/nl301253v
10.1016/S0168-3659(00)00339-4
10.1002/jps.23269
10.1021/acs.iecr.7b04836
10.1021/acsanm.8b01239
10.1126/science.1066238
10.1021/acs.molpharmaceut.5b00530
10.1038/mt.2014.30
10.1039/c2jm30257h
10.1073/pnas.1118425109
10.1023/A:1010067107182
10.1103/PhysRevE.74.061402
10.1007/s11095-016-1958-5
10.3390/polym3031377
10.1073/pnas.1906929116
10.1039/C6LC01049K
10.1002/btm2.10003
10.1016/j.celrep.2018.02.014
10.1021/acsnano.7b05876
10.1038/s41587-019-0384-8
10.1002/wnan.6
10.1021/nn500299p
10.1038/s41551-019-0351-1
10.1093/annonc/mdh097
10.1016/j.colsurfb.2016.09.016
10.1021/nn501371n
10.1039/c2lc40693d
10.1056/NEJMoa2022483
10.1021/nn403370e
10.1073/pnas.0910603106
10.1208/s12248-015-9780-2
10.1016/j.tibtech.2013.09.007
10.1007/s40265-018-0983-6
10.1080/1061186X.2016.1198354
10.1126/sciadv.aba1028
10.1039/B713141K
10.1038/s41573-020-0090-8
10.14356/kona.2020011
10.1016/j.jallcom.2019.05.153
10.1002/adma.201405408
10.1002/bit.21301
10.1080/21663831.2017.1376720
10.1146/annurev-bioeng-071811-150124
10.1038/nrd.2017.243
10.1126/science.1219657
10.1021/mp400337f
10.1016/j.biomaterials.2014.10.079
10.1038/s41598-019-48515-4
10.1016/S0006-3495(01)76202-9
10.1007/s11095-004-1873-z
10.1016/j.ijpharm.2012.12.048
10.1021/acs.iecr.9b04747
10.1021/acs.langmuir.7b04335
10.1016/j.ces.2012.08.010
10.1259/bjr/59448833
10.1016/0169-409X(95)00023-Z
10.1016/j.jddst.2018.12.009
10.1002/anie.200801360
10.1063/5.0029860
10.1155/2011/591325
10.1021/nn901433u
10.1038/nrc.2017.83
10.1038/s41598-018-20754-x
10.1016/0378-5173(87)90139-6
10.1007/s10544-019-0435-4
10.1073/pnas.1620874114
10.2217/imt-2018-0029
10.1002/wnan.1364
10.1146/annurev-med-040210-162544
10.1016/j.jconrel.2014.12.030
10.1039/C5LC01025J
10.1038/nbt1340
10.1021/nl801736q
10.1021/am3004413
10.1002/jbm.a.36033
10.2144/99272bm16
10.1038/mt.2009.208
10.1038/s41573-018-0006-z
10.1016/j.ces.2017.04.046
10.1056/NEJMoa2034577
10.1016/j.ijpharm.2020.119098
10.1146/annurev-chembioeng-073009-100847
10.1016/j.jconrel.2018.10.008
10.1007/s40005-019-00453-z
10.1039/C6SM01879C
10.1146/annurev.matsci.28.1.153
10.1021/acsomega.8b00341
10.4155/tde-2016-0006
10.1038/s41467-018-03515-2
10.2217/nnm.16.5
10.1155/2015/794601
10.1016/j.jconrel.2016.05.059
10.1021/nn4039063
10.1016/j.colsurfb.2009.09.001
10.1016/j.jconrel.2016.11.015
10.1038/nbt.1602
10.1039/C0LC00507J
10.1186/1556-276X-7-480
10.1016/j.biomaterials.2016.06.015
10.1016/j.ijpharm.2020.119266
10.1039/C4LC00334A
10.1007/s10103-007-0470-x
10.1038/263797a0
10.1080/10611860802228350
10.1126/scitranslmed.aac6522
10.1039/C9LC00240E
10.1007/s13346-020-00724-5
10.3390/ijms19071979
10.1016/j.jconrel.2008.08.012
10.1038/mtna.2012.28
10.1021/acs.nanolett.9b04246
10.1021/nn901676x
10.1021/ac071903e
10.1016/S0022-2836(64)80115-7
10.1021/acs.nanolett.5b02497
10.1038/srep25876
10.1016/0168-3659(93)90103-C
10.1021/acs.nanolett.6b03329
10.1002/anie.200904285
10.1038/nrg3763
10.1021/acs.nanolett.6b03251
10.1002/smtd.201700375
10.1073/pnas.1502850112
10.1038/nnano.2012.168
10.1002/adma.201705328
10.1021/la205131e
10.1021/acs.nanolett.8b01101
10.2147/NSA.S99986
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.biomaterials.2021.120826
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1878-5905
EndPage 120826
ExternalDocumentID PMC8752123
33965797
10_1016_j_biomaterials_2021_120826
S0142961221001824
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R21 MH118170
– fundername: NIAID NIH HHS
  grantid: R61 AI147406
– fundername: NCATS NIH HHS
  grantid: DP2 TR002776
– fundername: NIDDK NIH HHS
  grantid: R01 DK123049
– fundername: NCI NIH HHS
  grantid: P30 CA016520
– fundername: NHGRI NIH HHS
  grantid: RM1 HG010023
– fundername: NCI NIH HHS
  grantid: R01 CA241661
– fundername: NCI NIH HHS
  grantid: R37 CA244911
– fundername: NIBIB NIH HHS
  grantid: R21 EB023989
– fundername: NCI NIH HHS
  grantid: R33 CA206907
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFFNX
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
~HD
AACTN
AAIAV
AAYOK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
RIG
9DU
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c645t-881de9a7b7111f2d9304cc4de1a6f6b0e564e22ddfe08e2dda5d3ab5eec772db3
ISICitedReferencesCount 279
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663587100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-9612
1878-5905
IngestDate Tue Sep 30 16:53:22 EDT 2025
Sat Sep 27 19:00:12 EDT 2025
Mon Sep 29 06:29:38 EDT 2025
Wed Feb 19 02:26:27 EST 2025
Sat Nov 29 07:25:18 EST 2025
Tue Nov 18 21:10:15 EST 2025
Fri Feb 23 02:44:36 EST 2024
Tue Oct 14 19:30:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Drug delivery
Nanoparticle
Imaging
Microfluidics
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c645t-881de9a7b7111f2d9304cc4de1a6f6b0e564e22ddfe08e2dda5d3ab5eec772db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
S.J.S. performed the literature search and designed the display items. S.J.S., D.I., and M.J.M. discussed the manuscript content and wrote the manuscript. All authors critically reviewed and edited the manuscript before submission.
Author contributions
ORCID 0000-0002-5461-8653
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8752123
PMID 33965797
PQID 2524882544
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8752123
proquest_miscellaneous_2551908864
proquest_miscellaneous_2524882544
pubmed_primary_33965797
crossref_citationtrail_10_1016_j_biomaterials_2021_120826
crossref_primary_10_1016_j_biomaterials_2021_120826
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2021_120826
elsevier_clinicalkey_doi_10_1016_j_biomaterials_2021_120826
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jackson, Anderson, Rouphael (bib15) 2020
Polack, Thomas, Kitchin (bib19) 2020; 383
Anselmo, Mitragotri (bib20) 2019; 4
Mitchell, Billingsley, Haley, Wechsler, Peppas, Langer (bib26) 2021; 20
Sercombe, Veerati, Moheimani, Wu, Sood, Hua (bib53) 2015; 6
Valencia, Pridgen, Rhee, Langer, Farokhzad, Karnik (bib126) 2013; 7
Liechty, Kryscio, Slaughter, Peppas (bib113) 2010; 1
Akinc, Maier, Manoharan (bib7) 2019; 14
Frenz, El Harrak, Pauly, Bégin-Colin, Griffiths, Baret (bib165) 2008; 47
Danhier (bib27) 2016; 244
RiP (bib2) 1960; 23
Oberli, Reichmuth, Dorkin (bib59) 2017; 17
Riley, Kashyap, Billingsley (bib64) 2021; 7
Ma, Lee, Yi, Li (bib6) 2017; 17
Riley, June, Langer, Mitchell (bib57) 2019; 18
Baby, Liu, Middelberg, Zhao (bib123) 2017; 169
Bangham, Horne (bib50) 1964; 8
Patel, Ashwanikumar, Robinson (bib99) 2020; 11
Abstiens, Goepferich (bib133) 2019; 49
Garg, Heuck, Ip, Ramsay (bib49) 2016; 24
Reichmuth, Oberli, Jaklenac, Langer, Blankschtein (bib14) 2016; 7
Huang, Jain, El-Sayed, El-Sayed (bib10) 2008; 23
Jeong, Yelleswarapu, Yadavali, Issadore, Lee (bib93) 2015; 15
Han, Michel, Lee (bib140) 2015; 12
Jahn, Vreeland, Gaitan, Locascio (bib73) 2004; 126
O'Brien, Wigler, Inbar (bib8) 2004; 15
Wild, Leaver, Taylor (bib95) 2018
Guimarães, Gaglione, Sewastianik, Carrasco, Langer, Mitchell (bib146) 2018; 12
Maurer, Wong, Stark (bib66) 2001; 80
Hood, Devoe, Atencia, Vreeland, Omiatek (bib78) 2014; 14
Kapadia, Melamed, Day (bib153) 2018; 32
Soppimath, Aminabhavi, Kulkarni, Rudzinski (bib109) 2001; 70
Jousma, Talsma, Spies, Joosten, Junginger, Crommelin (bib68) 1987; 35
Saad, Prud'Homme (bib138) 2016; 11
Fenton, Olafson, Pillai, Mitchell, Langer (bib1) 2018; 30
Mitchell, Jain, Langer (bib29) 2017; 17
Chen, Love, Chen (bib37) 2012; 134
Stetefeld, McKenna, Patel (bib52) 2016; 8
Bobo, Robinson, Islam, Thurecht, Corrie (bib9) 2016; 33
Abalde-Cela, Taladriz-Blanco, De Oliveira, Abell (bib166) 2018; 8
Hao, Nie, Tadimety, Closson, Zhang (bib171) 2017; 5
(bib47) 2019
O'Donovan, Eastburn, Abate (bib168) 2012; 12
Choueiri, Atkins, Bakouny (bib58) 2020
Jahn, Stavis, Hong, Vreeland, Devoe, Gaitan (bib74) 2010; 4
Yamankurt, Berns, Xue (bib177) 2019; 3
Wyss, Blair, Morris, Stone, Weitz (bib175) 2006; 74
Abou-Hassan, Sandre, Cabuil (bib144) 2010; 49
Gale, Jafek, Lambert (bib88) 2018; 3
Choi, Liu, Misra (bib160) 2007; 25
Leung, Shen (bib120) 2018; 34
Kumari, Yadav, Yadav (bib107) 2010; 75
Karnik, Gu, Basto (bib36) 2008; 8
Lim, Swami, Gilson (bib137) 2014; 8
Scholes, Coombes, Illum, Daviz, Vert, Davies (bib118) 1993; 25
Hubbell, Chilkoti (bib115) 2012; 337
Baden, El Sahly, Essink (bib18) 2020
Singh, Pandit, Mokkapati, Garg, Ravikumar, Mijakovic (bib11) 2018; 19
Pu, Cai, Wang, Wang, Chen (bib159) 2018; 57
Markwalter, Prud’homme (bib141) 2018; 107
Walsh, Ou, Belliveau (bib94) 2014; vol. 1141
Daraee, Eatemadi, Abbasi, Aval, Kouhi, Akbarzadeh (bib145) 2016; 44
Kulkarni, Tam, Chen (bib102) 2017; 9
Miller, Gadde, Pfirschke (bib28) 2015; 7
Billingsley, Singh, Ravikumar, Zhang, June, Mitchell (bib56) 2020; 20
Ran, Wang, Liu (bib77) 2018; 130
(bib23) 2020; 38
Sykes, Chen, Zheng, Chan (bib172) 2014; 8
Hoshyar, Gray, Han, Bao (bib173) 2016; 11
Pardi, Hogan, Porter, Weissman (bib13) 2018; 17
Ran, Middelberg, Zhao (bib76) 2016; 148
Finn, Smith, Patel (bib98) 2018; 22
Jeffs, Palmer, Ambegia, Giesbrecht, Ewanick, MacLachlan (bib104) 2005; 22
Mukhopadhyay (bib87) 2007; 79
Pecora (bib51) 2000; 2
Kašpar, Koyuncu, Pittermannová, Ulbrich, Tokárová (bib161) 2019; 21
Sah, Sah (bib119) 2015; 2015
Makadia, Siegel (bib117) 2011; 3
Belliveau, Huft, Lin (bib80) 2012; 1
Bicudo, Santana (bib122) 2012; 84
Gañán-Calvo, Gordillo (bib46) 2001; 87
Roces, Christensen, Perrie (bib134) 2020
Kastner, Verma, Lowry, Perrie (bib84) 2015; 485
Luo, Su, Zhang, Raston (bib86) 2019; 4
Lim, Bertrand, Valencia (bib125) 2014; 10
Ali, Zafar, Zia (bib154) 2016; 9
Dressaire, Sauret (bib174) 2017; 13
Wicki, Witzigmann, Balasubramanian, Huwyler (bib22) 2015; 200
Gooding (bib82) 2004; 8
Xia, Whitesides (bib45) 1998; 28
Ball, Hajj, Vizelman, Bajaj, Whitehead (bib71) 2018; 18
Webb, Forbes, Roces (bib96) 2020; 582
Zimmermann, Lee, Akinc (bib105) 2006; 441
Wang, Langer, Farokhzad (bib41) 2012; 63
Carugo, Bottaro, Owen, Stride, Nastruzzi (bib65) 2016; 6
Nisisako, Torii (bib91) 2008; 8
Kimura, Maeki, Sato (bib100) 2018; 3
Hirota, De Ilarduya, Barron, Szoka (bib101) 1999; 27
Blasi (bib110) 2019; 49
Kauffman, Dorkin, Yang (bib81) 2015; 15
Anselmo, Mitragotri (bib4) 2016; 1
Mukalel, Riley, Zhang, Mitchell (bib63) 2019; 458
Chen, Tam, Lin, Sung, Tam, Cullis (bib72) 2016; 235
Ding, Jiang, Saha (bib147) 2014; 22
Gong, Sheppard, Billingsley, June, Mitchell (bib60) 2021; 16
Banik, Fattahi, Brown (bib142) 2016; 8
Berger, Smith, Zorn (bib69) 2014; 7
Shen, Banerjee, Mlynarska (bib139) 2012; 101
Zhang, Chen, Ma, Sun (bib176) 2020; 3
Wang, Billone, Mullett (bib21) 2013; 3
Hirn, Semmler-Behnke, Schleh (bib157) 2011; 77
Hoy (bib12) 2018; 78
Wagner, Vorauer-Uhl (bib70) 2011; 2011
Langer, Folkman (bib106) 1976; 263
Haley, Gottardi, Langer, Mitchell (bib108) 2020; 10
Ong, Chitneni, Lee, Ming, Yuen (bib40) 2016; 8
Zhang, Billingsley, Mitchell (bib112) 2018; 292
Guimaraes, Zhang, Spektor (bib83) 2019; 316
Yadavali, Lee, Issadore (bib89) 2019; 9
Abraham, Son, Talluri (bib97) 2020
Krzysztoń, Salem, Lee, Schwake, Wagner, Rädler (bib75) 2017; 9
Stavis, Fagan, Stopa, Liddle (bib35) 2018; 1
Lazarus, Riche, Marin, Gupta, Malmstadt, Brutchey (bib163) 2012; 4
Aronson, Medina, Mitchell (bib31) 2021; 5
Liu, Yang, Zou (bib38) 2020; 59
Rastinehad, Anastos, Wajswol (bib150) 2019; 116
Zalipsky (bib54) 1995; 16
Hou, Xie, Huang, Zhu (bib39) 2003; 24
Radovic-Moreno, Chernyak, Mader (bib151) 2015; 112
Dong, Carpinone, Pyrgiotakis, Demokritou, Moudgil (bib156) 2020; 37
Gregoriadis (bib55) 2008; 16
Noble, Stefanick, Ashley, Kiziltepe, Bilgicer (bib30) 2014; 32
Zhao, Bian, Sun, Cai, Li, Zhao (bib3) 2020; 16
Evers, Kulkarni, van der Meel, Cullis, Vader, Schiffelers (bib79) 2018; 2
Semple, Akinc, Chen (bib67) 2010; 28
Daruich De Souza, Ribeiro Nogueira, Rostelato (bib155) 2019; 798
Hoffman (bib114) 2008; 132
Kumar, Nightingale, Krishnadasan (bib162) 2012; 22
McNeil (bib5) 2009; 1
Karnik, Gu, Basto (bib48) 2008; 8
Wilson, Mosenia, Suprenant (bib127) 2017; 105
Cheheltani, Ezzibdeh, Chhour (bib170) 2016; 102
Puri, Loomis, Smith (bib61) 2009; 26
Yadavali, Jeong, Lee, Issadore (bib92) 2018; 9
O'Donnell, McGinity (bib116) 1997; 28
Liu, Zhang, Cito (bib131) 2017; 17
Albanese, Tang, Chan (bib32) 2012; 14
(bib16) 2020
Kohane (bib111) 2007; 96
Anselmo, Mitragotri (bib143) 2015; 17
Mukhopadhyay (bib90) 2005; 77
Kim, Lee Chung, Ma (bib129) 2012; 12
Valizadeh, Mikaeili, Samiei (bib158) 2012; 7
Sebastian Cabeza, Kuhn, Kulkarni, Jensen (bib164) 2012; 28
Whitesides (bib43) 2006; 442
Ng Lee, Park, Whitesides (bib85) 2003; 75
Valencia, Basto, Zhang (bib135) 2010; 4
Milane, Amiji (bib17) 2021
Abrams, Koser, Seitzer (bib103) 2010; 18
Kong, Chen, Wang (bib128) 2019; 19
Zheng, Giljohann, Chen (bib152) 2012; 109
Yin, Kanasty, Eltoukhy, Vegas, Dorkin, Anderson (bib34) 2014; 15
Liu, Zhang, Mäkilä (bib169) 2015; 39
Liu, Cito, Zhang, Wang, Sikanen, Santos (bib132) 2015; 27
Kim, Fay, Cormode (bib130) 2013; 7
Love, Mahon, Levins (bib62) 2010; 107
Jain, Hirst, O'Sullivan (bib148) 2012; 85
Martín-Banderas, Sáez-Fernández, Holgado (bib121) 2013; 443
Pustulka, Wohl, Lee (bib136) 2013; 10
Bisso, Leroux (bib24) 2020; 578
Stroock, Dertinger, Ajdari, Mezic, Stone, Whitesides (bib44) 2002; 295
Dahlman, Kauffman, Xing (bib25) 2017; 114
Rhee, Valencia, Rodriguez, Langer, Farokhzad, Karnik (bib124) 2011; 23
Nightingale, Krishnadasan, Berhanu (bib167) 2011; 11
Hung, Lee (bib33) 2007; 27
Valencia, Farokhzad, Karnik, Langer (bib42) 2012; 7
Liu, Crawford, Vo-Dinh (bib149) 2018; 10
Jeffs (10.1016/j.biomaterials.2021.120826_bib104) 2005; 22
Saad (10.1016/j.biomaterials.2021.120826_bib138) 2016; 11
Bicudo (10.1016/j.biomaterials.2021.120826_bib122) 2012; 84
Anselmo (10.1016/j.biomaterials.2021.120826_bib4) 2016; 1
Mitchell (10.1016/j.biomaterials.2021.120826_bib29) 2017; 17
Gale (10.1016/j.biomaterials.2021.120826_bib88) 2018; 3
Hou (10.1016/j.biomaterials.2021.120826_bib39) 2003; 24
Hirota (10.1016/j.biomaterials.2021.120826_bib101) 1999; 27
Berger (10.1016/j.biomaterials.2021.120826_bib69) 2014; 7
Luo (10.1016/j.biomaterials.2021.120826_bib86) 2019; 4
Abrams (10.1016/j.biomaterials.2021.120826_bib103) 2010; 18
Yadavali (10.1016/j.biomaterials.2021.120826_bib89) 2019; 9
Semple (10.1016/j.biomaterials.2021.120826_bib67) 2010; 28
Evers (10.1016/j.biomaterials.2021.120826_bib79) 2018; 2
Langer (10.1016/j.biomaterials.2021.120826_bib106) 1976; 263
Yamankurt (10.1016/j.biomaterials.2021.120826_bib177) 2019; 3
Aronson (10.1016/j.biomaterials.2021.120826_bib31) 2021; 5
Markwalter (10.1016/j.biomaterials.2021.120826_bib141) 2018; 107
Anselmo (10.1016/j.biomaterials.2021.120826_bib143) 2015; 17
Rastinehad (10.1016/j.biomaterials.2021.120826_bib150) 2019; 116
Hao (10.1016/j.biomaterials.2021.120826_bib171) 2017; 5
Valencia (10.1016/j.biomaterials.2021.120826_bib135) 2010; 4
Choi (10.1016/j.biomaterials.2021.120826_bib160) 2007; 25
Kulkarni (10.1016/j.biomaterials.2021.120826_bib102) 2017; 9
Banik (10.1016/j.biomaterials.2021.120826_bib142) 2016; 8
Baby (10.1016/j.biomaterials.2021.120826_bib123) 2017; 169
Guimarães (10.1016/j.biomaterials.2021.120826_bib146) 2018; 12
Zheng (10.1016/j.biomaterials.2021.120826_bib152) 2012; 109
Hood (10.1016/j.biomaterials.2021.120826_bib78) 2014; 14
Abraham (10.1016/j.biomaterials.2021.120826_bib97) 2020
Gooding (10.1016/j.biomaterials.2021.120826_bib82) 2004; 8
Sah (10.1016/j.biomaterials.2021.120826_bib119) 2015; 2015
Akinc (10.1016/j.biomaterials.2021.120826_bib7) 2019; 14
Kong (10.1016/j.biomaterials.2021.120826_bib128) 2019; 19
Zimmermann (10.1016/j.biomaterials.2021.120826_bib105) 2006; 441
Ali (10.1016/j.biomaterials.2021.120826_bib154) 2016; 9
Haley (10.1016/j.biomaterials.2021.120826_bib108) 2020; 10
Kapadia (10.1016/j.biomaterials.2021.120826_bib153) 2018; 32
Xia (10.1016/j.biomaterials.2021.120826_bib45) 1998; 28
Mukhopadhyay (10.1016/j.biomaterials.2021.120826_bib87) 2007; 79
Nisisako (10.1016/j.biomaterials.2021.120826_bib91) 2008; 8
Daraee (10.1016/j.biomaterials.2021.120826_bib145) 2016; 44
Mitchell (10.1016/j.biomaterials.2021.120826_bib26) 2021; 20
Stroock (10.1016/j.biomaterials.2021.120826_bib44) 2002; 295
Pustulka (10.1016/j.biomaterials.2021.120826_bib136) 2013; 10
Mukalel (10.1016/j.biomaterials.2021.120826_bib63) 2019; 458
Blasi (10.1016/j.biomaterials.2021.120826_bib110) 2019; 49
Chen (10.1016/j.biomaterials.2021.120826_bib37) 2012; 134
Radovic-Moreno (10.1016/j.biomaterials.2021.120826_bib151) 2015; 112
Noble (10.1016/j.biomaterials.2021.120826_bib30) 2014; 32
Hoffman (10.1016/j.biomaterials.2021.120826_bib114) 2008; 132
Webb (10.1016/j.biomaterials.2021.120826_bib96) 2020; 582
Milane (10.1016/j.biomaterials.2021.120826_bib17) 2021
Liu (10.1016/j.biomaterials.2021.120826_bib169) 2015; 39
Ran (10.1016/j.biomaterials.2021.120826_bib76) 2016; 148
Karnik (10.1016/j.biomaterials.2021.120826_bib48) 2008; 8
Wyss (10.1016/j.biomaterials.2021.120826_bib175) 2006; 74
Anselmo (10.1016/j.biomaterials.2021.120826_bib20) 2019; 4
Kauffman (10.1016/j.biomaterials.2021.120826_bib81) 2015; 15
Rhee (10.1016/j.biomaterials.2021.120826_bib124) 2011; 23
Fenton (10.1016/j.biomaterials.2021.120826_bib1) 2018; 30
Wagner (10.1016/j.biomaterials.2021.120826_bib70) 2011; 2011
Jousma (10.1016/j.biomaterials.2021.120826_bib68) 1987; 35
Ng Lee (10.1016/j.biomaterials.2021.120826_bib85) 2003; 75
Ma (10.1016/j.biomaterials.2021.120826_bib6) 2017; 17
Belliveau (10.1016/j.biomaterials.2021.120826_bib80) 2012; 1
Bangham (10.1016/j.biomaterials.2021.120826_bib50) 1964; 8
Sykes (10.1016/j.biomaterials.2021.120826_bib172) 2014; 8
Frenz (10.1016/j.biomaterials.2021.120826_bib165) 2008; 47
Nightingale (10.1016/j.biomaterials.2021.120826_bib167) 2011; 11
Kumar (10.1016/j.biomaterials.2021.120826_bib162) 2012; 22
Kumari (10.1016/j.biomaterials.2021.120826_bib107) 2010; 75
Wang (10.1016/j.biomaterials.2021.120826_bib41) 2012; 63
Sebastian Cabeza (10.1016/j.biomaterials.2021.120826_bib164) 2012; 28
Reichmuth (10.1016/j.biomaterials.2021.120826_bib14) 2016; 7
Baden (10.1016/j.biomaterials.2021.120826_bib18) 2020
Stetefeld (10.1016/j.biomaterials.2021.120826_bib52) 2016; 8
Zalipsky (10.1016/j.biomaterials.2021.120826_bib54) 1995; 16
Jackson (10.1016/j.biomaterials.2021.120826_bib15) 2020
Hubbell (10.1016/j.biomaterials.2021.120826_bib115) 2012; 337
Yin (10.1016/j.biomaterials.2021.120826_bib34) 2014; 15
Makadia (10.1016/j.biomaterials.2021.120826_bib117) 2011; 3
Danhier (10.1016/j.biomaterials.2021.120826_bib27) 2016; 244
Shen (10.1016/j.biomaterials.2021.120826_bib139) 2012; 101
Valencia (10.1016/j.biomaterials.2021.120826_bib126) 2013; 7
Daruich De Souza (10.1016/j.biomaterials.2021.120826_bib155) 2019; 798
Leung (10.1016/j.biomaterials.2021.120826_bib120) 2018; 34
Riley (10.1016/j.biomaterials.2021.120826_bib64) 2021; 7
Mukhopadhyay (10.1016/j.biomaterials.2021.120826_bib90) 2005; 77
O'Donnell (10.1016/j.biomaterials.2021.120826_bib116) 1997; 28
Riley (10.1016/j.biomaterials.2021.120826_bib57) 2019; 18
Ball (10.1016/j.biomaterials.2021.120826_bib71) 2018; 18
Liu (10.1016/j.biomaterials.2021.120826_bib132) 2015; 27
Ran (10.1016/j.biomaterials.2021.120826_bib77) 2018; 130
Zhang (10.1016/j.biomaterials.2021.120826_bib176) 2020; 3
Wang (10.1016/j.biomaterials.2021.120826_bib21) 2013; 3
Hoy (10.1016/j.biomaterials.2021.120826_bib12) 2018; 78
Miller (10.1016/j.biomaterials.2021.120826_bib28) 2015; 7
Garg (10.1016/j.biomaterials.2021.120826_bib49) 2016; 24
Abalde-Cela (10.1016/j.biomaterials.2021.120826_bib166) 2018; 8
Bisso (10.1016/j.biomaterials.2021.120826_bib24) 2020; 578
Finn (10.1016/j.biomaterials.2021.120826_bib98) 2018; 22
Liu (10.1016/j.biomaterials.2021.120826_bib131) 2017; 17
Dong (10.1016/j.biomaterials.2021.120826_bib156) 2020; 37
Gregoriadis (10.1016/j.biomaterials.2021.120826_bib55) 2008; 16
Kastner (10.1016/j.biomaterials.2021.120826_bib84) 2015; 485
Abstiens (10.1016/j.biomaterials.2021.120826_bib133) 2019; 49
Sercombe (10.1016/j.biomaterials.2021.120826_bib53) 2015; 6
(10.1016/j.biomaterials.2021.120826_bib47) 2019
Oberli (10.1016/j.biomaterials.2021.120826_bib59) 2017; 17
Pu (10.1016/j.biomaterials.2021.120826_bib159) 2018; 57
Jeong (10.1016/j.biomaterials.2021.120826_bib93) 2015; 15
Liu (10.1016/j.biomaterials.2021.120826_bib149) 2018; 10
Huang (10.1016/j.biomaterials.2021.120826_bib10) 2008; 23
Kašpar (10.1016/j.biomaterials.2021.120826_bib161) 2019; 21
Polack (10.1016/j.biomaterials.2021.120826_bib19) 2020; 383
Dahlman (10.1016/j.biomaterials.2021.120826_bib25) 2017; 114
Hung (10.1016/j.biomaterials.2021.120826_bib33) 2007; 27
Carugo (10.1016/j.biomaterials.2021.120826_bib65) 2016; 6
Jain (10.1016/j.biomaterials.2021.120826_bib148) 2012; 85
Hirn (10.1016/j.biomaterials.2021.120826_bib157) 2011; 77
Scholes (10.1016/j.biomaterials.2021.120826_bib118) 1993; 25
Kim (10.1016/j.biomaterials.2021.120826_bib129) 2012; 12
Maurer (10.1016/j.biomaterials.2021.120826_bib66) 2001; 80
Patel (10.1016/j.biomaterials.2021.120826_bib99) 2020; 11
Choueiri (10.1016/j.biomaterials.2021.120826_bib58) 2020
Liu (10.1016/j.biomaterials.2021.120826_bib38) 2020; 59
Cheheltani (10.1016/j.biomaterials.2021.120826_bib170) 2016; 102
Puri (10.1016/j.biomaterials.2021.120826_bib61) 2009; 26
Jahn (10.1016/j.biomaterials.2021.120826_bib73) 2004; 126
Wilson (10.1016/j.biomaterials.2021.120826_bib127) 2017; 105
Kim (10.1016/j.biomaterials.2021.120826_bib130) 2013; 7
Albanese (10.1016/j.biomaterials.2021.120826_bib32) 2012; 14
Martín-Banderas (10.1016/j.biomaterials.2021.120826_bib121) 2013; 443
Guimaraes (10.1016/j.biomaterials.2021.120826_bib83) 2019; 316
Whitesides (10.1016/j.biomaterials.2021.120826_bib43) 2006; 442
Roces (10.1016/j.biomaterials.2021.120826_bib134) 2020
Love (10.1016/j.biomaterials.2021.120826_bib62) 2010; 107
Jahn (10.1016/j.biomaterials.2021.120826_bib74) 2010; 4
Hoshyar (10.1016/j.biomaterials.2021.120826_bib173) 2016; 11
Zhang (10.1016/j.biomaterials.2021.120826_bib112) 2018; 292
Zhao (10.1016/j.biomaterials.2021.120826_bib3) 2020; 16
Lim (10.1016/j.biomaterials.2021.120826_bib137) 2014; 8
Lim (10.1016/j.biomaterials.2021.120826_bib125) 2014; 10
O'Brien (10.1016/j.biomaterials.2021.120826_bib8) 2004; 15
Kimura (10.1016/j.biomaterials.2021.120826_bib100) 2018; 3
Singh (10.1016/j.biomaterials.2021.120826_bib11) 2018; 19
Valizadeh (10.1016/j.biomaterials.2021.120826_bib158) 2012; 7
(10.1016/j.biomaterials.2021.120826_bib23) 2020; 38
Stavis (10.1016/j.biomaterials.2021.120826_bib35) 2018; 1
Billingsley (10.1016/j.biomaterials.2021.120826_bib56) 2020; 20
Wild (10.1016/j.biomaterials.2021.120826_bib95) 2018
Chen (10.1016/j.biomaterials.2021.120826_bib72) 2016; 235
Karnik (10.1016/j.biomaterials.2021.120826_bib36) 2008; 8
Lazarus (10.1016/j.biomaterials.2021.120826_bib163) 2012; 4
(10.1016/j.biomaterials.2021.120826_bib16) 2020
Bobo (10.1016/j.biomaterials.2021.120826_bib9) 2016; 33
Ong (10.1016/j.biomaterials.2021.120826_bib40) 2016; 8
Gañán-Calvo (10.1016/j.biomaterials.2021.120826_bib46) 2001; 87
Abou-Hassan (10.1016/j.biomaterials.2021.120826_bib144) 2010; 49
Pardi (10.1016/j.biomaterials.2021.120826_bib13) 2018; 17
Pecora (10.1016/j.biomaterials.2021.120826_bib51) 2000; 2
Gong (10.1016/j.biomaterials.2021.120826_bib60) 2021; 16
Krzysztoń (10.1016/j.biomaterials.2021.120826_bib75) 2017; 9
Soppimath (10.1016/j.biomaterials.2021.120826_bib109) 2001; 70
Han (10.1016/j.biomaterials.2021.120826_bib140) 2015; 12
Valencia (10.1016/j.biomaterials.2021.120826_bib42) 2012; 7
O'Donovan (10.1016/j.biomaterials.2021.120826_bib168) 2012; 12
RiP (10.1016/j.biomaterials.2021.120826_bib2) 1960; 23
McNeil (10.1016/j.biomaterials.2021.120826_bib5) 2009; 1
Dressaire (10.1016/j.biomaterials.2021.120826_bib174) 2017; 13
Liechty (10.1016/j.biomaterials.2021.120826_bib113)
References_xml – volume: 27
  start-page: 1
  year: 2007
  end-page: 6
  ident: bib33
  article-title: Microfluidic devices for the synthesis of nanoparticles and biomaterials
  publication-title: J. Med. Biol. Eng.
– volume: 27
  start-page: 2298
  year: 2015
  end-page: 2304
  ident: bib132
  article-title: A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties
  publication-title: Adv. Mater.
– volume: 79
  start-page: 3249
  year: 2007
  end-page: 3253
  ident: bib87
  article-title: When PDMS isn't the best
  publication-title: Anal. Chem.
– volume: 9
  start-page: 13600
  year: 2017
  end-page: 13609
  ident: bib102
  article-title: Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles
  publication-title: Nanoscale
– volume: 4
  start-page: 1671
  year: 2010
  end-page: 1679
  ident: bib135
  article-title: Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing
  publication-title: ACS Nano
– volume: 57
  start-page: 1790
  year: 2018
  end-page: 1802
  ident: bib159
  article-title: Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review
  publication-title: Ind. Eng. Chem. Res.
– volume: 316
  start-page: 404
  year: 2019
  end-page: 417
  ident: bib83
  article-title: Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening
  publication-title: J. Contr. Release
– volume: 16
  start-page: 520
  year: 2008
  end-page: 524
  ident: bib55
  article-title: Liposome research in drug delivery: the early days
  publication-title: J. Drug Target.
– volume: 59
  start-page: 4134
  year: 2020
  end-page: 4149
  ident: bib38
  article-title: Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery
  publication-title: Ind. Eng. Chem. Res.
– volume: 8
  start-page: 2906
  year: 2008
  end-page: 2912
  ident: bib48
  article-title: Microfluidic platform for controlled synthesis of polymeric nanoparticles
  publication-title: Nano Lett.
– volume: 28
  start-page: 172
  year: 2010
  end-page: 176
  ident: bib67
  article-title: Rational design of cationic lipids for siRNA delivery
  publication-title: Nat. Biotechnol.
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 9
  ident: bib70
  article-title: Liposome technology for industrial purposes
  publication-title: J Drug Deliv
– volume: 19
  year: 2018
  ident: bib11
  article-title: Gold nanoparticles in diagnostics and therapeutics for human cancer
  publication-title: Int. J. Mol. Sci.
– volume: 578
  year: 2020
  ident: bib24
  article-title: Nanopharmaceuticals: a focus on their clinical translatability
  publication-title: Int. J. Pharm.
– volume: 28
  start-page: 7007
  year: 2012
  end-page: 7013
  ident: bib164
  article-title: Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform
  publication-title: Langmuir
– volume: 17
  start-page: 209
  year: 2017
  end-page: 226
  ident: bib6
  article-title: Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications-a review
  publication-title: Lab Chip
– volume: 77
  year: 2005
  ident: bib90
  article-title: When microfluidic devices go bad
  publication-title: Anal. Chem.
– volume: 1
  start-page: 264
  year: 2009
  end-page: 271
  ident: bib5
  article-title: Nanoparticle therapeutics: a personal perspective
  publication-title: Wiley Interdiscip Rev Nanomedicine Nanobiotechnology
– volume: 8
  start-page: 297
  year: 2004
  end-page: 304
  ident: bib82
  article-title: Process optimization using combinatorial design principles: parallel synthesis and design of experiment methods
  publication-title: Curr. Opin. Chem. Biol.
– volume: 4
  start-page: 3077
  year: 2012
  end-page: 3083
  ident: bib163
  article-title: Two-phase microfluidic droplet flows of ionic liquids for the synthesis of gold and silver nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
– volume: 130
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib77
  article-title: Microfluidic self-assembly of a combinatorial library of single- and dual-ligand liposomes for in vitro and in vivo tumor targeting
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib53
  article-title: Advances and challenges of liposome assisted drug delivery
  publication-title: Front. Pharmacol.
– volume: 19
  start-page: 2089
  year: 2019
  end-page: 2095
  ident: bib128
  article-title: Controlled co-precipitation of biocompatible colorant-loaded nanoparticles by microfluidics for natural color drinks
  publication-title: Lab Chip
– volume: 20
  start-page: 1578
  year: 2020
  end-page: 1589
  ident: bib56
  article-title: Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering
  publication-title: Nano Lett.
– volume: 5
  start-page: 584
  year: 2017
  end-page: 590
  ident: bib171
  article-title: Microfluidics-mediated self-template synthesis of anisotropic hollow ellipsoidal mesoporous silica nanomaterials
  publication-title: Mater Res Lett
– volume: 10
  start-page: 4367
  year: 2013
  end-page: 4377
  ident: bib136
  article-title: Flash nanoprecipitation: particle structure and stability
  publication-title: Mol. Pharm.
– volume: 44
  start-page: 410
  year: 2016
  end-page: 422
  ident: bib145
  article-title: Application of gold nanoparticles in biomedical and drug delivery.
  publication-title: Nanomedicine Biotechnol
– volume: 35
  start-page: 263
  year: 1987
  end-page: 274
  ident: bib68
  article-title: Characterization of liposomes. The influence of extrusion of multilamellar vesicles through polycarbonate membranes on particle size, particle size distribution and number of bilayers
  publication-title: Int. J. Pharm.
– volume: 109
  start-page: 11975
  year: 2012
  end-page: 11980
  ident: bib152
  article-title: Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 80
  start-page: 2310
  year: 2001
  end-page: 2326
  ident: bib66
  article-title: Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes
  publication-title: Biophys. J.
– volume: 1
  start-page: e37
  year: 2012
  ident: bib80
  article-title: Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA
  publication-title: Mol. Ther. Nucleic Acids
– volume: 8
  start-page: 287
  year: 2008
  end-page: 293
  ident: bib91
  article-title: Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles
  publication-title: Lab Chip
– volume: 9
  start-page: 7442
  year: 2017
  end-page: 7453
  ident: bib75
  article-title: Microfluidic self-assembly of folate-targeted monomolecular siRNA-lipid nanoparticles
  publication-title: Nanoscale
– volume: 8
  start-page: 5696
  year: 2014
  end-page: 5706
  ident: bib172
  article-title: Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency
  publication-title: ACS Nano
– year: 2020
  ident: bib16
  publication-title: Moderna Announces Phase 3 COVE Study of mRNA Vaccine against COVID-19 (mRNA-1273) Begins
– volume: 8
  start-page: 6056
  year: 2014
  end-page: 6065
  ident: bib137
  article-title: Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer
  publication-title: ACS Nano
– volume: 15
  start-page: 440
  year: 2004
  end-page: 449
  ident: bib8
  article-title: Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX
  publication-title: Ann. Oncol.
– volume: 16
  start-page: 157
  year: 1995
  end-page: 182
  ident: bib54
  article-title: Chemistry of polyethylene glycol conjugates with biologically active molecules
  publication-title: Adv. Drug Deliv. Rev.
– year: 2020
  ident: bib134
  article-title: Translating the fabrication of protein-loaded poly(lactic-co-glycolic acid) nanoparticles from bench to scale-independent production using microfluidics
  publication-title: Drug Deliv Transl Res
– volume: 74
  start-page: 1
  year: 2006
  end-page: 4
  ident: bib175
  article-title: Mechanism for clogging of microchannels
  publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys.
– volume: 7
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib28
  article-title: Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle
  publication-title: Sci. Transl. Med.
– volume: 3
  start-page: 5044
  year: 2018
  end-page: 5051
  ident: bib100
  article-title: Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery
  publication-title: ACS Omega
– volume: 132
  start-page: 153
  year: 2008
  end-page: 163
  ident: bib114
  article-title: The origins and evolution of “controlled” drug delivery systems
  publication-title: J. Contr. Release
– volume: 7
  start-page: 1409
  year: 2014
  end-page: 1413
  ident: bib69
  article-title: Outcomes analysis of an alternative formulation of PEGylated liposomal doxorubicin in recurrent epithelial ovarian carcinoma during the drug shortage era
  publication-title: OncoTargets Ther.
– volume: 23
  start-page: 217
  year: 2008
  end-page: 228
  ident: bib10
  article-title: Plasmonic photothermal therapy (PPTT) using gold nanoparticles
  publication-title: Laser Med. Sci.
– volume: 12
  start-page: 912
  year: 2018
  end-page: 931
  ident: bib146
  article-title: Nanoparticles for immune cytokine TRAIL-based cancer therapy
  publication-title: ACS Nano
– volume: 442
  start-page: 368
  year: 2006
  end-page: 373
  ident: bib43
  article-title: The origins and the future of microfluidics
  publication-title: Nature
– volume: 441
  start-page: 111
  year: 2006
  end-page: 114
  ident: bib105
  article-title: RNAi-mediated gene silencing in non-human primates
  publication-title: Nature
– volume: 458
  start-page: 102
  year: 2019
  end-page: 112
  ident: bib63
  article-title: Nanoparticles for nucleic acid delivery: applications in cancer immunotherapy
  publication-title: Canc. Lett.
– volume: 75
  start-page: 1
  year: 2010
  end-page: 18
  ident: bib107
  article-title: Biodegradable polymeric nanoparticles based drug delivery systems
  publication-title: Colloids Surf. B Biointerfaces
– volume: 383
  start-page: 2603
  year: 2020
  end-page: 2615
  ident: bib19
  article-title: Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine
  publication-title: N. Engl. J. Med.
– volume: 8
  start-page: 660
  year: 1964
  end-page: 668
  ident: bib50
  article-title: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope
  publication-title: J. Mol. Biol.
– volume: 75
  start-page: 6544
  year: 2003
  end-page: 6554
  ident: bib85
  article-title: Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices
  publication-title: Anal. Chem.
– volume: 2015
  year: 2015
  ident: bib119
  article-title: Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent
  publication-title: J. Nanomater.
– volume: 263
  start-page: 797
  year: 1976
  end-page: 800
  ident: bib106
  article-title: Polymers for the sustained release of proteins and other macromolecules
  publication-title: Nature
– volume: 102
  start-page: 87
  year: 2016
  end-page: 97
  ident: bib170
  article-title: Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging
  publication-title: Biomaterials
– volume: 200
  start-page: 138
  year: 2015
  end-page: 157
  ident: bib22
  article-title: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications
  publication-title: J. Contr. Release
– volume: 2
  start-page: 123
  year: 2000
  end-page: 131
  ident: bib51
  article-title: Dynamic light scattering measurement of nanometer particles in liquids
  publication-title: J. Nanoparticle Res.
– volume: 27
  start-page: 286
  year: 1999
  end-page: 290
  ident: bib101
  article-title: Simple mixing device to reproducibly prepare cationic lipid-DNA complexes (lipoplexes)
  publication-title: Biotechniques
– volume: 22
  start-page: 4704
  year: 2012
  end-page: 4708
  ident: bib162
  article-title: Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor
  publication-title: J. Mater. Chem.
– volume: 39
  start-page: 249
  year: 2015
  end-page: 259
  ident: bib169
  article-title: Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy
  publication-title: Biomaterials
– volume: vol. 1141
  year: 2014
  ident: bib94
  publication-title: Drug Delivery System Chapter 6: Microfluidic-Based Manufacture of SiRNA-Lipid Nanoparticles for Therapeutic Applications
– volume: 15
  start-page: 4387
  year: 2015
  end-page: 4392
  ident: bib93
  article-title: Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED)
  publication-title: Lab Chip
– volume: 10
  start-page: 661
  year: 2020
  end-page: 677
  ident: bib108
  article-title: Cyclodextrins in drug delivery: applications in gene and combination therapy
  publication-title: Drug Deliv Transl Res
– volume: 37
  start-page: 224
  year: 2020
  end-page: 232
  ident: bib156
  article-title: Synthesis of precision gold nanoparticles using Turkevich method
  publication-title: KONA Powder Part J
– volume: 17
  start-page: 261
  year: 2018
  end-page: 279
  ident: bib13
  article-title: mRNA vaccines-a new era in vaccinology
  publication-title: Nat. Rev. Drug Discov.
– volume: 18
  start-page: 3814
  year: 2018
  end-page: 3822
  ident: bib71
  article-title: Lipid nanoparticle formulations for enhanced Co-delivery of siRNA and mRNA
  publication-title: Nano Lett.
– volume: 9
  start-page: 49
  year: 2016
  end-page: 67
  ident: bib154
  article-title: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles
  publication-title: Nanotechnol. Sci. Appl.
– volume: 3
  start-page: 318
  year: 2019
  end-page: 327
  ident: bib177
  article-title: Exploration of the nanomedicine-design space with high-throughput screening and machine learning
  publication-title: Nat Biomed Eng
– volume: 107
  start-page: 2465
  year: 2018
  end-page: 2471
  ident: bib141
  article-title: Design of a small-scale multi-inlet vortex mixer for scalable nanoparticle production and application to the encapsulation of biologics by inverse flash NanoPrecipitation
  publication-title: J Pharm Sci
– volume: 2
  start-page: 1700375
  year: 2018
  ident: bib79
  article-title: State-of-the-Art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery
  publication-title: Small Methods
– volume: 38
  start-page: 4
  year: 2020
  ident: bib23
  article-title: RNAi scores big wins
  publication-title: Nat. Biotechnol.
– volume: 17
  start-page: 1326
  year: 2017
  end-page: 1335
  ident: bib59
  article-title: Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy
  publication-title: Nano Lett.
– volume: 485
  start-page: 122
  year: 2015
  end-page: 130
  ident: bib84
  article-title: Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug
  publication-title: Int. J. Pharm.
– year: 2020
  ident: bib15
  article-title: An mRNA vaccine against SARS-CoV-2 — preliminary report
  publication-title: N. Engl. J. Med.
– year: 2021
  ident: bib17
  article-title: Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine
  publication-title: Drug Deliv Transl Res
– volume: 126
  start-page: 2674
  year: 2004
  end-page: 2675
  ident: bib73
  article-title: Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing
  publication-title: J. Am. Chem. Soc.
– volume: 582
  start-page: 119266
  year: 2020
  ident: bib96
  article-title: Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: a case study using protein-loaded liposomes
  publication-title: Int. J. Pharm.
– volume: 14
  start-page: 1084
  year: 2019
  end-page: 1087
  ident: bib7
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 6
  ident: bib166
  article-title: Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles
  publication-title: Sci. Rep.
– volume: 17
  start-page: 659
  year: 2017
  end-page: 675
  ident: bib29
  article-title: Engineering and physical sciences in oncology: challenges and opportunities
  publication-title: Nat. Rev. Canc.
– volume: 28
  start-page: 153
  year: 1998
  end-page: 184
  ident: bib45
  article-title: Soft lithography
  publication-title: Annu. Rev. Mater. Sci.
– volume: 47
  start-page: 6817
  year: 2008
  end-page: 6820
  ident: bib165
  article-title: Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles
  publication-title: Angew. Chem. Int. Ed.
– volume: 114
  start-page: 2060
  year: 2017
  end-page: 2065
  ident: bib25
  article-title: Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 148
  start-page: 402
  year: 2016
  end-page: 410
  ident: bib76
  article-title: Microfluidic synthesis of multifunctional liposomes for tumour targeting
  publication-title: Colloids Surf. B Biointerfaces
– volume: 9
  year: 2018
  ident: bib92
  article-title: Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib40
  article-title: Evaluation of extrusion technique for nanosizing liposomes
  publication-title: Pharmaceutics
– volume: 28
  start-page: 25
  year: 1997
  end-page: 42
  ident: bib116
  article-title: Preparation of microspheres by the solvent evaporation technique
  publication-title: Adv. Drug Deliv. Rev.
– year: 2020
  ident: bib97
  article-title: Robust and Scalable Manufacturing of Nucleic Acid Lipid Nanoparticles Using a Novel Micro Uidic Mixing Technology
– volume: 21
  start-page: 1
  year: 2019
  end-page: 14
  ident: bib161
  article-title: Governing factors for preparation of silver nanoparticles using droplet-based microfluidic device
  publication-title: Biomed. Microdevices
– volume: 23
  year: 1960
  ident: bib2
  article-title: There's plenty of room at the bottom
  publication-title: Eng. Sci.
– volume: 25
  start-page: 1165
  year: 2007
  end-page: 1170
  ident: bib160
  article-title: Renal clearance of nanoparticles
  publication-title: Nat. Biotechnol.
– volume: 7
  start-page: 319
  year: 2016
  end-page: 334
  ident: bib14
  article-title: mRNA vaccine delivery using lipid nanoparticles
  publication-title: Ther. Deliv.
– volume: 4
  start-page: 2077
  year: 2010
  end-page: 2087
  ident: bib74
  article-title: Microfluidic mixing and the formation of nanoscale lipid vesicles
  publication-title: ACS Nano
– volume: 9
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib89
  article-title: Robust microfabrication of highly parallelized three-dimensional microfluidics on silicon
  publication-title: Sci. Rep.
– year: 2019
  ident: bib47
  publication-title: About the NNCI. National Nanotechnology Coordinated Infrastructure
– volume: 7
  start-page: 10671
  year: 2013
  end-page: 10680
  ident: bib126
  article-title: Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy
  publication-title: ACS Nano
– volume: 169
  start-page: 128
  year: 2017
  end-page: 139
  ident: bib123
  article-title: Fundamental studies on throughput capacities of hydrodynamic flow-focusing microfluidics for producing monodisperse polymer nanoparticles
  publication-title: Chem. Eng. Sci.
– volume: 1
  start-page: 4358
  year: 2018
  end-page: 4385
  ident: bib35
  article-title: Nanoparticle manufacturing-heterogeneity through processes to products
  publication-title: ACS Appl Nano Mater
– start-page: 1
  year: 2018
  end-page: 37
  ident: bib95
  article-title: Bifurcating Mixers and Methods of Their Use and Manufacture
– volume: 13
  start-page: 37
  year: 2017
  end-page: 48
  ident: bib174
  article-title: Clogging of microfluidic systems
  publication-title: Soft Matter
– volume: 10
  start-page: 401
  year: 2014
  end-page: 409
  ident: bib125
  article-title: Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 112
  start-page: 3892
  year: 2015
  end-page: 3897
  ident: bib151
  article-title: Immunomodulatory spherical nucleic acids
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 7
  start-page: 623
  year: 2012
  end-page: 629
  ident: bib42
  article-title: Microfluidic technologies for accelerating the clinical translation of nanoparticles
  publication-title: Nat. Nanotechnol.
– volume: 77
  start-page: 407
  year: 2011
  end-page: 416
  ident: bib157
  article-title: Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 23
  start-page: 79
  year: 2011
  end-page: 83
  ident: bib124
  article-title: Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels
  publication-title: Adv. Mater.
– volume: 116
  start-page: 18590
  year: 2019
  end-page: 18596
  ident: bib150
  article-title: Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 24
  start-page: 821
  year: 2016
  end-page: 835
  ident: bib49
  article-title: Microfluidics: a transformational tool for nanomedicine development and production
  publication-title: J. Drug Target.
– volume: 105
  start-page: 1813
  year: 2017
  end-page: 1825
  ident: bib127
  article-title: Continuous microfluidic assembly of biodegradable poly(Beta-amino ester)/DNA nanoparticles for enhanced gene delivery
  publication-title: J. Biomed. Mater. Res.
– volume: 25
  start-page: 145
  year: 1993
  end-page: 153
  ident: bib118
  article-title: The preparation of sub-200 nm poly(lactide-co-glycolide) microspheres for site-specific drug delivery
  publication-title: J. Contr. Release
– volume: 20
  start-page: 101
  year: 2021
  end-page: 124
  ident: bib26
  article-title: Engineering precision nanoparticles for drug delivery
  publication-title: Nat. Rev. Drug Discov.
– volume: 85
  start-page: 101
  year: 2012
  end-page: 113
  ident: bib148
  article-title: Gold nanoparticles as novel agents for cancer therapy
  publication-title: Br. J. Radiol.
– start-page: 403
  year: 2020
  end-page: 416
  ident: bib18
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N. Engl. J. Med.
– volume: 1
  start-page: 149
  year: 2010
  end-page: 173
  ident: bib113
  article-title: Polymers for drug delivery systems
  publication-title: Annu Rev Chem Biomol Eng
– volume: 32
  start-page: 297
  year: 2018
  end-page: 309
  ident: bib153
  article-title: Spherical nucleic acid nanoparticles: therapeutic potential
  publication-title: BioDrugs
– volume: 4
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib20
  article-title: Nanoparticles in the clinic: an update
  publication-title: Bioeng Transl Med
– volume: 10
  start-page: 1175
  year: 2018
  end-page: 1188
  ident: bib149
  article-title: Gold nanoparticles-mediated photothermal therapy and immunotherapy
  publication-title: Immunotherapy
– volume: 33
  start-page: 2373
  year: 2016
  end-page: 2387
  ident: bib9
  article-title: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date
  publication-title: Pharm. Res. (N. Y.)
– volume: 70
  start-page: 1
  year: 2001
  end-page: 20
  ident: bib109
  article-title: Biodegradable polymeric nanoparticles as drug delivery devices
  publication-title: J. Contr. Release
– volume: 798
  start-page: 714
  year: 2019
  end-page: 740
  ident: bib155
  article-title: Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 1
  year: 2012
  ident: bib158
  article-title: Quantum dots: synthesis, bioapplications, and toxicity
  publication-title: Nanoscale Res Lett
– volume: 15
  start-page: 541
  year: 2014
  end-page: 555
  ident: bib34
  article-title: Non-viral vectors for gene-based therapy
  publication-title: Nat. Rev. Genet.
– volume: 87
  start-page: 2745011
  year: 2001
  end-page: 2745014
  ident: bib46
  article-title: Perfectly monodisperse microbubbling by capillary flow focusing
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 7300
  year: 2015
  end-page: 7306
  ident: bib81
  article-title: Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs
  publication-title: Nano Lett.
– volume: 12
  start-page: 4029
  year: 2012
  end-page: 4032
  ident: bib168
  article-title: Electrode-free picoinjection of microfluidic drops
  publication-title: Lab Chip
– volume: 3
  start-page: 1377
  year: 2011
  end-page: 1397
  ident: bib117
  article-title: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier
  publication-title: Polymers
– volume: 96
  start-page: 203
  year: 2007
  end-page: 209
  ident: bib111
  article-title: Microparticles and nanoparticles for drug delivery
  publication-title: Biotechnol. Bioeng.
– volume: 11
  start-page: 673
  year: 2016
  end-page: 692
  ident: bib173
  article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction
  publication-title: Nanomedicine
– volume: 6
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib65
  article-title: Liposome production by microfluidics: potential and limiting factors
  publication-title: Sci. Rep.
– volume: 292
  start-page: 256
  year: 2018
  end-page: 276
  ident: bib112
  article-title: Biomaterials for vaccine-based cancer immunotherapy
  publication-title: J. Contr. Release
– volume: 244
  start-page: 108
  year: 2016
  end-page: 121
  ident: bib27
  article-title: To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine?
  publication-title: J. Contr. Release
– volume: 63
  start-page: 185
  year: 2012
  end-page: 198
  ident: bib41
  article-title: Nanoparticle delivery of cancer drugs
  publication-title: Annu. Rev. Med.
– volume: 22
  start-page: 362
  year: 2005
  end-page: 372
  ident: bib104
  article-title: A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA
  publication-title: Pharm. Res. (N. Y.)
– volume: 49
  start-page: 337
  year: 2019
  end-page: 346
  ident: bib110
  article-title: Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview
  publication-title: J Pharm Investig
– volume: 34
  start-page: 3961
  year: 2018
  end-page: 3970
  ident: bib120
  article-title: Microfluidic assisted nanoprecipitation of PLGA nanoparticles for curcumin delivery to leukemia Jurkat cells
  publication-title: Langmuir
– volume: 16
  start-page: 25
  year: 2021
  end-page: 36
  ident: bib60
  article-title: Nanomaterials for T-cell cancer immunotherapy
  publication-title: Nat. Nanotechnol.
– volume: 134
  start-page: 6948
  year: 2012
  end-page: 6951
  ident: bib37
  article-title: Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1
  year: 2018
  end-page: 29
  ident: bib1
  article-title: Advances in biomaterials for drug delivery
  publication-title: Adv. Mater.
– volume: 18
  start-page: 171
  year: 2010
  end-page: 180
  ident: bib103
  article-title: Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment
  publication-title: Mol. Ther.
– volume: 3
  year: 2013
  ident: bib21
  article-title: Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials
  publication-title: J. Nanomater.
– volume: 11
  start-page: 1221
  year: 2011
  end-page: 1227
  ident: bib167
  article-title: A stable droplet reactor for high temperature nanocrystal synthesis
  publication-title: Lab Chip
– volume: 22
  start-page: 1075
  year: 2014
  end-page: 1083
  ident: bib147
  article-title: Gold nanoparticles for nucleic acid delivery
  publication-title: Mol. Ther.
– volume: 295
  start-page: 647
  year: 2002
  end-page: 651
  ident: bib44
  article-title: Chaotic mixer for microchannels
  publication-title: Science
– volume: 443
  start-page: 103
  year: 2013
  end-page: 109
  ident: bib121
  article-title: Biocompatible gemcitabine-based nanomedicine engineered by Flow Focusing® for efficient antitumor activity
  publication-title: Int. J. Pharm.
– volume: 17
  start-page: 1041
  year: 2015
  end-page: 1054
  ident: bib143
  article-title: A review of clinical translation of inorganic nanoparticles
  publication-title: AAPS J.
– volume: 3
  start-page: 107
  year: 2020
  end-page: 120
  ident: bib176
  article-title: Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems
  publication-title: ACS Appl Bio Mater
– volume: 84
  start-page: 134
  year: 2012
  end-page: 141
  ident: bib122
  article-title: Production of hyaluronic acid (HA) nanoparticles by a continuous process inside microchannels: effects of non-solvents, organic phase flow rate, and HA concentration
  publication-title: Chem. Eng. Sci.
– volume: 107
  start-page: 1864
  year: 2010
  end-page: 1869
  ident: bib62
  article-title: Lipid-like materials for low-dose, in vivo gene silencing
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 24
  start-page: 1781
  year: 2003
  end-page: 1785
  ident: bib39
  article-title: The production and characteristics of solid lipid nanoparticles (SLNs)
  publication-title: Biomaterials
– year: 2020
  ident: bib58
  article-title: Summary from the first kidney cancer research summit, september 12-13, 2019: a focus on translational research
  publication-title: JNCI J Natl Cancer Inst
– volume: 337
  start-page: 303
  year: 2012
  end-page: 305
  ident: bib115
  article-title: Nanomaterials for drug delivery
  publication-title: Science
– volume: 7
  start-page: 1
  year: 2021
  end-page: 16
  ident: bib64
  article-title: Ionizable lipid nanoparticles for in utero mRNA delivery
  publication-title: Sci Adv
– volume: 3
  year: 2018
  ident: bib88
  article-title: A review of current methods in microfluidic device fabrication and future commercialization prospects
  publication-title: Inventions
– volume: 8
  start-page: 409
  year: 2016
  end-page: 427
  ident: bib52
  article-title: Dynamic light scattering: a practical guide and applications in biomedical sciences
  publication-title: Biophys Rev
– volume: 7
  start-page: 9975
  year: 2013
  end-page: 9983
  ident: bib130
  article-title: Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics
  publication-title: ACS Nano
– volume: 78
  start-page: 1625
  year: 2018
  end-page: 1631
  ident: bib12
  article-title: Patisiran: first global approval
  publication-title: Drugs
– volume: 14
  start-page: 1
  year: 2012
  end-page: 16
  ident: bib32
  article-title: The effect of nanoparticle size, shape, and surface chemistry on biological systems
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib99
  article-title: Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA
  publication-title: Nat. Commun.
– volume: 5
  year: 2021
  ident: bib31
  article-title: Peptide functionalized liposomes for receptor targeted cancer therapy
  publication-title: APL Bioeng
– volume: 11
  start-page: 212
  year: 2016
  end-page: 227
  ident: bib138
  article-title: Principles of nanoparticle formation by flash nanoprecipitation
  publication-title: Nano Today
– volume: 12
  start-page: 4329
  year: 2015
  end-page: 4335
  ident: bib140
  article-title: Nanoparticles containing high loads of paclitaxel-silicate prodrugs: formulation, drug release, and anticancer efficacy
  publication-title: Mol. Pharm.
– volume: 22
  start-page: 2455
  year: 2018
  end-page: 2468
  ident: bib98
  article-title: A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing
  publication-title: Cell Rep.
– volume: 17
  start-page: 606
  year: 2017
  end-page: 614
  ident: bib131
  article-title: Core/shell nanocomposites produced by superfast sequential microfluidic nanoprecipitation
  publication-title: Nano Lett.
– volume: 16
  start-page: 1
  year: 2020
  end-page: 19
  ident: bib3
  article-title: Microfluidic generation of nanomaterials for biomedical applications
  publication-title: Small
– volume: 8
  start-page: 2906
  year: 2008
  end-page: 2912
  ident: bib36
  article-title: Microfluidic platform for controlled synthesis of polymeric nanoparticles
  publication-title: Nano Lett.
– volume: 26
  start-page: 523
  year: 2009
  end-page: 580
  ident: bib61
  article-title: Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic
  publication-title: Crit. Rev. Ther. Drug Carrier Syst.
– volume: 14
  start-page: 2403
  year: 2014
  end-page: 2409
  ident: bib78
  article-title: A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array
  publication-title: Lab Chip
– volume: 101
  start-page: 3877
  year: 2012
  end-page: 3885
  ident: bib139
  article-title: Enhanced oral bioavailability of A cancer preventive agent (SR13668) by employing polymeric nanoparticles with high drug loading
  publication-title: J Pharm Sci
– volume: 1
  start-page: 10
  year: 2016
  end-page: 29
  ident: bib4
  article-title: Nanoparticles in the clinic
  publication-title: Bioeng Transl Med
– volume: 18
  start-page: 175
  year: 2019
  end-page: 196
  ident: bib57
  article-title: Delivery technologies for cancer immunotherapy
  publication-title: Nat. Rev. Drug Discov.
– volume: 8
  start-page: 271
  year: 2016
  end-page: 299
  ident: bib142
  article-title: Polymeric nanoparticles: the future of nanomedicine
  publication-title: Wiley Interdiscip Rev Nanomedicine Nanobiotechnology
– volume: 32
  start-page: 32
  year: 2014
  end-page: 45
  ident: bib30
  article-title: Ligand-targeted liposome design: challenges and fundamental considerations
  publication-title: Trends Biotechnol.
– volume: 235
  start-page: 236
  year: 2016
  end-page: 244
  ident: bib72
  article-title: Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA
  publication-title: J. Contr. Release
– volume: 49
  start-page: 433
  year: 2019
  end-page: 439
  ident: bib133
  article-title: Microfluidic manufacturing improves polydispersity of multicomponent polymeric nanoparticles
  publication-title: J. Drug Deliv. Sci. Technol.
– volume: 4
  year: 2019
  ident: bib86
  article-title: Microfluidic devices in fabricating nano or micromaterials for biomedical applications
  publication-title: Adv Mater Technol
– volume: 12
  start-page: 3587
  year: 2012
  end-page: 3591
  ident: bib129
  article-title: Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices
  publication-title: Nano Lett.
– volume: 49
  start-page: 6268
  year: 2010
  end-page: 6286
  ident: bib144
  article-title: Microfluidics for inorganic chemistry
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  start-page: 25
  issue: 1
  year: 1997
  ident: 10.1016/j.biomaterials.2021.120826_bib116
  article-title: Preparation of microspheres by the solvent evaporation technique
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(97)00049-5
– volume: 11
  start-page: 212
  issue: 2
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib138
  article-title: Principles of nanoparticle formation by flash nanoprecipitation
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.04.006
– volume: 24
  start-page: 1781
  issue: 10
  year: 2003
  ident: 10.1016/j.biomaterials.2021.120826_bib39
  article-title: The production and characteristics of solid lipid nanoparticles (SLNs)
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00578-1
– volume: 126
  start-page: 2674
  issue: 9
  year: 2004
  ident: 10.1016/j.biomaterials.2021.120826_bib73
  article-title: Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0318030
– volume: 8
  start-page: 297
  issue: 3
  year: 2004
  ident: 10.1016/j.biomaterials.2021.120826_bib82
  article-title: Process optimization using combinatorial design principles: parallel synthesis and design of experiment methods
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2004.04.009
– volume: 75
  start-page: 6544
  issue: 23
  year: 2003
  ident: 10.1016/j.biomaterials.2021.120826_bib85
  article-title: Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices
  publication-title: Anal. Chem.
  doi: 10.1021/ac0346712
– volume: 26
  start-page: 523
  issue: 6
  year: 2009
  ident: 10.1016/j.biomaterials.2021.120826_bib61
  article-title: Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic
  publication-title: Crit. Rev. Ther. Drug Carrier Syst.
  doi: 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
– volume: 316
  start-page: 404
  issue: October
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib83
  article-title: Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2019.10.028
– volume: 9
  start-page: 13600
  issue: 36
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120826_bib102
  article-title: Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/C7NR03272B
– volume: 8
  start-page: 409
  issue: 4
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib52
  article-title: Dynamic light scattering: a practical guide and applications in biomedical sciences
  publication-title: Biophys Rev
  doi: 10.1007/s12551-016-0218-6
– year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib16
– volume: 9
  start-page: 7442
  issue: 22
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120826_bib75
  article-title: Microfluidic self-assembly of folate-targeted monomolecular siRNA-lipid nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/C7NR01593C
– volume: 485
  start-page: 122
  issue: 1–2
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120826_bib84
  article-title: Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.02.063
– volume: 87
  start-page: 2745011
  issue: 27
  year: 2001
  ident: 10.1016/j.biomaterials.2021.120826_bib46
  article-title: Perfectly monodisperse microbubbling by capillary flow focusing
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.274501
– volume: 107
  start-page: 2465
  issue: 9
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib141
  article-title: Design of a small-scale multi-inlet vortex mixer for scalable nanoparticle production and application to the encapsulation of biologics by inverse flash NanoPrecipitation
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2018.05.003
– volume: 77
  issue: 21
  year: 2005
  ident: 10.1016/j.biomaterials.2021.120826_bib90
  article-title: When microfluidic devices go bad
  publication-title: Anal. Chem.
  doi: 10.1021/ac053496h
– volume: 4
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib20
  article-title: Nanoparticles in the clinic: an update
  publication-title: Bioeng Transl Med
  doi: 10.1002/btm2.10143
– volume: 130
  start-page: 1
  issue: March
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib77
  article-title: Microfluidic self-assembly of a combinatorial library of single- and dual-ligand liposomes for in vitro and in vivo tumor targeting
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2018.06.017
– volume: 8
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib40
  article-title: Evaluation of extrusion technique for nanosizing liposomes
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics8040036
– volume: 10
  start-page: 401
  issue: 2
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120826_bib125
  article-title: Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2013.08.003
– volume: 3
  start-page: 107
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib176
  article-title: Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.9b00853
– volume: 4
  issue: 12
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib86
  article-title: Microfluidic devices in fabricating nano or micromaterials for biomedical applications
  publication-title: Adv Mater Technol
  doi: 10.1002/admt.201900488
– year: 2021
  ident: 10.1016/j.biomaterials.2021.120826_bib17
  article-title: Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine
  publication-title: Drug Deliv Transl Res
  doi: 10.1007/s13346-021-00911-y
– volume: 14
  start-page: 1084
  issue: 12
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib7
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0591-y
– volume: 77
  start-page: 407
  issue: 3
  year: 2011
  ident: 10.1016/j.biomaterials.2021.120826_bib157
  article-title: Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2010.12.029
– volume: 32
  start-page: 297
  issue: 4
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib153
  article-title: Spherical nucleic acid nanoparticles: therapeutic potential
  publication-title: BioDrugs
  doi: 10.1007/s40259-018-0290-5
– volume: 6
  start-page: 1
  issue: DEC
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120826_bib53
  article-title: Advances and challenges of liposome assisted drug delivery
  publication-title: Front. Pharmacol.
– year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib134
  article-title: Translating the fabrication of protein-loaded poly(lactic-co-glycolic acid) nanoparticles from bench to scale-independent production using microfluidics
  publication-title: Drug Deliv Transl Res
  doi: 10.1007/s13346-019-00699-y
– volume: 3
  issue: 3
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib88
  article-title: A review of current methods in microfluidic device fabrication and future commercialization prospects
  publication-title: Inventions
  doi: 10.3390/inventions3030060
– volume: 134
  start-page: 6948
  issue: 16
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib37
  article-title: Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301621z
– volume: 16
  start-page: 25
  issue: 1
  year: 2021
  ident: 10.1016/j.biomaterials.2021.120826_bib60
  article-title: Nanomaterials for T-cell cancer immunotherapy
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00822-y
– volume: 442
  start-page: 368
  issue: 7101
  year: 2006
  ident: 10.1016/j.biomaterials.2021.120826_bib43
  article-title: The origins and the future of microfluidics
  publication-title: Nature
  doi: 10.1038/nature05058
– volume: 458
  start-page: 102
  issue: February
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib63
  article-title: Nanoparticles for nucleic acid delivery: applications in cancer immunotherapy
  publication-title: Canc. Lett.
  doi: 10.1016/j.canlet.2019.04.040
– volume: 441
  start-page: 111
  issue: 1
  year: 2006
  ident: 10.1016/j.biomaterials.2021.120826_bib105
  article-title: RNAi-mediated gene silencing in non-human primates
  publication-title: Nature
  doi: 10.1038/nature04688
– volume: 12
  start-page: 3587
  issue: 7
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib129
  article-title: Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices
  publication-title: Nano Lett.
  doi: 10.1021/nl301253v
– volume: 70
  start-page: 1
  year: 2001
  ident: 10.1016/j.biomaterials.2021.120826_bib109
  article-title: Biodegradable polymeric nanoparticles as drug delivery devices
  publication-title: J. Contr. Release
  doi: 10.1016/S0168-3659(00)00339-4
– volume: 101
  start-page: 3877
  issue: 10
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib139
  article-title: Enhanced oral bioavailability of A cancer preventive agent (SR13668) by employing polymeric nanoparticles with high drug loading
  publication-title: J Pharm Sci
  doi: 10.1002/jps.23269
– volume: 57
  start-page: 1790
  issue: 6
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib159
  article-title: Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b04836
– volume: 1
  start-page: 4358
  issue: 9
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib35
  article-title: Nanoparticle manufacturing-heterogeneity through processes to products
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.8b01239
– volume: 295
  start-page: 647
  issue: 80
  year: 2002
  ident: 10.1016/j.biomaterials.2021.120826_bib44
  article-title: Chaotic mixer for microchannels
  publication-title: Science
  doi: 10.1126/science.1066238
– volume: 12
  start-page: 4329
  issue: 12
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120826_bib140
  article-title: Nanoparticles containing high loads of paclitaxel-silicate prodrugs: formulation, drug release, and anticancer efficacy
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.5b00530
– volume: 22
  start-page: 1075
  issue: 6
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120826_bib147
  article-title: Gold nanoparticles for nucleic acid delivery
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2014.30
– year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib47
– volume: 22
  start-page: 4704
  issue: 11
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib162
  article-title: Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30257h
– volume: 109
  start-page: 11975
  issue: 30
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib152
  article-title: Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1118425109
– volume: 2
  start-page: 123
  year: 2000
  ident: 10.1016/j.biomaterials.2021.120826_bib51
  article-title: Dynamic light scattering measurement of nanometer particles in liquids
  publication-title: J. Nanoparticle Res.
  doi: 10.1023/A:1010067107182
– volume: 74
  start-page: 1
  issue: 6
  year: 2006
  ident: 10.1016/j.biomaterials.2021.120826_bib175
  article-title: Mechanism for clogging of microchannels
  publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.74.061402
– volume: 33
  start-page: 2373
  issue: 10
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib9
  article-title: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date
  publication-title: Pharm. Res. (N. Y.)
  doi: 10.1007/s11095-016-1958-5
– volume: 3
  start-page: 1377
  issue: 3
  year: 2011
  ident: 10.1016/j.biomaterials.2021.120826_bib117
  article-title: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier
  publication-title: Polymers
  doi: 10.3390/polym3031377
– volume: 116
  start-page: 18590
  issue: 37
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib150
  article-title: Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1906929116
– volume: 17
  start-page: 209
  issue: 2
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120826_bib6
  article-title: Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications-a review
  publication-title: Lab Chip
  doi: 10.1039/C6LC01049K
– volume: 1
  start-page: 10
  issue: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib4
  article-title: Nanoparticles in the clinic
  publication-title: Bioeng Transl Med
  doi: 10.1002/btm2.10003
– volume: 22
  start-page: 2455
  issue: 9
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib98
  article-title: A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.02.014
– volume: 12
  start-page: 912
  issue: 2
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib146
  article-title: Nanoparticles for immune cytokine TRAIL-based cancer therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05876
– volume: 38
  start-page: 4
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib23
  article-title: RNAi scores big wins
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0384-8
– start-page: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib95
– volume: 1
  start-page: 264
  issue: 3
  year: 2009
  ident: 10.1016/j.biomaterials.2021.120826_bib5
  article-title: Nanoparticle therapeutics: a personal perspective
  publication-title: Wiley Interdiscip Rev Nanomedicine Nanobiotechnology
  doi: 10.1002/wnan.6
– volume: 8
  start-page: 5696
  issue: 6
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120826_bib172
  article-title: Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency
  publication-title: ACS Nano
  doi: 10.1021/nn500299p
– volume: 3
  issue: 6
  year: 2013
  ident: 10.1016/j.biomaterials.2021.120826_bib21
  article-title: Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials
  publication-title: J. Nanomater.
– volume: 3
  start-page: 318
  issue: 4
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib177
  article-title: Exploration of the nanomedicine-design space with high-throughput screening and machine learning
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-019-0351-1
– volume: 15
  start-page: 440
  issue: 3
  year: 2004
  ident: 10.1016/j.biomaterials.2021.120826_bib8
  article-title: Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYXTM/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdh097
– volume: 148
  start-page: 402
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib76
  article-title: Microfluidic synthesis of multifunctional liposomes for tumour targeting
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.09.016
– volume: 8
  start-page: 6056
  issue: 6
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120826_bib137
  article-title: Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer
  publication-title: ACS Nano
  doi: 10.1021/nn501371n
– volume: 12
  start-page: 4029
  issue: 20
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib168
  article-title: Electrode-free picoinjection of microfluidic drops
  publication-title: Lab Chip
  doi: 10.1039/c2lc40693d
– year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib15
  article-title: An mRNA vaccine against SARS-CoV-2 — preliminary report
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2022483
– volume: 7
  start-page: 10671
  issue: 12
  year: 2013
  ident: 10.1016/j.biomaterials.2021.120826_bib126
  article-title: Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy
  publication-title: ACS Nano
  doi: 10.1021/nn403370e
– volume: 107
  start-page: 1864
  issue: 5
  year: 2010
  ident: 10.1016/j.biomaterials.2021.120826_bib62
  article-title: Lipid-like materials for low-dose, in vivo gene silencing
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.0910603106
– volume: 17
  start-page: 1041
  issue: 5
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120826_bib143
  article-title: A review of clinical translation of inorganic nanoparticles
  publication-title: AAPS J.
  doi: 10.1208/s12248-015-9780-2
– volume: 32
  start-page: 32
  issue: 1
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120826_bib30
  article-title: Ligand-targeted liposome design: challenges and fundamental considerations
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2013.09.007
– volume: 78
  start-page: 1625
  issue: 15
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib12
  article-title: Patisiran: first global approval
  publication-title: Drugs
  doi: 10.1007/s40265-018-0983-6
– volume: 24
  start-page: 821
  issue: 9
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib49
  article-title: Microfluidics: a transformational tool for nanomedicine development and production
  publication-title: J. Drug Target.
  doi: 10.1080/1061186X.2016.1198354
– volume: 7
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.biomaterials.2021.120826_bib64
  article-title: Ionizable lipid nanoparticles for in utero mRNA delivery
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aba1028
– volume: 8
  start-page: 287
  issue: 2
  year: 2008
  ident: 10.1016/j.biomaterials.2021.120826_bib91
  article-title: Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles
  publication-title: Lab Chip
  doi: 10.1039/B713141K
– volume: 20
  start-page: 101
  issue: 2
  year: 2021
  ident: 10.1016/j.biomaterials.2021.120826_bib26
  article-title: Engineering precision nanoparticles for drug delivery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-020-0090-8
– volume: 37
  start-page: 224
  issue: August
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib156
  article-title: Synthesis of precision gold nanoparticles using Turkevich method
  publication-title: KONA Powder Part J
  doi: 10.14356/kona.2020011
– volume: 798
  start-page: 714
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib155
  article-title: Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.05.153
– volume: 27
  start-page: 2298
  issue: 14
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120826_bib132
  article-title: A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405408
– volume: 96
  start-page: 203
  issue: 2
  year: 2007
  ident: 10.1016/j.biomaterials.2021.120826_bib111
  article-title: Microparticles and nanoparticles for drug delivery
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21301
– volume: 5
  start-page: 584
  issue: 8
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120826_bib171
  article-title: Microfluidics-mediated self-template synthesis of anisotropic hollow ellipsoidal mesoporous silica nanomaterials
  publication-title: Mater Res Lett
  doi: 10.1080/21663831.2017.1376720
– volume: 14
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib32
  article-title: The effect of nanoparticle size, shape, and surface chemistry on biological systems
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071811-150124
– volume: 17
  start-page: 261
  issue: 4
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib13
  article-title: mRNA vaccines-a new era in vaccinology
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2017.243
– volume: 337
  start-page: 303
  issue: 80
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib115
  article-title: Nanomaterials for drug delivery
  publication-title: Science
  doi: 10.1126/science.1219657
– volume: 10
  start-page: 4367
  issue: 11
  year: 2013
  ident: 10.1016/j.biomaterials.2021.120826_bib136
  article-title: Flash nanoprecipitation: particle structure and stability
  publication-title: Mol. Pharm.
  doi: 10.1021/mp400337f
– volume: 39
  start-page: 249
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120826_bib169
  article-title: Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.10.079
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib89
  article-title: Robust microfabrication of highly parallelized three-dimensional microfluidics on silicon
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48515-4
– volume: 44
  start-page: 410
  issue: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib145
  article-title: Application of gold nanoparticles in biomedical and drug delivery. Artif Cells
  publication-title: Nanomedicine Biotechnol
– volume: 80
  start-page: 2310
  issue: 5
  year: 2001
  ident: 10.1016/j.biomaterials.2021.120826_bib66
  article-title: Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76202-9
– volume: 22
  start-page: 362
  issue: 3
  year: 2005
  ident: 10.1016/j.biomaterials.2021.120826_bib104
  article-title: A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA
  publication-title: Pharm. Res. (N. Y.)
  doi: 10.1007/s11095-004-1873-z
– volume: 443
  start-page: 103
  issue: 1–2
  year: 2013
  ident: 10.1016/j.biomaterials.2021.120826_bib121
  article-title: Biocompatible gemcitabine-based nanomedicine engineered by Flow Focusing® for efficient antitumor activity
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2012.12.048
– volume: 59
  start-page: 4134
  issue: 9
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib38
  article-title: Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b04747
– volume: 34
  start-page: 3961
  issue: 13
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib120
  article-title: Microfluidic assisted nanoprecipitation of PLGA nanoparticles for curcumin delivery to leukemia Jurkat cells
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b04335
– volume: 84
  start-page: 134
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib122
  article-title: Production of hyaluronic acid (HA) nanoparticles by a continuous process inside microchannels: effects of non-solvents, organic phase flow rate, and HA concentration
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.08.010
– volume: 85
  start-page: 101
  issue: 1010
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib148
  article-title: Gold nanoparticles as novel agents for cancer therapy
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr/59448833
– volume: 16
  start-page: 157
  year: 1995
  ident: 10.1016/j.biomaterials.2021.120826_bib54
  article-title: Chemistry of polyethylene glycol conjugates with biologically active molecules
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/0169-409X(95)00023-Z
– volume: 49
  start-page: 433
  issue: October 2018
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib133
  article-title: Microfluidic manufacturing improves polydispersity of multicomponent polymeric nanoparticles
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2018.12.009
– volume: 47
  start-page: 6817
  issue: 36
  year: 2008
  ident: 10.1016/j.biomaterials.2021.120826_bib165
  article-title: Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200801360
– volume: 5
  issue: 1
  year: 2021
  ident: 10.1016/j.biomaterials.2021.120826_bib31
  article-title: Peptide functionalized liposomes for receptor targeted cancer therapy
  publication-title: APL Bioeng
  doi: 10.1063/5.0029860
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.biomaterials.2021.120826_bib70
  article-title: Liposome technology for industrial purposes
  publication-title: J Drug Deliv
  doi: 10.1155/2011/591325
– volume: 4
  start-page: 1671
  issue: 3
  year: 2010
  ident: 10.1016/j.biomaterials.2021.120826_bib135
  article-title: Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing
  publication-title: ACS Nano
  doi: 10.1021/nn901433u
– volume: 17
  start-page: 659
  issue: 11
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120826_bib29
  article-title: Engineering and physical sciences in oncology: challenges and opportunities
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc.2017.83
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib166
  article-title: Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20754-x
– volume: 35
  start-page: 263
  issue: 3
  year: 1987
  ident: 10.1016/j.biomaterials.2021.120826_bib68
  article-title: Characterization of liposomes. The influence of extrusion of multilamellar vesicles through polycarbonate membranes on particle size, particle size distribution and number of bilayers
  publication-title: Int. J. Pharm.
  doi: 10.1016/0378-5173(87)90139-6
– volume: 21
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib161
  article-title: Governing factors for preparation of silver nanoparticles using droplet-based microfluidic device
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-019-0435-4
– volume: 114
  start-page: 2060
  issue: 8
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120826_bib25
  article-title: Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1620874114
– volume: 10
  start-page: 1175
  issue: 13
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib149
  article-title: Gold nanoparticles-mediated photothermal therapy and immunotherapy
  publication-title: Immunotherapy
  doi: 10.2217/imt-2018-0029
– volume: 8
  start-page: 271
  issue: 2
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib142
  article-title: Polymeric nanoparticles: the future of nanomedicine
  publication-title: Wiley Interdiscip Rev Nanomedicine Nanobiotechnology
  doi: 10.1002/wnan.1364
– volume: 63
  start-page: 185
  issue: 1
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib41
  article-title: Nanoparticle delivery of cancer drugs
  publication-title: Annu. Rev. Med.
  doi: 10.1146/annurev-med-040210-162544
– volume: 200
  start-page: 138
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120826_bib22
  article-title: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2014.12.030
– volume: 27
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.biomaterials.2021.120826_bib33
  article-title: Microfluidic devices for the synthesis of nanoparticles and biomaterials
  publication-title: J. Med. Biol. Eng.
– volume: 15
  start-page: 4387
  issue: 23
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120826_bib93
  article-title: Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED)
  publication-title: Lab Chip
  doi: 10.1039/C5LC01025J
– volume: 25
  start-page: 1165
  issue: 10
  year: 2007
  ident: 10.1016/j.biomaterials.2021.120826_bib160
  article-title: Renal clearance of nanoparticles
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1340
– volume: 8
  start-page: 2906
  issue: 9
  year: 2008
  ident: 10.1016/j.biomaterials.2021.120826_bib36
  article-title: Microfluidic platform for controlled synthesis of polymeric nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl801736q
– volume: 4
  start-page: 3077
  issue: 6
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib163
  article-title: Two-phase microfluidic droplet flows of ionic liquids for the synthesis of gold and silver nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3004413
– volume: 105
  start-page: 1813
  issue: 6
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120826_bib127
  article-title: Continuous microfluidic assembly of biodegradable poly(Beta-amino ester)/DNA nanoparticles for enhanced gene delivery
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.36033
– volume: 27
  start-page: 286
  issue: 2
  year: 1999
  ident: 10.1016/j.biomaterials.2021.120826_bib101
  article-title: Simple mixing device to reproducibly prepare cationic lipid-DNA complexes (lipoplexes)
  publication-title: Biotechniques
  doi: 10.2144/99272bm16
– volume: 18
  start-page: 171
  issue: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2021.120826_bib103
  article-title: Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2009.208
– volume: 18
  start-page: 175
  issue: 3
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib57
  article-title: Delivery technologies for cancer immunotherapy
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-018-0006-z
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib99
  article-title: Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA
  publication-title: Nat. Commun.
– volume: 169
  start-page: 128
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120826_bib123
  article-title: Fundamental studies on throughput capacities of hydrodynamic flow-focusing microfluidics for producing monodisperse polymer nanoparticles
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2017.04.046
– volume: 383
  start-page: 2603
  issue: 27
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib19
  article-title: Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– volume: 578
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib24
  article-title: Nanopharmaceuticals: a focus on their clinical translatability
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119098
– volume: 1
  start-page: 149
  issue: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2021.120826_bib113
  article-title: Polymers for drug delivery systems
  publication-title: Annu Rev Chem Biomol Eng
  doi: 10.1146/annurev-chembioeng-073009-100847
– volume: 292
  start-page: 256
  issue: October
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib112
  article-title: Biomaterials for vaccine-based cancer immunotherapy
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2018.10.008
– year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib97
– volume: 49
  start-page: 337
  issue: 4
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib110
  article-title: Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview
  publication-title: J Pharm Investig
  doi: 10.1007/s40005-019-00453-z
– volume: 13
  start-page: 37
  issue: 1
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120826_bib174
  article-title: Clogging of microfluidic systems
  publication-title: Soft Matter
  doi: 10.1039/C6SM01879C
– volume: 28
  start-page: 153
  issue: 1
  year: 1998
  ident: 10.1016/j.biomaterials.2021.120826_bib45
  article-title: Soft lithography
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.matsci.28.1.153
– volume: 3
  start-page: 5044
  issue: 5
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib100
  article-title: Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00341
– volume: 7
  start-page: 319
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib14
  article-title: mRNA vaccine delivery using lipid nanoparticles
  publication-title: Ther. Deliv.
  doi: 10.4155/tde-2016-0006
– volume: 9
  issue: 1
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib92
  article-title: Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03515-2
– volume: 11
  start-page: 673
  issue: 6
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib173
  article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction
  publication-title: Nanomedicine
  doi: 10.2217/nnm.16.5
– volume: 2015
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120826_bib119
  article-title: Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent
  publication-title: J. Nanomater.
  doi: 10.1155/2015/794601
– volume: 235
  start-page: 236
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib72
  article-title: Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2016.05.059
– volume: 7
  start-page: 9975
  issue: 11
  year: 2013
  ident: 10.1016/j.biomaterials.2021.120826_bib130
  article-title: Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics
  publication-title: ACS Nano
  doi: 10.1021/nn4039063
– volume: 7
  start-page: 1409
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120826_bib69
  article-title: Outcomes analysis of an alternative formulation of PEGylated liposomal doxorubicin in recurrent epithelial ovarian carcinoma during the drug shortage era
  publication-title: OncoTargets Ther.
– volume: 75
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.biomaterials.2021.120826_bib107
  article-title: Biodegradable polymeric nanoparticles based drug delivery systems
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2009.09.001
– volume: 244
  start-page: 108
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib27
  article-title: To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine?
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2016.11.015
– volume: 28
  start-page: 172
  issue: 2
  year: 2010
  ident: 10.1016/j.biomaterials.2021.120826_bib67
  article-title: Rational design of cationic lipids for siRNA delivery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1602
– volume: 11
  start-page: 1221
  issue: 7
  year: 2011
  ident: 10.1016/j.biomaterials.2021.120826_bib167
  article-title: A stable droplet reactor for high temperature nanocrystal synthesis
  publication-title: Lab Chip
  doi: 10.1039/C0LC00507J
– volume: 7
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib158
  article-title: Quantum dots: synthesis, bioapplications, and toxicity
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-7-480
– volume: 102
  start-page: 87
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib170
  article-title: Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.06.015
– volume: 582
  start-page: 119266
  issue: April
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib96
  article-title: Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: a case study using protein-loaded liposomes
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.119266
– volume: 16
  start-page: 1
  issue: 9
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib3
  article-title: Microfluidic generation of nanomaterials for biomedical applications
  publication-title: Small
– volume: 23
  issue: 5
  year: 1960
  ident: 10.1016/j.biomaterials.2021.120826_bib2
  article-title: There's plenty of room at the bottom
  publication-title: Eng. Sci.
– volume: 14
  start-page: 2403
  issue: 14
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120826_bib78
  article-title: A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array
  publication-title: Lab Chip
  doi: 10.1039/C4LC00334A
– year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib58
  article-title: Summary from the first kidney cancer research summit, september 12-13, 2019: a focus on translational research
  publication-title: JNCI J Natl Cancer Inst
– volume: 23
  start-page: 217
  issue: 3
  year: 2008
  ident: 10.1016/j.biomaterials.2021.120826_bib10
  article-title: Plasmonic photothermal therapy (PPTT) using gold nanoparticles
  publication-title: Laser Med. Sci.
  doi: 10.1007/s10103-007-0470-x
– volume: 263
  start-page: 797
  issue: 5580
  year: 1976
  ident: 10.1016/j.biomaterials.2021.120826_bib106
  article-title: Polymers for the sustained release of proteins and other macromolecules
  publication-title: Nature
  doi: 10.1038/263797a0
– volume: 16
  start-page: 520
  issue: 7–8
  year: 2008
  ident: 10.1016/j.biomaterials.2021.120826_bib55
  article-title: Liposome research in drug delivery: the early days
  publication-title: J. Drug Target.
  doi: 10.1080/10611860802228350
– volume: 7
  start-page: 1
  issue: 314
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120826_bib28
  article-title: Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aac6522
– volume: 8
  start-page: 2906
  issue: 9
  year: 2008
  ident: 10.1016/j.biomaterials.2021.120826_bib48
  article-title: Microfluidic platform for controlled synthesis of polymeric nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl801736q
– volume: 19
  start-page: 2089
  issue: 12
  year: 2019
  ident: 10.1016/j.biomaterials.2021.120826_bib128
  article-title: Controlled co-precipitation of biocompatible colorant-loaded nanoparticles by microfluidics for natural color drinks
  publication-title: Lab Chip
  doi: 10.1039/C9LC00240E
– volume: 10
  start-page: 661
  issue: 3
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib108
  article-title: Cyclodextrins in drug delivery: applications in gene and combination therapy
  publication-title: Drug Deliv Transl Res
  doi: 10.1007/s13346-020-00724-5
– volume: 19
  issue: 7
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib11
  article-title: Gold nanoparticles in diagnostics and therapeutics for human cancer
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19071979
– volume: 132
  start-page: 153
  issue: 3
  year: 2008
  ident: 10.1016/j.biomaterials.2021.120826_bib114
  article-title: The origins and evolution of “controlled” drug delivery systems
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2008.08.012
– volume: 1
  start-page: e37
  issue: 8
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib80
  article-title: Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2012.28
– start-page: 403
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib18
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N. Engl. J. Med.
– volume: 20
  start-page: 1578
  issue: 3
  year: 2020
  ident: 10.1016/j.biomaterials.2021.120826_bib56
  article-title: Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04246
– volume: 4
  start-page: 2077
  issue: 4
  year: 2010
  ident: 10.1016/j.biomaterials.2021.120826_bib74
  article-title: Microfluidic mixing and the formation of nanoscale lipid vesicles
  publication-title: ACS Nano
  doi: 10.1021/nn901676x
– volume: vol. 1141
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120826_bib94
– volume: 79
  start-page: 3249
  issue: 9
  year: 2007
  ident: 10.1016/j.biomaterials.2021.120826_bib87
  article-title: When PDMS isn't the best
  publication-title: Anal. Chem.
  doi: 10.1021/ac071903e
– volume: 8
  start-page: 660
  issue: 5
  year: 1964
  ident: 10.1016/j.biomaterials.2021.120826_bib50
  article-title: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(64)80115-7
– volume: 15
  start-page: 7300
  issue: 11
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120826_bib81
  article-title: Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02497
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib65
  article-title: Liposome production by microfluidics: potential and limiting factors
  publication-title: Sci. Rep.
  doi: 10.1038/srep25876
– volume: 25
  start-page: 145
  issue: 1–2
  year: 1993
  ident: 10.1016/j.biomaterials.2021.120826_bib118
  article-title: The preparation of sub-200 nm poly(lactide-co-glycolide) microspheres for site-specific drug delivery
  publication-title: J. Contr. Release
  doi: 10.1016/0168-3659(93)90103-C
– volume: 17
  start-page: 1326
  issue: 3
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120826_bib59
  article-title: Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03329
– volume: 49
  start-page: 6268
  issue: 36
  year: 2010
  ident: 10.1016/j.biomaterials.2021.120826_bib144
  article-title: Microfluidics for inorganic chemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200904285
– volume: 15
  start-page: 541
  year: 2014
  ident: 10.1016/j.biomaterials.2021.120826_bib34
  article-title: Non-viral vectors for gene-based therapy
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3763
– volume: 17
  start-page: 606
  issue: 2
  year: 2017
  ident: 10.1016/j.biomaterials.2021.120826_bib131
  article-title: Core/shell nanocomposites produced by superfast sequential microfluidic nanoprecipitation
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03251
– volume: 2
  start-page: 1700375
  issue: 9
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib79
  article-title: State-of-the-Art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery
  publication-title: Small Methods
  doi: 10.1002/smtd.201700375
– volume: 23
  start-page: 79
  issue: 12
  year: 2011
  ident: 10.1016/j.biomaterials.2021.120826_bib124
  article-title: Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels
  publication-title: Adv. Mater.
– volume: 112
  start-page: 3892
  issue: 13
  year: 2015
  ident: 10.1016/j.biomaterials.2021.120826_bib151
  article-title: Immunomodulatory spherical nucleic acids
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1502850112
– volume: 7
  start-page: 623
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib42
  article-title: Microfluidic technologies for accelerating the clinical translation of nanoparticles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.168
– volume: 30
  start-page: 1
  issue: 29
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib1
  article-title: Advances in biomaterials for drug delivery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705328
– volume: 28
  start-page: 7007
  issue: 17
  year: 2012
  ident: 10.1016/j.biomaterials.2021.120826_bib164
  article-title: Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform
  publication-title: Langmuir
  doi: 10.1021/la205131e
– volume: 18
  start-page: 3814
  issue: 6
  year: 2018
  ident: 10.1016/j.biomaterials.2021.120826_bib71
  article-title: Lipid nanoparticle formulations for enhanced Co-delivery of siRNA and mRNA
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01101
– volume: 9
  start-page: 49
  year: 2016
  ident: 10.1016/j.biomaterials.2021.120826_bib154
  article-title: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles
  publication-title: Nanotechnol. Sci. Appl.
  doi: 10.2147/NSA.S99986
SSID ssj0014042
Score 2.7057633
SecondaryResourceType review_article
Snippet Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility,...
Nanomedicine has made significant advances in clinical applications since its introduction in the late-20th century, in part due to its distinct advantages in...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120826
SubjectTerms biocompatibility
biocompatible materials
Drug delivery
Drug Delivery Systems
drugs
gene therapy
Imaging
microfluidic technology
Microfluidics
Nanomedicine
Nanoparticle
Nanoparticles
Polymers
Title Microfluidic formulation of nanoparticles for biomedical applications
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0142961221001824
https://dx.doi.org/10.1016/j.biomaterials.2021.120826
https://www.ncbi.nlm.nih.gov/pubmed/33965797
https://www.proquest.com/docview/2524882544
https://www.proquest.com/docview/2551908864
https://pubmed.ncbi.nlm.nih.gov/PMC8752123
Volume 274
WOSCitedRecordID wos000663587100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014042
  issn: 0142-9612
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DSF4QDAYlI8pSIi3VPlyHAvxMKFODHUFiQ71LfJXtE5VWtp02p_POXESBzYUHnhJK8eXD9_lfOf73Rmhd0olkQoZdhmPpBtlWLgsk8xVno6pCYxFmeH9Y0Km02Q-p98Gg-91Lsz1kuR5cnND1_-V1dAGzNaps__A7uai0AD_gelwBLbDsRfjzzXELlvuFnIhytxEs0FXCdlgOTjJBgtXITXL9PuqZIAVy-7EeqELK6pHbxZkLjU4bNMuKrfhpbPtlkmD3rUQ8zrtsChhpxZa31CZVYfAbxCqtaJMwPvE1Ksi0uqWNqNdAxJZ-tEPwOSIb1Xd1SrC1YhbLzXStx61RN162dOv6enFZJLOxvPZ-_VPV28lpkPuZl-VPXQQEExB1R2cnI3nX5rgUuSVeyo1j1vXoi1hf3fd_i675U-_5Hd4rWWvzB6jR8bRcE4qZj9BA5UfoodW-clDdP_cACueorEtNY4lNc4qczpSo086rdQ4ttQ8Qxen49mnz67ZYcMVcYQLNwFvRVFGOIEpLwskDb1IiEgqn8VZzD2F40gFgZSZ8hIFvwzLkHGslACvTPLwCO3nq1y9QI6SMaYsiKUAF50TwUNCOPW5YiEHn9gfIlqPXypM-Xm9C8oyrXGGV6k99qke-7Qa-yEKG9p1VYSlF9WHmk1pnWYME2MKAteL-mNDbYzRysjsTf-2lowUNLYOw7FcrXbQCQcwa-rSgH_rA54VGAAx9HleSVPz5mFIY0woGSLSkbOmg64Y3z2TLy7LyvHACG2qvuzxbK_Qg_a7f432i81OvUH3xHWx2G6O0R6ZJ8fmw_oF0J7onQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+formulation+of+nanoparticles+for+biomedical+applications&rft.jtitle=Biomaterials&rft.au=Shepherd%2C+Sarah+J&rft.au=Issadore%2C+David&rft.au=Mitchell%2C+Michael+J&rft.date=2021-07-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=274&rft.spage=120826&rft_id=info:doi/10.1016%2Fj.biomaterials.2021.120826&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon