Microfluidic formulation of nanoparticles for biomedical applications
Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents...
Saved in:
| Published in: | Biomaterials Vol. 274; p. 120826 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier Ltd
01.07.2021
|
| Subjects: | |
| ISSN: | 0142-9612, 1878-5905, 1878-5905 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics—devices that manipulate fluids on a micrometer scale—have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques—such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets. |
|---|---|
| AbstractList | Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics—devices that manipulate fluids on a micrometer scale—have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques—such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets. Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics-devices that manipulate fluids on a micrometer scale-have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques-such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets.Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics-devices that manipulate fluids on a micrometer scale-have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques-such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets. Nanomedicine has made significant advances in clinical applications since its introduction in the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics—devices that manipulate fluids on a micrometer scale—have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques—such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets. |
| ArticleNumber | 120826 |
| Author | Shepherd, Sarah J. Mitchell, Michael J. Issadore, David |
| AuthorAffiliation | 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA 5 Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA 6 Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA 4 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA 2 Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA 3 Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA 7 Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA |
| AuthorAffiliation_xml | – name: 7 Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA – name: 2 Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA – name: 3 Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA – name: 4 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA – name: 6 Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA – name: 5 Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. 19104 USA – name: 1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 USA |
| Author_xml | – sequence: 1 givenname: Sarah J. surname: Shepherd fullname: Shepherd, Sarah J. organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA – sequence: 2 givenname: David orcidid: 0000-0002-5461-8653 surname: Issadore fullname: Issadore, David email: issadore@seas.upenn.edu organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA – sequence: 3 givenname: Michael J. surname: Mitchell fullname: Mitchell, Michael J. email: mjmitch@seas.upenn.edu organization: Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33965797$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkkFvFSEUhYmpsa_Vv2AmrtzMKzDAMC6Mtba1SRs3uiYM3FGePBhhpkn_vYyvNW1Xb3Uh9_Ddk3s4QgchBkDoHcFrgok42ax7F7d6guS0z2uKKVkTiiUVL9CKyFbWvMP8AK0wYbTuBKGH6CjnDS53zOgrdNg0neBt167Q-Y0zKQ5-dtaZaohpO3s9uRiqOFRBhzjqNDnjIS_NahkMRal9pcfRl8Oiza_Ry6FYgTf39Rj9uDj_fva1vv52eXV2el0bwfhUS0ksdLrtW0LIQG3XYGYMs0C0GESPgQsGlFo7AJZQqua20T0HMG1Lbd8co4877jj3xYeBMCXt1ZjcVqc7FbVTTzvB_VI_462SLaeENgXw_h6Q4p8Z8qS2LhvwXgeIc1aUc9JhKQXbQ0qZlJSzRfr2sa3_fh7WXASfdoKy65wTDMq46d_qikvnFcFqSVZt1ONk1ZKs2iVbEB-eIR6m7PX4y-4xlHBuHSSVjYNgSpQJzKRsdPthPj_DGO_C8ht-w92-kL8FBeBQ |
| CitedBy_id | crossref_primary_10_1021_cbe_5c00059 crossref_primary_10_1016_j_tifs_2023_03_025 crossref_primary_10_1038_s41596_022_00755_x crossref_primary_10_3390_pharmaceutics16010131 crossref_primary_10_1016_j_agrcom_2024_100040 crossref_primary_10_1016_j_cherd_2023_03_049 crossref_primary_10_1016_j_ijpx_2025_100399 crossref_primary_10_3390_pharmaceutics13081292 crossref_primary_10_1016_j_ceja_2025_100853 crossref_primary_10_1016_j_ijpharm_2024_124460 crossref_primary_10_1007_s40242_025_4203_0 crossref_primary_10_1016_j_foodres_2025_116171 crossref_primary_10_1016_j_ijpharm_2025_125297 crossref_primary_10_1016_j_jddst_2024_106063 crossref_primary_10_3390_pharmaceutics17091231 crossref_primary_10_1038_s41578_025_00831_0 crossref_primary_10_1097_TP_0000000000005025 crossref_primary_10_1007_s10404_022_02595_3 crossref_primary_10_1016_j_ijbiomac_2021_12_129 crossref_primary_10_1007_s10544_023_00671_1 crossref_primary_10_1016_j_ijpharm_2022_121762 crossref_primary_10_1002_anbr_202100109 crossref_primary_10_1016_j_ijpharm_2022_122299 crossref_primary_10_1007_s40820_025_01717_0 crossref_primary_10_1063_5_0281437 crossref_primary_10_1002_SMMD_20220027 crossref_primary_10_1039_D2NR00124A crossref_primary_10_3390_pharmaceutics16091159 crossref_primary_10_1016_j_colsurfa_2022_129216 crossref_primary_10_1016_j_ijbiomac_2024_136392 crossref_primary_10_1039_D4NR00019F crossref_primary_10_1016_j_tifs_2024_104626 crossref_primary_10_1016_j_ijbiomac_2024_137121 crossref_primary_10_1016_j_ijpharm_2022_121857 crossref_primary_10_1016_j_biotechadv_2025_108715 crossref_primary_10_1002_EXP_20230147 crossref_primary_10_1016_j_biomaterials_2023_122345 crossref_primary_10_1016_j_cej_2025_161972 crossref_primary_10_3390_molecules29020398 crossref_primary_10_1016_j_apmt_2025_102786 crossref_primary_10_1016_j_cis_2022_102640 crossref_primary_10_1016_j_colsurfb_2025_114598 crossref_primary_10_1016_j_rineng_2025_106296 crossref_primary_10_1016_j_bioadv_2023_213649 crossref_primary_10_1016_j_colsurfa_2022_129107 crossref_primary_10_1016_j_foodres_2021_110885 crossref_primary_10_1038_s41573_021_00283_5 crossref_primary_10_1039_D4RA08284B crossref_primary_10_1063_5_0228447 crossref_primary_10_15541_jim20240431 crossref_primary_10_1186_s12967_024_05160_4 crossref_primary_10_1016_j_colsurfa_2025_137466 crossref_primary_10_1016_j_ejpb_2023_05_010 crossref_primary_10_1038_s41587_025_02675_z crossref_primary_10_1016_j_ijpx_2024_100309 crossref_primary_10_1007_s44395_025_00018_0 crossref_primary_10_3390_polym16233396 crossref_primary_10_1016_j_ijpharm_2024_124371 crossref_primary_10_3390_nano15090637 crossref_primary_10_1088_2043_6262_aca023 crossref_primary_10_1002_adhm_202203033 crossref_primary_10_3390_nano11123440 crossref_primary_10_1038_s42003_024_06589_5 crossref_primary_10_1016_j_heliyon_2024_e26616 crossref_primary_10_1039_D4NR04778H crossref_primary_10_1186_s12951_024_02328_4 crossref_primary_10_1007_s40964_025_01140_2 crossref_primary_10_3390_mi15010090 crossref_primary_10_1007_s13346_024_01523_y crossref_primary_10_1002_adma_202308977 crossref_primary_10_1016_j_apmt_2025_102672 crossref_primary_10_1016_j_matdes_2024_112735 crossref_primary_10_1515_revce_2024_0016 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104923 crossref_primary_10_3390_pharmaceutics14091940 crossref_primary_10_1002_jbm_a_37356 crossref_primary_10_3390_biology12010082 crossref_primary_10_1016_j_ijpharm_2022_122370 crossref_primary_10_1002_mco2_253 crossref_primary_10_1080_14760584_2024_2320327 crossref_primary_10_1016_j_jddst_2025_107120 crossref_primary_10_1038_s41467_022_35637_z crossref_primary_10_1007_s10404_022_02534_2 crossref_primary_10_3390_molecules27186029 crossref_primary_10_1016_j_microc_2025_113831 crossref_primary_10_1016_j_jconrel_2024_07_019 crossref_primary_10_1016_j_trac_2024_118124 crossref_primary_10_1002_crat_202300007 crossref_primary_10_1016_j_jconrel_2023_07_054 crossref_primary_10_1038_s44222_025_00314_5 crossref_primary_10_1016_j_addr_2024_115291 crossref_primary_10_1007_s00259_024_06967_5 crossref_primary_10_1016_j_biomaterials_2022_121570 crossref_primary_10_3389_fphar_2025_1528752 crossref_primary_10_1007_s40005_025_00737_7 crossref_primary_10_1002_smll_202410522 crossref_primary_10_3390_pharmaceutics14061297 crossref_primary_10_1002_mog2_67 crossref_primary_10_1007_s13204_021_01899_0 crossref_primary_10_1039_D3NH00217A crossref_primary_10_1039_D4TB02314E crossref_primary_10_1016_j_microc_2025_114061 crossref_primary_10_1021_acsabm_5c00123 crossref_primary_10_2217_nnm_2023_0345 crossref_primary_10_1016_j_mam_2024_101290 crossref_primary_10_3390_ijms24032700 crossref_primary_10_1016_j_xphs_2024_09_015 crossref_primary_10_1016_j_jconrel_2023_04_024 crossref_primary_10_1002_agt2_70054 crossref_primary_10_1002_adhm_202302302 crossref_primary_10_1016_j_ymthe_2022_05_023 crossref_primary_10_1016_j_engmed_2024_100052 crossref_primary_10_1016_j_aej_2025_02_023 crossref_primary_10_1016_j_drudis_2024_103936 crossref_primary_10_1038_s41427_022_00416_1 crossref_primary_10_1080_08982104_2025_2504018 crossref_primary_10_1016_j_ejps_2025_107239 crossref_primary_10_1016_j_foodchem_2025_146260 crossref_primary_10_3390_ma14123164 crossref_primary_10_3390_mi12091079 crossref_primary_10_1002_smll_202403463 crossref_primary_10_1073_pnas_2303567120 crossref_primary_10_1002_adhm_202304615 crossref_primary_10_1016_j_cej_2024_155625 crossref_primary_10_1016_j_nano_2023_102711 crossref_primary_10_1080_20415990_2024_2415281 crossref_primary_10_3390_vaccines13020148 crossref_primary_10_1016_j_jddst_2024_106346 crossref_primary_10_1186_s12951_024_02526_0 crossref_primary_10_1021_acs_biomac_4c01712 crossref_primary_10_1016_j_ces_2024_120190 crossref_primary_10_1016_j_ijbiomac_2023_127358 crossref_primary_10_1039_D2NR00827K crossref_primary_10_1016_j_colsurfb_2024_113829 crossref_primary_10_1002_adma_202209672 crossref_primary_10_1016_j_jcis_2024_04_061 crossref_primary_10_3390_ijms24031875 crossref_primary_10_1016_j_addr_2024_115419 crossref_primary_10_1016_j_jddst_2022_103526 crossref_primary_10_1002_adtp_202400342 crossref_primary_10_1002_cplu_202300660 crossref_primary_10_1088_2752_5724_ac39ff crossref_primary_10_1016_j_ijpharm_2024_124641 crossref_primary_10_1063_5_0223938 crossref_primary_10_3390_life13112158 crossref_primary_10_1016_j_jconrel_2025_113707 crossref_primary_10_1039_D4NR01487A crossref_primary_10_3389_fchem_2022_1013994 crossref_primary_10_3390_technologies11040093 crossref_primary_10_1002_mco2_167 crossref_primary_10_1080_08982104_2023_2285973 crossref_primary_10_1039_D4NR00278D crossref_primary_10_1007_s10544_023_00649_z crossref_primary_10_1016_j_jconrel_2025_113932 crossref_primary_10_1002_adfm_202514387 crossref_primary_10_1016_j_ijpharm_2023_122732 crossref_primary_10_3390_gels11050309 crossref_primary_10_1002_smll_202106580 crossref_primary_10_1002_wnan_1856 crossref_primary_10_1002_adfm_202203669 crossref_primary_10_1208_s12248_021_00645_2 crossref_primary_10_1002_adma_202403116 crossref_primary_10_1016_j_addr_2022_114197 crossref_primary_10_1039_D3SD00302G crossref_primary_10_1177_08839115221121862 crossref_primary_10_1002_btpr_3325 crossref_primary_10_1021_acsabm_5c00041 crossref_primary_10_1002_jemt_24444 crossref_primary_10_1080_17435889_2025_2555507 crossref_primary_10_1002_smll_202406521 crossref_primary_10_2174_0109298673285199231210170549 crossref_primary_10_1016_j_foodchem_2023_137582 crossref_primary_10_3390_pharmaceutics14010141 crossref_primary_10_3390_ijms22179149 crossref_primary_10_1016_j_heliyon_2023_e18318 crossref_primary_10_3390_polym13244307 crossref_primary_10_1007_s10404_023_02671_2 crossref_primary_10_1016_j_bioadv_2023_213309 crossref_primary_10_1016_j_ijpharm_2025_126181 crossref_primary_10_1021_acs_biomac_5c00088 crossref_primary_10_1016_j_actbio_2023_09_011 crossref_primary_10_3389_fonc_2024_1296091 crossref_primary_10_1016_j_jddst_2025_106880 crossref_primary_10_1002_smll_202205498 crossref_primary_10_1016_j_ces_2023_119052 crossref_primary_10_1016_j_ijpharm_2025_125532 crossref_primary_10_3390_pharmaceutics17091150 crossref_primary_10_1016_j_ijbiomac_2025_139532 crossref_primary_10_3390_pharmaceutics16121521 crossref_primary_10_1016_j_susmat_2023_e00763 crossref_primary_10_1002_adtp_202400130 crossref_primary_10_1016_j_cis_2023_102871 crossref_primary_10_1016_j_ejpb_2022_07_015 crossref_primary_10_3390_ph16010069 crossref_primary_10_1021_acs_langmuir_5c01992 crossref_primary_10_1016_j_omtm_2025_101463 crossref_primary_10_1021_acsomega_4c09806 crossref_primary_10_37349_ei_2025_1003212 crossref_primary_10_1007_s10404_025_02817_4 crossref_primary_10_1016_j_jconrel_2022_06_017 crossref_primary_10_1016_j_expthermflusci_2024_111296 crossref_primary_10_3390_bioengineering9110625 crossref_primary_10_1007_s10068_024_01518_y crossref_primary_10_1007_s12274_023_6031_1 crossref_primary_10_1016_j_ijpharm_2024_124163 crossref_primary_10_1016_j_cej_2024_155938 crossref_primary_10_1002_jbm_b_35530 crossref_primary_10_1002_admt_202101588 crossref_primary_10_1016_j_nantod_2024_102314 crossref_primary_10_1021_jacs_4c04565 crossref_primary_10_1002_anbr_202300041 crossref_primary_10_1016_j_ejpb_2023_08_002 crossref_primary_10_1002_cben_70015 crossref_primary_10_1080_10717544_2022_2108523 crossref_primary_10_1016_j_jddst_2024_105956 |
| Cites_doi | 10.1016/S0169-409X(97)00049-5 10.1016/j.nantod.2016.04.006 10.1016/S0142-9612(02)00578-1 10.1021/ja0318030 10.1016/j.cbpa.2004.04.009 10.1021/ac0346712 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 10.1016/j.jconrel.2019.10.028 10.1039/C7NR03272B 10.1007/s12551-016-0218-6 10.1039/C7NR01593C 10.1016/j.ijpharm.2015.02.063 10.1103/PhysRevLett.87.274501 10.1016/j.xphs.2018.05.003 10.1021/ac053496h 10.1002/btm2.10143 10.1016/j.ejpb.2018.06.017 10.3390/pharmaceutics8040036 10.1016/j.nano.2013.08.003 10.1021/acsabm.9b00853 10.1002/admt.201900488 10.1007/s13346-021-00911-y 10.1038/s41565-019-0591-y 10.1016/j.ejpb.2010.12.029 10.1007/s40259-018-0290-5 10.1007/s13346-019-00699-y 10.3390/inventions3030060 10.1021/ja301621z 10.1038/s41565-020-00822-y 10.1038/nature05058 10.1016/j.canlet.2019.04.040 10.1038/nature04688 10.1021/nl301253v 10.1016/S0168-3659(00)00339-4 10.1002/jps.23269 10.1021/acs.iecr.7b04836 10.1021/acsanm.8b01239 10.1126/science.1066238 10.1021/acs.molpharmaceut.5b00530 10.1038/mt.2014.30 10.1039/c2jm30257h 10.1073/pnas.1118425109 10.1023/A:1010067107182 10.1103/PhysRevE.74.061402 10.1007/s11095-016-1958-5 10.3390/polym3031377 10.1073/pnas.1906929116 10.1039/C6LC01049K 10.1002/btm2.10003 10.1016/j.celrep.2018.02.014 10.1021/acsnano.7b05876 10.1038/s41587-019-0384-8 10.1002/wnan.6 10.1021/nn500299p 10.1038/s41551-019-0351-1 10.1093/annonc/mdh097 10.1016/j.colsurfb.2016.09.016 10.1021/nn501371n 10.1039/c2lc40693d 10.1056/NEJMoa2022483 10.1021/nn403370e 10.1073/pnas.0910603106 10.1208/s12248-015-9780-2 10.1016/j.tibtech.2013.09.007 10.1007/s40265-018-0983-6 10.1080/1061186X.2016.1198354 10.1126/sciadv.aba1028 10.1039/B713141K 10.1038/s41573-020-0090-8 10.14356/kona.2020011 10.1016/j.jallcom.2019.05.153 10.1002/adma.201405408 10.1002/bit.21301 10.1080/21663831.2017.1376720 10.1146/annurev-bioeng-071811-150124 10.1038/nrd.2017.243 10.1126/science.1219657 10.1021/mp400337f 10.1016/j.biomaterials.2014.10.079 10.1038/s41598-019-48515-4 10.1016/S0006-3495(01)76202-9 10.1007/s11095-004-1873-z 10.1016/j.ijpharm.2012.12.048 10.1021/acs.iecr.9b04747 10.1021/acs.langmuir.7b04335 10.1016/j.ces.2012.08.010 10.1259/bjr/59448833 10.1016/0169-409X(95)00023-Z 10.1016/j.jddst.2018.12.009 10.1002/anie.200801360 10.1063/5.0029860 10.1155/2011/591325 10.1021/nn901433u 10.1038/nrc.2017.83 10.1038/s41598-018-20754-x 10.1016/0378-5173(87)90139-6 10.1007/s10544-019-0435-4 10.1073/pnas.1620874114 10.2217/imt-2018-0029 10.1002/wnan.1364 10.1146/annurev-med-040210-162544 10.1016/j.jconrel.2014.12.030 10.1039/C5LC01025J 10.1038/nbt1340 10.1021/nl801736q 10.1021/am3004413 10.1002/jbm.a.36033 10.2144/99272bm16 10.1038/mt.2009.208 10.1038/s41573-018-0006-z 10.1016/j.ces.2017.04.046 10.1056/NEJMoa2034577 10.1016/j.ijpharm.2020.119098 10.1146/annurev-chembioeng-073009-100847 10.1016/j.jconrel.2018.10.008 10.1007/s40005-019-00453-z 10.1039/C6SM01879C 10.1146/annurev.matsci.28.1.153 10.1021/acsomega.8b00341 10.4155/tde-2016-0006 10.1038/s41467-018-03515-2 10.2217/nnm.16.5 10.1155/2015/794601 10.1016/j.jconrel.2016.05.059 10.1021/nn4039063 10.1016/j.colsurfb.2009.09.001 10.1016/j.jconrel.2016.11.015 10.1038/nbt.1602 10.1039/C0LC00507J 10.1186/1556-276X-7-480 10.1016/j.biomaterials.2016.06.015 10.1016/j.ijpharm.2020.119266 10.1039/C4LC00334A 10.1007/s10103-007-0470-x 10.1038/263797a0 10.1080/10611860802228350 10.1126/scitranslmed.aac6522 10.1039/C9LC00240E 10.1007/s13346-020-00724-5 10.3390/ijms19071979 10.1016/j.jconrel.2008.08.012 10.1038/mtna.2012.28 10.1021/acs.nanolett.9b04246 10.1021/nn901676x 10.1021/ac071903e 10.1016/S0022-2836(64)80115-7 10.1021/acs.nanolett.5b02497 10.1038/srep25876 10.1016/0168-3659(93)90103-C 10.1021/acs.nanolett.6b03329 10.1002/anie.200904285 10.1038/nrg3763 10.1021/acs.nanolett.6b03251 10.1002/smtd.201700375 10.1073/pnas.1502850112 10.1038/nnano.2012.168 10.1002/adma.201705328 10.1021/la205131e 10.1021/acs.nanolett.8b01101 10.2147/NSA.S99986 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
| DOI | 10.1016/j.biomaterials.2021.120826 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1878-5905 |
| EndPage | 120826 |
| ExternalDocumentID | PMC8752123 33965797 10_1016_j_biomaterials_2021_120826 S0142961221001824 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R21 MH118170 – fundername: NIAID NIH HHS grantid: R61 AI147406 – fundername: NCATS NIH HHS grantid: DP2 TR002776 – fundername: NIDDK NIH HHS grantid: R01 DK123049 – fundername: NCI NIH HHS grantid: P30 CA016520 – fundername: NHGRI NIH HHS grantid: RM1 HG010023 – fundername: NCI NIH HHS grantid: R01 CA241661 – fundername: NCI NIH HHS grantid: R37 CA244911 – fundername: NIBIB NIH HHS grantid: R21 EB023989 – fundername: NCI NIH HHS grantid: R33 CA206907 |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABWVN ABXDB ABXRA ACDAQ ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFFNX AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SST SSU SSZ T5K TN5 VH1 WH7 WUQ XPP XUV Z5R ZMT ~G- ~HD AACTN AAIAV AAYOK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS RIG 9DU AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c645t-881de9a7b7111f2d9304cc4de1a6f6b0e564e22ddfe08e2dda5d3ab5eec772db3 |
| ISICitedReferencesCount | 279 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663587100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-9612 1878-5905 |
| IngestDate | Tue Sep 30 16:53:22 EDT 2025 Sat Sep 27 19:00:12 EDT 2025 Mon Sep 29 06:29:38 EDT 2025 Wed Feb 19 02:26:27 EST 2025 Sat Nov 29 07:25:18 EST 2025 Tue Nov 18 21:10:15 EST 2025 Fri Feb 23 02:44:36 EST 2024 Tue Oct 14 19:30:03 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Drug delivery Nanoparticle Imaging Microfluidics |
| Language | English |
| License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c645t-881de9a7b7111f2d9304cc4de1a6f6b0e564e22ddfe08e2dda5d3ab5eec772db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 S.J.S. performed the literature search and designed the display items. S.J.S., D.I., and M.J.M. discussed the manuscript content and wrote the manuscript. All authors critically reviewed and edited the manuscript before submission. Author contributions |
| ORCID | 0000-0002-5461-8653 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8752123 |
| PMID | 33965797 |
| PQID | 2524882544 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8752123 proquest_miscellaneous_2551908864 proquest_miscellaneous_2524882544 pubmed_primary_33965797 crossref_citationtrail_10_1016_j_biomaterials_2021_120826 crossref_primary_10_1016_j_biomaterials_2021_120826 elsevier_sciencedirect_doi_10_1016_j_biomaterials_2021_120826 elsevier_clinicalkey_doi_10_1016_j_biomaterials_2021_120826 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biomaterials |
| PublicationTitleAlternate | Biomaterials |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jackson, Anderson, Rouphael (bib15) 2020 Polack, Thomas, Kitchin (bib19) 2020; 383 Anselmo, Mitragotri (bib20) 2019; 4 Mitchell, Billingsley, Haley, Wechsler, Peppas, Langer (bib26) 2021; 20 Sercombe, Veerati, Moheimani, Wu, Sood, Hua (bib53) 2015; 6 Valencia, Pridgen, Rhee, Langer, Farokhzad, Karnik (bib126) 2013; 7 Liechty, Kryscio, Slaughter, Peppas (bib113) 2010; 1 Akinc, Maier, Manoharan (bib7) 2019; 14 Frenz, El Harrak, Pauly, Bégin-Colin, Griffiths, Baret (bib165) 2008; 47 Danhier (bib27) 2016; 244 RiP (bib2) 1960; 23 Oberli, Reichmuth, Dorkin (bib59) 2017; 17 Riley, Kashyap, Billingsley (bib64) 2021; 7 Ma, Lee, Yi, Li (bib6) 2017; 17 Riley, June, Langer, Mitchell (bib57) 2019; 18 Baby, Liu, Middelberg, Zhao (bib123) 2017; 169 Bangham, Horne (bib50) 1964; 8 Patel, Ashwanikumar, Robinson (bib99) 2020; 11 Abstiens, Goepferich (bib133) 2019; 49 Garg, Heuck, Ip, Ramsay (bib49) 2016; 24 Reichmuth, Oberli, Jaklenac, Langer, Blankschtein (bib14) 2016; 7 Huang, Jain, El-Sayed, El-Sayed (bib10) 2008; 23 Jeong, Yelleswarapu, Yadavali, Issadore, Lee (bib93) 2015; 15 Han, Michel, Lee (bib140) 2015; 12 Jahn, Vreeland, Gaitan, Locascio (bib73) 2004; 126 O'Brien, Wigler, Inbar (bib8) 2004; 15 Wild, Leaver, Taylor (bib95) 2018 Guimarães, Gaglione, Sewastianik, Carrasco, Langer, Mitchell (bib146) 2018; 12 Maurer, Wong, Stark (bib66) 2001; 80 Hood, Devoe, Atencia, Vreeland, Omiatek (bib78) 2014; 14 Kapadia, Melamed, Day (bib153) 2018; 32 Soppimath, Aminabhavi, Kulkarni, Rudzinski (bib109) 2001; 70 Jousma, Talsma, Spies, Joosten, Junginger, Crommelin (bib68) 1987; 35 Saad, Prud'Homme (bib138) 2016; 11 Fenton, Olafson, Pillai, Mitchell, Langer (bib1) 2018; 30 Mitchell, Jain, Langer (bib29) 2017; 17 Chen, Love, Chen (bib37) 2012; 134 Stetefeld, McKenna, Patel (bib52) 2016; 8 Bobo, Robinson, Islam, Thurecht, Corrie (bib9) 2016; 33 Abalde-Cela, Taladriz-Blanco, De Oliveira, Abell (bib166) 2018; 8 Hao, Nie, Tadimety, Closson, Zhang (bib171) 2017; 5 (bib47) 2019 O'Donovan, Eastburn, Abate (bib168) 2012; 12 Choueiri, Atkins, Bakouny (bib58) 2020 Jahn, Stavis, Hong, Vreeland, Devoe, Gaitan (bib74) 2010; 4 Yamankurt, Berns, Xue (bib177) 2019; 3 Wyss, Blair, Morris, Stone, Weitz (bib175) 2006; 74 Abou-Hassan, Sandre, Cabuil (bib144) 2010; 49 Gale, Jafek, Lambert (bib88) 2018; 3 Choi, Liu, Misra (bib160) 2007; 25 Leung, Shen (bib120) 2018; 34 Kumari, Yadav, Yadav (bib107) 2010; 75 Karnik, Gu, Basto (bib36) 2008; 8 Lim, Swami, Gilson (bib137) 2014; 8 Scholes, Coombes, Illum, Daviz, Vert, Davies (bib118) 1993; 25 Hubbell, Chilkoti (bib115) 2012; 337 Baden, El Sahly, Essink (bib18) 2020 Singh, Pandit, Mokkapati, Garg, Ravikumar, Mijakovic (bib11) 2018; 19 Pu, Cai, Wang, Wang, Chen (bib159) 2018; 57 Markwalter, Prud’homme (bib141) 2018; 107 Walsh, Ou, Belliveau (bib94) 2014; vol. 1141 Daraee, Eatemadi, Abbasi, Aval, Kouhi, Akbarzadeh (bib145) 2016; 44 Kulkarni, Tam, Chen (bib102) 2017; 9 Miller, Gadde, Pfirschke (bib28) 2015; 7 Billingsley, Singh, Ravikumar, Zhang, June, Mitchell (bib56) 2020; 20 Ran, Wang, Liu (bib77) 2018; 130 (bib23) 2020; 38 Sykes, Chen, Zheng, Chan (bib172) 2014; 8 Hoshyar, Gray, Han, Bao (bib173) 2016; 11 Pardi, Hogan, Porter, Weissman (bib13) 2018; 17 Ran, Middelberg, Zhao (bib76) 2016; 148 Finn, Smith, Patel (bib98) 2018; 22 Jeffs, Palmer, Ambegia, Giesbrecht, Ewanick, MacLachlan (bib104) 2005; 22 Mukhopadhyay (bib87) 2007; 79 Pecora (bib51) 2000; 2 Kašpar, Koyuncu, Pittermannová, Ulbrich, Tokárová (bib161) 2019; 21 Sah, Sah (bib119) 2015; 2015 Makadia, Siegel (bib117) 2011; 3 Belliveau, Huft, Lin (bib80) 2012; 1 Bicudo, Santana (bib122) 2012; 84 Gañán-Calvo, Gordillo (bib46) 2001; 87 Roces, Christensen, Perrie (bib134) 2020 Kastner, Verma, Lowry, Perrie (bib84) 2015; 485 Luo, Su, Zhang, Raston (bib86) 2019; 4 Lim, Bertrand, Valencia (bib125) 2014; 10 Ali, Zafar, Zia (bib154) 2016; 9 Dressaire, Sauret (bib174) 2017; 13 Wicki, Witzigmann, Balasubramanian, Huwyler (bib22) 2015; 200 Gooding (bib82) 2004; 8 Xia, Whitesides (bib45) 1998; 28 Ball, Hajj, Vizelman, Bajaj, Whitehead (bib71) 2018; 18 Webb, Forbes, Roces (bib96) 2020; 582 Zimmermann, Lee, Akinc (bib105) 2006; 441 Wang, Langer, Farokhzad (bib41) 2012; 63 Carugo, Bottaro, Owen, Stride, Nastruzzi (bib65) 2016; 6 Nisisako, Torii (bib91) 2008; 8 Kimura, Maeki, Sato (bib100) 2018; 3 Hirota, De Ilarduya, Barron, Szoka (bib101) 1999; 27 Blasi (bib110) 2019; 49 Kauffman, Dorkin, Yang (bib81) 2015; 15 Anselmo, Mitragotri (bib4) 2016; 1 Mukalel, Riley, Zhang, Mitchell (bib63) 2019; 458 Chen, Tam, Lin, Sung, Tam, Cullis (bib72) 2016; 235 Ding, Jiang, Saha (bib147) 2014; 22 Gong, Sheppard, Billingsley, June, Mitchell (bib60) 2021; 16 Banik, Fattahi, Brown (bib142) 2016; 8 Berger, Smith, Zorn (bib69) 2014; 7 Shen, Banerjee, Mlynarska (bib139) 2012; 101 Zhang, Chen, Ma, Sun (bib176) 2020; 3 Wang, Billone, Mullett (bib21) 2013; 3 Hirn, Semmler-Behnke, Schleh (bib157) 2011; 77 Hoy (bib12) 2018; 78 Wagner, Vorauer-Uhl (bib70) 2011; 2011 Langer, Folkman (bib106) 1976; 263 Haley, Gottardi, Langer, Mitchell (bib108) 2020; 10 Ong, Chitneni, Lee, Ming, Yuen (bib40) 2016; 8 Zhang, Billingsley, Mitchell (bib112) 2018; 292 Guimaraes, Zhang, Spektor (bib83) 2019; 316 Yadavali, Lee, Issadore (bib89) 2019; 9 Abraham, Son, Talluri (bib97) 2020 Krzysztoń, Salem, Lee, Schwake, Wagner, Rädler (bib75) 2017; 9 Stavis, Fagan, Stopa, Liddle (bib35) 2018; 1 Lazarus, Riche, Marin, Gupta, Malmstadt, Brutchey (bib163) 2012; 4 Aronson, Medina, Mitchell (bib31) 2021; 5 Liu, Yang, Zou (bib38) 2020; 59 Rastinehad, Anastos, Wajswol (bib150) 2019; 116 Zalipsky (bib54) 1995; 16 Hou, Xie, Huang, Zhu (bib39) 2003; 24 Radovic-Moreno, Chernyak, Mader (bib151) 2015; 112 Dong, Carpinone, Pyrgiotakis, Demokritou, Moudgil (bib156) 2020; 37 Gregoriadis (bib55) 2008; 16 Noble, Stefanick, Ashley, Kiziltepe, Bilgicer (bib30) 2014; 32 Zhao, Bian, Sun, Cai, Li, Zhao (bib3) 2020; 16 Evers, Kulkarni, van der Meel, Cullis, Vader, Schiffelers (bib79) 2018; 2 Semple, Akinc, Chen (bib67) 2010; 28 Daruich De Souza, Ribeiro Nogueira, Rostelato (bib155) 2019; 798 Hoffman (bib114) 2008; 132 Kumar, Nightingale, Krishnadasan (bib162) 2012; 22 McNeil (bib5) 2009; 1 Karnik, Gu, Basto (bib48) 2008; 8 Wilson, Mosenia, Suprenant (bib127) 2017; 105 Cheheltani, Ezzibdeh, Chhour (bib170) 2016; 102 Puri, Loomis, Smith (bib61) 2009; 26 Yadavali, Jeong, Lee, Issadore (bib92) 2018; 9 O'Donnell, McGinity (bib116) 1997; 28 Liu, Zhang, Cito (bib131) 2017; 17 Albanese, Tang, Chan (bib32) 2012; 14 (bib16) 2020 Kohane (bib111) 2007; 96 Anselmo, Mitragotri (bib143) 2015; 17 Mukhopadhyay (bib90) 2005; 77 Kim, Lee Chung, Ma (bib129) 2012; 12 Valizadeh, Mikaeili, Samiei (bib158) 2012; 7 Sebastian Cabeza, Kuhn, Kulkarni, Jensen (bib164) 2012; 28 Whitesides (bib43) 2006; 442 Ng Lee, Park, Whitesides (bib85) 2003; 75 Valencia, Basto, Zhang (bib135) 2010; 4 Milane, Amiji (bib17) 2021 Abrams, Koser, Seitzer (bib103) 2010; 18 Kong, Chen, Wang (bib128) 2019; 19 Zheng, Giljohann, Chen (bib152) 2012; 109 Yin, Kanasty, Eltoukhy, Vegas, Dorkin, Anderson (bib34) 2014; 15 Liu, Zhang, Mäkilä (bib169) 2015; 39 Liu, Cito, Zhang, Wang, Sikanen, Santos (bib132) 2015; 27 Kim, Fay, Cormode (bib130) 2013; 7 Love, Mahon, Levins (bib62) 2010; 107 Jain, Hirst, O'Sullivan (bib148) 2012; 85 Martín-Banderas, Sáez-Fernández, Holgado (bib121) 2013; 443 Pustulka, Wohl, Lee (bib136) 2013; 10 Bisso, Leroux (bib24) 2020; 578 Stroock, Dertinger, Ajdari, Mezic, Stone, Whitesides (bib44) 2002; 295 Dahlman, Kauffman, Xing (bib25) 2017; 114 Rhee, Valencia, Rodriguez, Langer, Farokhzad, Karnik (bib124) 2011; 23 Nightingale, Krishnadasan, Berhanu (bib167) 2011; 11 Hung, Lee (bib33) 2007; 27 Valencia, Farokhzad, Karnik, Langer (bib42) 2012; 7 Liu, Crawford, Vo-Dinh (bib149) 2018; 10 Jeffs (10.1016/j.biomaterials.2021.120826_bib104) 2005; 22 Saad (10.1016/j.biomaterials.2021.120826_bib138) 2016; 11 Bicudo (10.1016/j.biomaterials.2021.120826_bib122) 2012; 84 Anselmo (10.1016/j.biomaterials.2021.120826_bib4) 2016; 1 Mitchell (10.1016/j.biomaterials.2021.120826_bib29) 2017; 17 Gale (10.1016/j.biomaterials.2021.120826_bib88) 2018; 3 Hou (10.1016/j.biomaterials.2021.120826_bib39) 2003; 24 Hirota (10.1016/j.biomaterials.2021.120826_bib101) 1999; 27 Berger (10.1016/j.biomaterials.2021.120826_bib69) 2014; 7 Luo (10.1016/j.biomaterials.2021.120826_bib86) 2019; 4 Abrams (10.1016/j.biomaterials.2021.120826_bib103) 2010; 18 Yadavali (10.1016/j.biomaterials.2021.120826_bib89) 2019; 9 Semple (10.1016/j.biomaterials.2021.120826_bib67) 2010; 28 Evers (10.1016/j.biomaterials.2021.120826_bib79) 2018; 2 Langer (10.1016/j.biomaterials.2021.120826_bib106) 1976; 263 Yamankurt (10.1016/j.biomaterials.2021.120826_bib177) 2019; 3 Aronson (10.1016/j.biomaterials.2021.120826_bib31) 2021; 5 Markwalter (10.1016/j.biomaterials.2021.120826_bib141) 2018; 107 Anselmo (10.1016/j.biomaterials.2021.120826_bib143) 2015; 17 Rastinehad (10.1016/j.biomaterials.2021.120826_bib150) 2019; 116 Hao (10.1016/j.biomaterials.2021.120826_bib171) 2017; 5 Valencia (10.1016/j.biomaterials.2021.120826_bib135) 2010; 4 Choi (10.1016/j.biomaterials.2021.120826_bib160) 2007; 25 Kulkarni (10.1016/j.biomaterials.2021.120826_bib102) 2017; 9 Banik (10.1016/j.biomaterials.2021.120826_bib142) 2016; 8 Baby (10.1016/j.biomaterials.2021.120826_bib123) 2017; 169 Guimarães (10.1016/j.biomaterials.2021.120826_bib146) 2018; 12 Zheng (10.1016/j.biomaterials.2021.120826_bib152) 2012; 109 Hood (10.1016/j.biomaterials.2021.120826_bib78) 2014; 14 Abraham (10.1016/j.biomaterials.2021.120826_bib97) 2020 Gooding (10.1016/j.biomaterials.2021.120826_bib82) 2004; 8 Sah (10.1016/j.biomaterials.2021.120826_bib119) 2015; 2015 Akinc (10.1016/j.biomaterials.2021.120826_bib7) 2019; 14 Kong (10.1016/j.biomaterials.2021.120826_bib128) 2019; 19 Zimmermann (10.1016/j.biomaterials.2021.120826_bib105) 2006; 441 Ali (10.1016/j.biomaterials.2021.120826_bib154) 2016; 9 Haley (10.1016/j.biomaterials.2021.120826_bib108) 2020; 10 Kapadia (10.1016/j.biomaterials.2021.120826_bib153) 2018; 32 Xia (10.1016/j.biomaterials.2021.120826_bib45) 1998; 28 Mukhopadhyay (10.1016/j.biomaterials.2021.120826_bib87) 2007; 79 Nisisako (10.1016/j.biomaterials.2021.120826_bib91) 2008; 8 Daraee (10.1016/j.biomaterials.2021.120826_bib145) 2016; 44 Mitchell (10.1016/j.biomaterials.2021.120826_bib26) 2021; 20 Stroock (10.1016/j.biomaterials.2021.120826_bib44) 2002; 295 Pustulka (10.1016/j.biomaterials.2021.120826_bib136) 2013; 10 Mukalel (10.1016/j.biomaterials.2021.120826_bib63) 2019; 458 Blasi (10.1016/j.biomaterials.2021.120826_bib110) 2019; 49 Chen (10.1016/j.biomaterials.2021.120826_bib37) 2012; 134 Radovic-Moreno (10.1016/j.biomaterials.2021.120826_bib151) 2015; 112 Noble (10.1016/j.biomaterials.2021.120826_bib30) 2014; 32 Hoffman (10.1016/j.biomaterials.2021.120826_bib114) 2008; 132 Webb (10.1016/j.biomaterials.2021.120826_bib96) 2020; 582 Milane (10.1016/j.biomaterials.2021.120826_bib17) 2021 Liu (10.1016/j.biomaterials.2021.120826_bib169) 2015; 39 Ran (10.1016/j.biomaterials.2021.120826_bib76) 2016; 148 Karnik (10.1016/j.biomaterials.2021.120826_bib48) 2008; 8 Wyss (10.1016/j.biomaterials.2021.120826_bib175) 2006; 74 Anselmo (10.1016/j.biomaterials.2021.120826_bib20) 2019; 4 Kauffman (10.1016/j.biomaterials.2021.120826_bib81) 2015; 15 Rhee (10.1016/j.biomaterials.2021.120826_bib124) 2011; 23 Fenton (10.1016/j.biomaterials.2021.120826_bib1) 2018; 30 Wagner (10.1016/j.biomaterials.2021.120826_bib70) 2011; 2011 Jousma (10.1016/j.biomaterials.2021.120826_bib68) 1987; 35 Ng Lee (10.1016/j.biomaterials.2021.120826_bib85) 2003; 75 Ma (10.1016/j.biomaterials.2021.120826_bib6) 2017; 17 Belliveau (10.1016/j.biomaterials.2021.120826_bib80) 2012; 1 Bangham (10.1016/j.biomaterials.2021.120826_bib50) 1964; 8 Sykes (10.1016/j.biomaterials.2021.120826_bib172) 2014; 8 Frenz (10.1016/j.biomaterials.2021.120826_bib165) 2008; 47 Nightingale (10.1016/j.biomaterials.2021.120826_bib167) 2011; 11 Kumar (10.1016/j.biomaterials.2021.120826_bib162) 2012; 22 Kumari (10.1016/j.biomaterials.2021.120826_bib107) 2010; 75 Wang (10.1016/j.biomaterials.2021.120826_bib41) 2012; 63 Sebastian Cabeza (10.1016/j.biomaterials.2021.120826_bib164) 2012; 28 Reichmuth (10.1016/j.biomaterials.2021.120826_bib14) 2016; 7 Baden (10.1016/j.biomaterials.2021.120826_bib18) 2020 Stetefeld (10.1016/j.biomaterials.2021.120826_bib52) 2016; 8 Zalipsky (10.1016/j.biomaterials.2021.120826_bib54) 1995; 16 Jackson (10.1016/j.biomaterials.2021.120826_bib15) 2020 Hubbell (10.1016/j.biomaterials.2021.120826_bib115) 2012; 337 Yin (10.1016/j.biomaterials.2021.120826_bib34) 2014; 15 Makadia (10.1016/j.biomaterials.2021.120826_bib117) 2011; 3 Danhier (10.1016/j.biomaterials.2021.120826_bib27) 2016; 244 Shen (10.1016/j.biomaterials.2021.120826_bib139) 2012; 101 Valencia (10.1016/j.biomaterials.2021.120826_bib126) 2013; 7 Daruich De Souza (10.1016/j.biomaterials.2021.120826_bib155) 2019; 798 Leung (10.1016/j.biomaterials.2021.120826_bib120) 2018; 34 Riley (10.1016/j.biomaterials.2021.120826_bib64) 2021; 7 Mukhopadhyay (10.1016/j.biomaterials.2021.120826_bib90) 2005; 77 O'Donnell (10.1016/j.biomaterials.2021.120826_bib116) 1997; 28 Riley (10.1016/j.biomaterials.2021.120826_bib57) 2019; 18 Ball (10.1016/j.biomaterials.2021.120826_bib71) 2018; 18 Liu (10.1016/j.biomaterials.2021.120826_bib132) 2015; 27 Ran (10.1016/j.biomaterials.2021.120826_bib77) 2018; 130 Zhang (10.1016/j.biomaterials.2021.120826_bib176) 2020; 3 Wang (10.1016/j.biomaterials.2021.120826_bib21) 2013; 3 Hoy (10.1016/j.biomaterials.2021.120826_bib12) 2018; 78 Miller (10.1016/j.biomaterials.2021.120826_bib28) 2015; 7 Garg (10.1016/j.biomaterials.2021.120826_bib49) 2016; 24 Abalde-Cela (10.1016/j.biomaterials.2021.120826_bib166) 2018; 8 Bisso (10.1016/j.biomaterials.2021.120826_bib24) 2020; 578 Finn (10.1016/j.biomaterials.2021.120826_bib98) 2018; 22 Liu (10.1016/j.biomaterials.2021.120826_bib131) 2017; 17 Dong (10.1016/j.biomaterials.2021.120826_bib156) 2020; 37 Gregoriadis (10.1016/j.biomaterials.2021.120826_bib55) 2008; 16 Kastner (10.1016/j.biomaterials.2021.120826_bib84) 2015; 485 Abstiens (10.1016/j.biomaterials.2021.120826_bib133) 2019; 49 Sercombe (10.1016/j.biomaterials.2021.120826_bib53) 2015; 6 (10.1016/j.biomaterials.2021.120826_bib47) 2019 Oberli (10.1016/j.biomaterials.2021.120826_bib59) 2017; 17 Pu (10.1016/j.biomaterials.2021.120826_bib159) 2018; 57 Jeong (10.1016/j.biomaterials.2021.120826_bib93) 2015; 15 Liu (10.1016/j.biomaterials.2021.120826_bib149) 2018; 10 Huang (10.1016/j.biomaterials.2021.120826_bib10) 2008; 23 Kašpar (10.1016/j.biomaterials.2021.120826_bib161) 2019; 21 Polack (10.1016/j.biomaterials.2021.120826_bib19) 2020; 383 Dahlman (10.1016/j.biomaterials.2021.120826_bib25) 2017; 114 Hung (10.1016/j.biomaterials.2021.120826_bib33) 2007; 27 Carugo (10.1016/j.biomaterials.2021.120826_bib65) 2016; 6 Jain (10.1016/j.biomaterials.2021.120826_bib148) 2012; 85 Hirn (10.1016/j.biomaterials.2021.120826_bib157) 2011; 77 Scholes (10.1016/j.biomaterials.2021.120826_bib118) 1993; 25 Kim (10.1016/j.biomaterials.2021.120826_bib129) 2012; 12 Maurer (10.1016/j.biomaterials.2021.120826_bib66) 2001; 80 Patel (10.1016/j.biomaterials.2021.120826_bib99) 2020; 11 Choueiri (10.1016/j.biomaterials.2021.120826_bib58) 2020 Liu (10.1016/j.biomaterials.2021.120826_bib38) 2020; 59 Cheheltani (10.1016/j.biomaterials.2021.120826_bib170) 2016; 102 Puri (10.1016/j.biomaterials.2021.120826_bib61) 2009; 26 Jahn (10.1016/j.biomaterials.2021.120826_bib73) 2004; 126 Wilson (10.1016/j.biomaterials.2021.120826_bib127) 2017; 105 Kim (10.1016/j.biomaterials.2021.120826_bib130) 2013; 7 Albanese (10.1016/j.biomaterials.2021.120826_bib32) 2012; 14 Martín-Banderas (10.1016/j.biomaterials.2021.120826_bib121) 2013; 443 Guimaraes (10.1016/j.biomaterials.2021.120826_bib83) 2019; 316 Whitesides (10.1016/j.biomaterials.2021.120826_bib43) 2006; 442 Roces (10.1016/j.biomaterials.2021.120826_bib134) 2020 Love (10.1016/j.biomaterials.2021.120826_bib62) 2010; 107 Jahn (10.1016/j.biomaterials.2021.120826_bib74) 2010; 4 Hoshyar (10.1016/j.biomaterials.2021.120826_bib173) 2016; 11 Zhang (10.1016/j.biomaterials.2021.120826_bib112) 2018; 292 Zhao (10.1016/j.biomaterials.2021.120826_bib3) 2020; 16 Lim (10.1016/j.biomaterials.2021.120826_bib137) 2014; 8 Lim (10.1016/j.biomaterials.2021.120826_bib125) 2014; 10 O'Brien (10.1016/j.biomaterials.2021.120826_bib8) 2004; 15 Kimura (10.1016/j.biomaterials.2021.120826_bib100) 2018; 3 Singh (10.1016/j.biomaterials.2021.120826_bib11) 2018; 19 Valizadeh (10.1016/j.biomaterials.2021.120826_bib158) 2012; 7 (10.1016/j.biomaterials.2021.120826_bib23) 2020; 38 Stavis (10.1016/j.biomaterials.2021.120826_bib35) 2018; 1 Billingsley (10.1016/j.biomaterials.2021.120826_bib56) 2020; 20 Wild (10.1016/j.biomaterials.2021.120826_bib95) 2018 Chen (10.1016/j.biomaterials.2021.120826_bib72) 2016; 235 Karnik (10.1016/j.biomaterials.2021.120826_bib36) 2008; 8 Lazarus (10.1016/j.biomaterials.2021.120826_bib163) 2012; 4 (10.1016/j.biomaterials.2021.120826_bib16) 2020 Bobo (10.1016/j.biomaterials.2021.120826_bib9) 2016; 33 Ong (10.1016/j.biomaterials.2021.120826_bib40) 2016; 8 Gañán-Calvo (10.1016/j.biomaterials.2021.120826_bib46) 2001; 87 Abou-Hassan (10.1016/j.biomaterials.2021.120826_bib144) 2010; 49 Pardi (10.1016/j.biomaterials.2021.120826_bib13) 2018; 17 Pecora (10.1016/j.biomaterials.2021.120826_bib51) 2000; 2 Gong (10.1016/j.biomaterials.2021.120826_bib60) 2021; 16 Krzysztoń (10.1016/j.biomaterials.2021.120826_bib75) 2017; 9 Soppimath (10.1016/j.biomaterials.2021.120826_bib109) 2001; 70 Han (10.1016/j.biomaterials.2021.120826_bib140) 2015; 12 Valencia (10.1016/j.biomaterials.2021.120826_bib42) 2012; 7 O'Donovan (10.1016/j.biomaterials.2021.120826_bib168) 2012; 12 RiP (10.1016/j.biomaterials.2021.120826_bib2) 1960; 23 McNeil (10.1016/j.biomaterials.2021.120826_bib5) 2009; 1 Dressaire (10.1016/j.biomaterials.2021.120826_bib174) 2017; 13 Liechty (10.1016/j.biomaterials.2021.120826_bib113) |
| References_xml | – volume: 27 start-page: 1 year: 2007 end-page: 6 ident: bib33 article-title: Microfluidic devices for the synthesis of nanoparticles and biomaterials publication-title: J. Med. Biol. Eng. – volume: 27 start-page: 2298 year: 2015 end-page: 2304 ident: bib132 article-title: A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties publication-title: Adv. Mater. – volume: 79 start-page: 3249 year: 2007 end-page: 3253 ident: bib87 article-title: When PDMS isn't the best publication-title: Anal. Chem. – volume: 9 start-page: 13600 year: 2017 end-page: 13609 ident: bib102 article-title: Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles publication-title: Nanoscale – volume: 4 start-page: 1671 year: 2010 end-page: 1679 ident: bib135 article-title: Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing publication-title: ACS Nano – volume: 57 start-page: 1790 year: 2018 end-page: 1802 ident: bib159 article-title: Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review publication-title: Ind. Eng. Chem. Res. – volume: 316 start-page: 404 year: 2019 end-page: 417 ident: bib83 article-title: Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening publication-title: J. Contr. Release – volume: 16 start-page: 520 year: 2008 end-page: 524 ident: bib55 article-title: Liposome research in drug delivery: the early days publication-title: J. Drug Target. – volume: 59 start-page: 4134 year: 2020 end-page: 4149 ident: bib38 article-title: Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery publication-title: Ind. Eng. Chem. Res. – volume: 8 start-page: 2906 year: 2008 end-page: 2912 ident: bib48 article-title: Microfluidic platform for controlled synthesis of polymeric nanoparticles publication-title: Nano Lett. – volume: 28 start-page: 172 year: 2010 end-page: 176 ident: bib67 article-title: Rational design of cationic lipids for siRNA delivery publication-title: Nat. Biotechnol. – volume: 2011 start-page: 1 year: 2011 end-page: 9 ident: bib70 article-title: Liposome technology for industrial purposes publication-title: J Drug Deliv – volume: 19 year: 2018 ident: bib11 article-title: Gold nanoparticles in diagnostics and therapeutics for human cancer publication-title: Int. J. Mol. Sci. – volume: 578 year: 2020 ident: bib24 article-title: Nanopharmaceuticals: a focus on their clinical translatability publication-title: Int. J. Pharm. – volume: 28 start-page: 7007 year: 2012 end-page: 7013 ident: bib164 article-title: Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform publication-title: Langmuir – volume: 17 start-page: 209 year: 2017 end-page: 226 ident: bib6 article-title: Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications-a review publication-title: Lab Chip – volume: 77 year: 2005 ident: bib90 article-title: When microfluidic devices go bad publication-title: Anal. Chem. – volume: 1 start-page: 264 year: 2009 end-page: 271 ident: bib5 article-title: Nanoparticle therapeutics: a personal perspective publication-title: Wiley Interdiscip Rev Nanomedicine Nanobiotechnology – volume: 8 start-page: 297 year: 2004 end-page: 304 ident: bib82 article-title: Process optimization using combinatorial design principles: parallel synthesis and design of experiment methods publication-title: Curr. Opin. Chem. Biol. – volume: 4 start-page: 3077 year: 2012 end-page: 3083 ident: bib163 article-title: Two-phase microfluidic droplet flows of ionic liquids for the synthesis of gold and silver nanoparticles publication-title: ACS Appl. Mater. Interfaces – volume: 130 start-page: 1 year: 2018 end-page: 10 ident: bib77 article-title: Microfluidic self-assembly of a combinatorial library of single- and dual-ligand liposomes for in vitro and in vivo tumor targeting publication-title: Eur. J. Pharm. Biopharm. – volume: 6 start-page: 1 year: 2015 end-page: 13 ident: bib53 article-title: Advances and challenges of liposome assisted drug delivery publication-title: Front. Pharmacol. – volume: 19 start-page: 2089 year: 2019 end-page: 2095 ident: bib128 article-title: Controlled co-precipitation of biocompatible colorant-loaded nanoparticles by microfluidics for natural color drinks publication-title: Lab Chip – volume: 20 start-page: 1578 year: 2020 end-page: 1589 ident: bib56 article-title: Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering publication-title: Nano Lett. – volume: 5 start-page: 584 year: 2017 end-page: 590 ident: bib171 article-title: Microfluidics-mediated self-template synthesis of anisotropic hollow ellipsoidal mesoporous silica nanomaterials publication-title: Mater Res Lett – volume: 10 start-page: 4367 year: 2013 end-page: 4377 ident: bib136 article-title: Flash nanoprecipitation: particle structure and stability publication-title: Mol. Pharm. – volume: 44 start-page: 410 year: 2016 end-page: 422 ident: bib145 article-title: Application of gold nanoparticles in biomedical and drug delivery. publication-title: Nanomedicine Biotechnol – volume: 35 start-page: 263 year: 1987 end-page: 274 ident: bib68 article-title: Characterization of liposomes. The influence of extrusion of multilamellar vesicles through polycarbonate membranes on particle size, particle size distribution and number of bilayers publication-title: Int. J. Pharm. – volume: 109 start-page: 11975 year: 2012 end-page: 11980 ident: bib152 article-title: Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 80 start-page: 2310 year: 2001 end-page: 2326 ident: bib66 article-title: Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes publication-title: Biophys. J. – volume: 1 start-page: e37 year: 2012 ident: bib80 article-title: Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA publication-title: Mol. Ther. Nucleic Acids – volume: 8 start-page: 287 year: 2008 end-page: 293 ident: bib91 article-title: Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles publication-title: Lab Chip – volume: 9 start-page: 7442 year: 2017 end-page: 7453 ident: bib75 article-title: Microfluidic self-assembly of folate-targeted monomolecular siRNA-lipid nanoparticles publication-title: Nanoscale – volume: 8 start-page: 5696 year: 2014 end-page: 5706 ident: bib172 article-title: Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency publication-title: ACS Nano – year: 2020 ident: bib16 publication-title: Moderna Announces Phase 3 COVE Study of mRNA Vaccine against COVID-19 (mRNA-1273) Begins – volume: 8 start-page: 6056 year: 2014 end-page: 6065 ident: bib137 article-title: Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer publication-title: ACS Nano – volume: 15 start-page: 440 year: 2004 end-page: 449 ident: bib8 article-title: Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX publication-title: Ann. Oncol. – volume: 16 start-page: 157 year: 1995 end-page: 182 ident: bib54 article-title: Chemistry of polyethylene glycol conjugates with biologically active molecules publication-title: Adv. Drug Deliv. Rev. – year: 2020 ident: bib134 article-title: Translating the fabrication of protein-loaded poly(lactic-co-glycolic acid) nanoparticles from bench to scale-independent production using microfluidics publication-title: Drug Deliv Transl Res – volume: 74 start-page: 1 year: 2006 end-page: 4 ident: bib175 article-title: Mechanism for clogging of microchannels publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. – volume: 7 start-page: 1 year: 2015 end-page: 13 ident: bib28 article-title: Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle publication-title: Sci. Transl. Med. – volume: 3 start-page: 5044 year: 2018 end-page: 5051 ident: bib100 article-title: Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery publication-title: ACS Omega – volume: 132 start-page: 153 year: 2008 end-page: 163 ident: bib114 article-title: The origins and evolution of “controlled” drug delivery systems publication-title: J. Contr. Release – volume: 7 start-page: 1409 year: 2014 end-page: 1413 ident: bib69 article-title: Outcomes analysis of an alternative formulation of PEGylated liposomal doxorubicin in recurrent epithelial ovarian carcinoma during the drug shortage era publication-title: OncoTargets Ther. – volume: 23 start-page: 217 year: 2008 end-page: 228 ident: bib10 article-title: Plasmonic photothermal therapy (PPTT) using gold nanoparticles publication-title: Laser Med. Sci. – volume: 12 start-page: 912 year: 2018 end-page: 931 ident: bib146 article-title: Nanoparticles for immune cytokine TRAIL-based cancer therapy publication-title: ACS Nano – volume: 442 start-page: 368 year: 2006 end-page: 373 ident: bib43 article-title: The origins and the future of microfluidics publication-title: Nature – volume: 441 start-page: 111 year: 2006 end-page: 114 ident: bib105 article-title: RNAi-mediated gene silencing in non-human primates publication-title: Nature – volume: 458 start-page: 102 year: 2019 end-page: 112 ident: bib63 article-title: Nanoparticles for nucleic acid delivery: applications in cancer immunotherapy publication-title: Canc. Lett. – volume: 75 start-page: 1 year: 2010 end-page: 18 ident: bib107 article-title: Biodegradable polymeric nanoparticles based drug delivery systems publication-title: Colloids Surf. B Biointerfaces – volume: 383 start-page: 2603 year: 2020 end-page: 2615 ident: bib19 article-title: Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine publication-title: N. Engl. J. Med. – volume: 8 start-page: 660 year: 1964 end-page: 668 ident: bib50 article-title: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope publication-title: J. Mol. Biol. – volume: 75 start-page: 6544 year: 2003 end-page: 6554 ident: bib85 article-title: Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices publication-title: Anal. Chem. – volume: 2015 year: 2015 ident: bib119 article-title: Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent publication-title: J. Nanomater. – volume: 263 start-page: 797 year: 1976 end-page: 800 ident: bib106 article-title: Polymers for the sustained release of proteins and other macromolecules publication-title: Nature – volume: 102 start-page: 87 year: 2016 end-page: 97 ident: bib170 article-title: Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging publication-title: Biomaterials – volume: 200 start-page: 138 year: 2015 end-page: 157 ident: bib22 article-title: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications publication-title: J. Contr. Release – volume: 2 start-page: 123 year: 2000 end-page: 131 ident: bib51 article-title: Dynamic light scattering measurement of nanometer particles in liquids publication-title: J. Nanoparticle Res. – volume: 27 start-page: 286 year: 1999 end-page: 290 ident: bib101 article-title: Simple mixing device to reproducibly prepare cationic lipid-DNA complexes (lipoplexes) publication-title: Biotechniques – volume: 22 start-page: 4704 year: 2012 end-page: 4708 ident: bib162 article-title: Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor publication-title: J. Mater. Chem. – volume: 39 start-page: 249 year: 2015 end-page: 259 ident: bib169 article-title: Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy publication-title: Biomaterials – volume: vol. 1141 year: 2014 ident: bib94 publication-title: Drug Delivery System Chapter 6: Microfluidic-Based Manufacture of SiRNA-Lipid Nanoparticles for Therapeutic Applications – volume: 15 start-page: 4387 year: 2015 end-page: 4392 ident: bib93 article-title: Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED) publication-title: Lab Chip – volume: 10 start-page: 661 year: 2020 end-page: 677 ident: bib108 article-title: Cyclodextrins in drug delivery: applications in gene and combination therapy publication-title: Drug Deliv Transl Res – volume: 37 start-page: 224 year: 2020 end-page: 232 ident: bib156 article-title: Synthesis of precision gold nanoparticles using Turkevich method publication-title: KONA Powder Part J – volume: 17 start-page: 261 year: 2018 end-page: 279 ident: bib13 article-title: mRNA vaccines-a new era in vaccinology publication-title: Nat. Rev. Drug Discov. – volume: 18 start-page: 3814 year: 2018 end-page: 3822 ident: bib71 article-title: Lipid nanoparticle formulations for enhanced Co-delivery of siRNA and mRNA publication-title: Nano Lett. – volume: 9 start-page: 49 year: 2016 end-page: 67 ident: bib154 article-title: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles publication-title: Nanotechnol. Sci. Appl. – volume: 3 start-page: 318 year: 2019 end-page: 327 ident: bib177 article-title: Exploration of the nanomedicine-design space with high-throughput screening and machine learning publication-title: Nat Biomed Eng – volume: 107 start-page: 2465 year: 2018 end-page: 2471 ident: bib141 article-title: Design of a small-scale multi-inlet vortex mixer for scalable nanoparticle production and application to the encapsulation of biologics by inverse flash NanoPrecipitation publication-title: J Pharm Sci – volume: 2 start-page: 1700375 year: 2018 ident: bib79 article-title: State-of-the-Art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery publication-title: Small Methods – volume: 38 start-page: 4 year: 2020 ident: bib23 article-title: RNAi scores big wins publication-title: Nat. Biotechnol. – volume: 17 start-page: 1326 year: 2017 end-page: 1335 ident: bib59 article-title: Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy publication-title: Nano Lett. – volume: 485 start-page: 122 year: 2015 end-page: 130 ident: bib84 article-title: Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug publication-title: Int. J. Pharm. – year: 2020 ident: bib15 article-title: An mRNA vaccine against SARS-CoV-2 — preliminary report publication-title: N. Engl. J. Med. – year: 2021 ident: bib17 article-title: Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine publication-title: Drug Deliv Transl Res – volume: 126 start-page: 2674 year: 2004 end-page: 2675 ident: bib73 article-title: Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing publication-title: J. Am. Chem. Soc. – volume: 582 start-page: 119266 year: 2020 ident: bib96 article-title: Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: a case study using protein-loaded liposomes publication-title: Int. J. Pharm. – volume: 14 start-page: 1084 year: 2019 end-page: 1087 ident: bib7 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat. Nanotechnol. – volume: 8 start-page: 1 year: 2018 end-page: 6 ident: bib166 article-title: Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles publication-title: Sci. Rep. – volume: 17 start-page: 659 year: 2017 end-page: 675 ident: bib29 article-title: Engineering and physical sciences in oncology: challenges and opportunities publication-title: Nat. Rev. Canc. – volume: 28 start-page: 153 year: 1998 end-page: 184 ident: bib45 article-title: Soft lithography publication-title: Annu. Rev. Mater. Sci. – volume: 47 start-page: 6817 year: 2008 end-page: 6820 ident: bib165 article-title: Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles publication-title: Angew. Chem. Int. Ed. – volume: 114 start-page: 2060 year: 2017 end-page: 2065 ident: bib25 article-title: Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 148 start-page: 402 year: 2016 end-page: 410 ident: bib76 article-title: Microfluidic synthesis of multifunctional liposomes for tumour targeting publication-title: Colloids Surf. B Biointerfaces – volume: 9 year: 2018 ident: bib92 article-title: Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles publication-title: Nat. Commun. – volume: 8 start-page: 1 year: 2016 end-page: 12 ident: bib40 article-title: Evaluation of extrusion technique for nanosizing liposomes publication-title: Pharmaceutics – volume: 28 start-page: 25 year: 1997 end-page: 42 ident: bib116 article-title: Preparation of microspheres by the solvent evaporation technique publication-title: Adv. Drug Deliv. Rev. – year: 2020 ident: bib97 article-title: Robust and Scalable Manufacturing of Nucleic Acid Lipid Nanoparticles Using a Novel Micro Uidic Mixing Technology – volume: 21 start-page: 1 year: 2019 end-page: 14 ident: bib161 article-title: Governing factors for preparation of silver nanoparticles using droplet-based microfluidic device publication-title: Biomed. Microdevices – volume: 23 year: 1960 ident: bib2 article-title: There's plenty of room at the bottom publication-title: Eng. Sci. – volume: 25 start-page: 1165 year: 2007 end-page: 1170 ident: bib160 article-title: Renal clearance of nanoparticles publication-title: Nat. Biotechnol. – volume: 7 start-page: 319 year: 2016 end-page: 334 ident: bib14 article-title: mRNA vaccine delivery using lipid nanoparticles publication-title: Ther. Deliv. – volume: 4 start-page: 2077 year: 2010 end-page: 2087 ident: bib74 article-title: Microfluidic mixing and the formation of nanoscale lipid vesicles publication-title: ACS Nano – volume: 9 start-page: 1 year: 2019 end-page: 10 ident: bib89 article-title: Robust microfabrication of highly parallelized three-dimensional microfluidics on silicon publication-title: Sci. Rep. – year: 2019 ident: bib47 publication-title: About the NNCI. National Nanotechnology Coordinated Infrastructure – volume: 7 start-page: 10671 year: 2013 end-page: 10680 ident: bib126 article-title: Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy publication-title: ACS Nano – volume: 169 start-page: 128 year: 2017 end-page: 139 ident: bib123 article-title: Fundamental studies on throughput capacities of hydrodynamic flow-focusing microfluidics for producing monodisperse polymer nanoparticles publication-title: Chem. Eng. Sci. – volume: 1 start-page: 4358 year: 2018 end-page: 4385 ident: bib35 article-title: Nanoparticle manufacturing-heterogeneity through processes to products publication-title: ACS Appl Nano Mater – start-page: 1 year: 2018 end-page: 37 ident: bib95 article-title: Bifurcating Mixers and Methods of Their Use and Manufacture – volume: 13 start-page: 37 year: 2017 end-page: 48 ident: bib174 article-title: Clogging of microfluidic systems publication-title: Soft Matter – volume: 10 start-page: 401 year: 2014 end-page: 409 ident: bib125 article-title: Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 112 start-page: 3892 year: 2015 end-page: 3897 ident: bib151 article-title: Immunomodulatory spherical nucleic acids publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 start-page: 623 year: 2012 end-page: 629 ident: bib42 article-title: Microfluidic technologies for accelerating the clinical translation of nanoparticles publication-title: Nat. Nanotechnol. – volume: 77 start-page: 407 year: 2011 end-page: 416 ident: bib157 article-title: Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration publication-title: Eur. J. Pharm. Biopharm. – volume: 23 start-page: 79 year: 2011 end-page: 83 ident: bib124 article-title: Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels publication-title: Adv. Mater. – volume: 116 start-page: 18590 year: 2019 end-page: 18596 ident: bib150 article-title: Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 24 start-page: 821 year: 2016 end-page: 835 ident: bib49 article-title: Microfluidics: a transformational tool for nanomedicine development and production publication-title: J. Drug Target. – volume: 105 start-page: 1813 year: 2017 end-page: 1825 ident: bib127 article-title: Continuous microfluidic assembly of biodegradable poly(Beta-amino ester)/DNA nanoparticles for enhanced gene delivery publication-title: J. Biomed. Mater. Res. – volume: 25 start-page: 145 year: 1993 end-page: 153 ident: bib118 article-title: The preparation of sub-200 nm poly(lactide-co-glycolide) microspheres for site-specific drug delivery publication-title: J. Contr. Release – volume: 20 start-page: 101 year: 2021 end-page: 124 ident: bib26 article-title: Engineering precision nanoparticles for drug delivery publication-title: Nat. Rev. Drug Discov. – volume: 85 start-page: 101 year: 2012 end-page: 113 ident: bib148 article-title: Gold nanoparticles as novel agents for cancer therapy publication-title: Br. J. Radiol. – start-page: 403 year: 2020 end-page: 416 ident: bib18 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N. Engl. J. Med. – volume: 1 start-page: 149 year: 2010 end-page: 173 ident: bib113 article-title: Polymers for drug delivery systems publication-title: Annu Rev Chem Biomol Eng – volume: 32 start-page: 297 year: 2018 end-page: 309 ident: bib153 article-title: Spherical nucleic acid nanoparticles: therapeutic potential publication-title: BioDrugs – volume: 4 start-page: 1 year: 2019 end-page: 16 ident: bib20 article-title: Nanoparticles in the clinic: an update publication-title: Bioeng Transl Med – volume: 10 start-page: 1175 year: 2018 end-page: 1188 ident: bib149 article-title: Gold nanoparticles-mediated photothermal therapy and immunotherapy publication-title: Immunotherapy – volume: 33 start-page: 2373 year: 2016 end-page: 2387 ident: bib9 article-title: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date publication-title: Pharm. Res. (N. Y.) – volume: 70 start-page: 1 year: 2001 end-page: 20 ident: bib109 article-title: Biodegradable polymeric nanoparticles as drug delivery devices publication-title: J. Contr. Release – volume: 798 start-page: 714 year: 2019 end-page: 740 ident: bib155 article-title: Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction publication-title: J. Alloys Compd. – volume: 7 start-page: 1 year: 2012 ident: bib158 article-title: Quantum dots: synthesis, bioapplications, and toxicity publication-title: Nanoscale Res Lett – volume: 15 start-page: 541 year: 2014 end-page: 555 ident: bib34 article-title: Non-viral vectors for gene-based therapy publication-title: Nat. Rev. Genet. – volume: 87 start-page: 2745011 year: 2001 end-page: 2745014 ident: bib46 article-title: Perfectly monodisperse microbubbling by capillary flow focusing publication-title: Phys. Rev. Lett. – volume: 15 start-page: 7300 year: 2015 end-page: 7306 ident: bib81 article-title: Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs publication-title: Nano Lett. – volume: 12 start-page: 4029 year: 2012 end-page: 4032 ident: bib168 article-title: Electrode-free picoinjection of microfluidic drops publication-title: Lab Chip – volume: 3 start-page: 1377 year: 2011 end-page: 1397 ident: bib117 article-title: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier publication-title: Polymers – volume: 96 start-page: 203 year: 2007 end-page: 209 ident: bib111 article-title: Microparticles and nanoparticles for drug delivery publication-title: Biotechnol. Bioeng. – volume: 11 start-page: 673 year: 2016 end-page: 692 ident: bib173 article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction publication-title: Nanomedicine – volume: 6 start-page: 1 year: 2016 end-page: 15 ident: bib65 article-title: Liposome production by microfluidics: potential and limiting factors publication-title: Sci. Rep. – volume: 292 start-page: 256 year: 2018 end-page: 276 ident: bib112 article-title: Biomaterials for vaccine-based cancer immunotherapy publication-title: J. Contr. Release – volume: 244 start-page: 108 year: 2016 end-page: 121 ident: bib27 article-title: To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? publication-title: J. Contr. Release – volume: 63 start-page: 185 year: 2012 end-page: 198 ident: bib41 article-title: Nanoparticle delivery of cancer drugs publication-title: Annu. Rev. Med. – volume: 22 start-page: 362 year: 2005 end-page: 372 ident: bib104 article-title: A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA publication-title: Pharm. Res. (N. Y.) – volume: 49 start-page: 337 year: 2019 end-page: 346 ident: bib110 article-title: Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview publication-title: J Pharm Investig – volume: 34 start-page: 3961 year: 2018 end-page: 3970 ident: bib120 article-title: Microfluidic assisted nanoprecipitation of PLGA nanoparticles for curcumin delivery to leukemia Jurkat cells publication-title: Langmuir – volume: 16 start-page: 25 year: 2021 end-page: 36 ident: bib60 article-title: Nanomaterials for T-cell cancer immunotherapy publication-title: Nat. Nanotechnol. – volume: 134 start-page: 6948 year: 2012 end-page: 6951 ident: bib37 article-title: Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1 year: 2018 end-page: 29 ident: bib1 article-title: Advances in biomaterials for drug delivery publication-title: Adv. Mater. – volume: 18 start-page: 171 year: 2010 end-page: 180 ident: bib103 article-title: Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment publication-title: Mol. Ther. – volume: 3 year: 2013 ident: bib21 article-title: Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials publication-title: J. Nanomater. – volume: 11 start-page: 1221 year: 2011 end-page: 1227 ident: bib167 article-title: A stable droplet reactor for high temperature nanocrystal synthesis publication-title: Lab Chip – volume: 22 start-page: 1075 year: 2014 end-page: 1083 ident: bib147 article-title: Gold nanoparticles for nucleic acid delivery publication-title: Mol. Ther. – volume: 295 start-page: 647 year: 2002 end-page: 651 ident: bib44 article-title: Chaotic mixer for microchannels publication-title: Science – volume: 443 start-page: 103 year: 2013 end-page: 109 ident: bib121 article-title: Biocompatible gemcitabine-based nanomedicine engineered by Flow Focusing® for efficient antitumor activity publication-title: Int. J. Pharm. – volume: 17 start-page: 1041 year: 2015 end-page: 1054 ident: bib143 article-title: A review of clinical translation of inorganic nanoparticles publication-title: AAPS J. – volume: 3 start-page: 107 year: 2020 end-page: 120 ident: bib176 article-title: Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems publication-title: ACS Appl Bio Mater – volume: 84 start-page: 134 year: 2012 end-page: 141 ident: bib122 article-title: Production of hyaluronic acid (HA) nanoparticles by a continuous process inside microchannels: effects of non-solvents, organic phase flow rate, and HA concentration publication-title: Chem. Eng. Sci. – volume: 107 start-page: 1864 year: 2010 end-page: 1869 ident: bib62 article-title: Lipid-like materials for low-dose, in vivo gene silencing publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 24 start-page: 1781 year: 2003 end-page: 1785 ident: bib39 article-title: The production and characteristics of solid lipid nanoparticles (SLNs) publication-title: Biomaterials – year: 2020 ident: bib58 article-title: Summary from the first kidney cancer research summit, september 12-13, 2019: a focus on translational research publication-title: JNCI J Natl Cancer Inst – volume: 337 start-page: 303 year: 2012 end-page: 305 ident: bib115 article-title: Nanomaterials for drug delivery publication-title: Science – volume: 7 start-page: 1 year: 2021 end-page: 16 ident: bib64 article-title: Ionizable lipid nanoparticles for in utero mRNA delivery publication-title: Sci Adv – volume: 3 year: 2018 ident: bib88 article-title: A review of current methods in microfluidic device fabrication and future commercialization prospects publication-title: Inventions – volume: 8 start-page: 409 year: 2016 end-page: 427 ident: bib52 article-title: Dynamic light scattering: a practical guide and applications in biomedical sciences publication-title: Biophys Rev – volume: 7 start-page: 9975 year: 2013 end-page: 9983 ident: bib130 article-title: Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics publication-title: ACS Nano – volume: 78 start-page: 1625 year: 2018 end-page: 1631 ident: bib12 article-title: Patisiran: first global approval publication-title: Drugs – volume: 14 start-page: 1 year: 2012 end-page: 16 ident: bib32 article-title: The effect of nanoparticle size, shape, and surface chemistry on biological systems publication-title: Annu. Rev. Biomed. Eng. – volume: 11 start-page: 1 year: 2020 end-page: 13 ident: bib99 article-title: Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA publication-title: Nat. Commun. – volume: 5 year: 2021 ident: bib31 article-title: Peptide functionalized liposomes for receptor targeted cancer therapy publication-title: APL Bioeng – volume: 11 start-page: 212 year: 2016 end-page: 227 ident: bib138 article-title: Principles of nanoparticle formation by flash nanoprecipitation publication-title: Nano Today – volume: 12 start-page: 4329 year: 2015 end-page: 4335 ident: bib140 article-title: Nanoparticles containing high loads of paclitaxel-silicate prodrugs: formulation, drug release, and anticancer efficacy publication-title: Mol. Pharm. – volume: 22 start-page: 2455 year: 2018 end-page: 2468 ident: bib98 article-title: A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing publication-title: Cell Rep. – volume: 17 start-page: 606 year: 2017 end-page: 614 ident: bib131 article-title: Core/shell nanocomposites produced by superfast sequential microfluidic nanoprecipitation publication-title: Nano Lett. – volume: 16 start-page: 1 year: 2020 end-page: 19 ident: bib3 article-title: Microfluidic generation of nanomaterials for biomedical applications publication-title: Small – volume: 8 start-page: 2906 year: 2008 end-page: 2912 ident: bib36 article-title: Microfluidic platform for controlled synthesis of polymeric nanoparticles publication-title: Nano Lett. – volume: 26 start-page: 523 year: 2009 end-page: 580 ident: bib61 article-title: Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic publication-title: Crit. Rev. Ther. Drug Carrier Syst. – volume: 14 start-page: 2403 year: 2014 end-page: 2409 ident: bib78 article-title: A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array publication-title: Lab Chip – volume: 101 start-page: 3877 year: 2012 end-page: 3885 ident: bib139 article-title: Enhanced oral bioavailability of A cancer preventive agent (SR13668) by employing polymeric nanoparticles with high drug loading publication-title: J Pharm Sci – volume: 1 start-page: 10 year: 2016 end-page: 29 ident: bib4 article-title: Nanoparticles in the clinic publication-title: Bioeng Transl Med – volume: 18 start-page: 175 year: 2019 end-page: 196 ident: bib57 article-title: Delivery technologies for cancer immunotherapy publication-title: Nat. Rev. Drug Discov. – volume: 8 start-page: 271 year: 2016 end-page: 299 ident: bib142 article-title: Polymeric nanoparticles: the future of nanomedicine publication-title: Wiley Interdiscip Rev Nanomedicine Nanobiotechnology – volume: 32 start-page: 32 year: 2014 end-page: 45 ident: bib30 article-title: Ligand-targeted liposome design: challenges and fundamental considerations publication-title: Trends Biotechnol. – volume: 235 start-page: 236 year: 2016 end-page: 244 ident: bib72 article-title: Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA publication-title: J. Contr. Release – volume: 49 start-page: 433 year: 2019 end-page: 439 ident: bib133 article-title: Microfluidic manufacturing improves polydispersity of multicomponent polymeric nanoparticles publication-title: J. Drug Deliv. Sci. Technol. – volume: 4 year: 2019 ident: bib86 article-title: Microfluidic devices in fabricating nano or micromaterials for biomedical applications publication-title: Adv Mater Technol – volume: 12 start-page: 3587 year: 2012 end-page: 3591 ident: bib129 article-title: Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices publication-title: Nano Lett. – volume: 49 start-page: 6268 year: 2010 end-page: 6286 ident: bib144 article-title: Microfluidics for inorganic chemistry publication-title: Angew. Chem. Int. Ed. – volume: 28 start-page: 25 issue: 1 year: 1997 ident: 10.1016/j.biomaterials.2021.120826_bib116 article-title: Preparation of microspheres by the solvent evaporation technique publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(97)00049-5 – volume: 11 start-page: 212 issue: 2 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib138 article-title: Principles of nanoparticle formation by flash nanoprecipitation publication-title: Nano Today doi: 10.1016/j.nantod.2016.04.006 – volume: 24 start-page: 1781 issue: 10 year: 2003 ident: 10.1016/j.biomaterials.2021.120826_bib39 article-title: The production and characteristics of solid lipid nanoparticles (SLNs) publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00578-1 – volume: 126 start-page: 2674 issue: 9 year: 2004 ident: 10.1016/j.biomaterials.2021.120826_bib73 article-title: Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0318030 – volume: 8 start-page: 297 issue: 3 year: 2004 ident: 10.1016/j.biomaterials.2021.120826_bib82 article-title: Process optimization using combinatorial design principles: parallel synthesis and design of experiment methods publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2004.04.009 – volume: 75 start-page: 6544 issue: 23 year: 2003 ident: 10.1016/j.biomaterials.2021.120826_bib85 article-title: Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices publication-title: Anal. Chem. doi: 10.1021/ac0346712 – volume: 26 start-page: 523 issue: 6 year: 2009 ident: 10.1016/j.biomaterials.2021.120826_bib61 article-title: Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic publication-title: Crit. Rev. Ther. Drug Carrier Syst. doi: 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10 – volume: 316 start-page: 404 issue: October year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib83 article-title: Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2019.10.028 – volume: 9 start-page: 13600 issue: 36 year: 2017 ident: 10.1016/j.biomaterials.2021.120826_bib102 article-title: Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles publication-title: Nanoscale doi: 10.1039/C7NR03272B – volume: 8 start-page: 409 issue: 4 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib52 article-title: Dynamic light scattering: a practical guide and applications in biomedical sciences publication-title: Biophys Rev doi: 10.1007/s12551-016-0218-6 – year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib16 – volume: 9 start-page: 7442 issue: 22 year: 2017 ident: 10.1016/j.biomaterials.2021.120826_bib75 article-title: Microfluidic self-assembly of folate-targeted monomolecular siRNA-lipid nanoparticles publication-title: Nanoscale doi: 10.1039/C7NR01593C – volume: 485 start-page: 122 issue: 1–2 year: 2015 ident: 10.1016/j.biomaterials.2021.120826_bib84 article-title: Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.02.063 – volume: 87 start-page: 2745011 issue: 27 year: 2001 ident: 10.1016/j.biomaterials.2021.120826_bib46 article-title: Perfectly monodisperse microbubbling by capillary flow focusing publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.274501 – volume: 107 start-page: 2465 issue: 9 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib141 article-title: Design of a small-scale multi-inlet vortex mixer for scalable nanoparticle production and application to the encapsulation of biologics by inverse flash NanoPrecipitation publication-title: J Pharm Sci doi: 10.1016/j.xphs.2018.05.003 – volume: 77 issue: 21 year: 2005 ident: 10.1016/j.biomaterials.2021.120826_bib90 article-title: When microfluidic devices go bad publication-title: Anal. Chem. doi: 10.1021/ac053496h – volume: 4 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib20 article-title: Nanoparticles in the clinic: an update publication-title: Bioeng Transl Med doi: 10.1002/btm2.10143 – volume: 130 start-page: 1 issue: March year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib77 article-title: Microfluidic self-assembly of a combinatorial library of single- and dual-ligand liposomes for in vitro and in vivo tumor targeting publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2018.06.017 – volume: 8 start-page: 1 issue: 4 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib40 article-title: Evaluation of extrusion technique for nanosizing liposomes publication-title: Pharmaceutics doi: 10.3390/pharmaceutics8040036 – volume: 10 start-page: 401 issue: 2 year: 2014 ident: 10.1016/j.biomaterials.2021.120826_bib125 article-title: Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2013.08.003 – volume: 3 start-page: 107 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib176 article-title: Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.9b00853 – volume: 4 issue: 12 year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib86 article-title: Microfluidic devices in fabricating nano or micromaterials for biomedical applications publication-title: Adv Mater Technol doi: 10.1002/admt.201900488 – year: 2021 ident: 10.1016/j.biomaterials.2021.120826_bib17 article-title: Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine publication-title: Drug Deliv Transl Res doi: 10.1007/s13346-021-00911-y – volume: 14 start-page: 1084 issue: 12 year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib7 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0591-y – volume: 77 start-page: 407 issue: 3 year: 2011 ident: 10.1016/j.biomaterials.2021.120826_bib157 article-title: Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2010.12.029 – volume: 32 start-page: 297 issue: 4 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib153 article-title: Spherical nucleic acid nanoparticles: therapeutic potential publication-title: BioDrugs doi: 10.1007/s40259-018-0290-5 – volume: 6 start-page: 1 issue: DEC year: 2015 ident: 10.1016/j.biomaterials.2021.120826_bib53 article-title: Advances and challenges of liposome assisted drug delivery publication-title: Front. Pharmacol. – year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib134 article-title: Translating the fabrication of protein-loaded poly(lactic-co-glycolic acid) nanoparticles from bench to scale-independent production using microfluidics publication-title: Drug Deliv Transl Res doi: 10.1007/s13346-019-00699-y – volume: 3 issue: 3 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib88 article-title: A review of current methods in microfluidic device fabrication and future commercialization prospects publication-title: Inventions doi: 10.3390/inventions3030060 – volume: 134 start-page: 6948 issue: 16 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib37 article-title: Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301621z – volume: 16 start-page: 25 issue: 1 year: 2021 ident: 10.1016/j.biomaterials.2021.120826_bib60 article-title: Nanomaterials for T-cell cancer immunotherapy publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00822-y – volume: 442 start-page: 368 issue: 7101 year: 2006 ident: 10.1016/j.biomaterials.2021.120826_bib43 article-title: The origins and the future of microfluidics publication-title: Nature doi: 10.1038/nature05058 – volume: 458 start-page: 102 issue: February year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib63 article-title: Nanoparticles for nucleic acid delivery: applications in cancer immunotherapy publication-title: Canc. Lett. doi: 10.1016/j.canlet.2019.04.040 – volume: 441 start-page: 111 issue: 1 year: 2006 ident: 10.1016/j.biomaterials.2021.120826_bib105 article-title: RNAi-mediated gene silencing in non-human primates publication-title: Nature doi: 10.1038/nature04688 – volume: 12 start-page: 3587 issue: 7 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib129 article-title: Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices publication-title: Nano Lett. doi: 10.1021/nl301253v – volume: 70 start-page: 1 year: 2001 ident: 10.1016/j.biomaterials.2021.120826_bib109 article-title: Biodegradable polymeric nanoparticles as drug delivery devices publication-title: J. Contr. Release doi: 10.1016/S0168-3659(00)00339-4 – volume: 101 start-page: 3877 issue: 10 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib139 article-title: Enhanced oral bioavailability of A cancer preventive agent (SR13668) by employing polymeric nanoparticles with high drug loading publication-title: J Pharm Sci doi: 10.1002/jps.23269 – volume: 57 start-page: 1790 issue: 6 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib159 article-title: Colloidal synthesis of semiconductor quantum dots toward large-scale production: a review publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b04836 – volume: 1 start-page: 4358 issue: 9 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib35 article-title: Nanoparticle manufacturing-heterogeneity through processes to products publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.8b01239 – volume: 295 start-page: 647 issue: 80 year: 2002 ident: 10.1016/j.biomaterials.2021.120826_bib44 article-title: Chaotic mixer for microchannels publication-title: Science doi: 10.1126/science.1066238 – volume: 12 start-page: 4329 issue: 12 year: 2015 ident: 10.1016/j.biomaterials.2021.120826_bib140 article-title: Nanoparticles containing high loads of paclitaxel-silicate prodrugs: formulation, drug release, and anticancer efficacy publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.5b00530 – volume: 22 start-page: 1075 issue: 6 year: 2014 ident: 10.1016/j.biomaterials.2021.120826_bib147 article-title: Gold nanoparticles for nucleic acid delivery publication-title: Mol. Ther. doi: 10.1038/mt.2014.30 – year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib47 – volume: 22 start-page: 4704 issue: 11 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib162 article-title: Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor publication-title: J. Mater. Chem. doi: 10.1039/c2jm30257h – volume: 109 start-page: 11975 issue: 30 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib152 article-title: Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1118425109 – volume: 2 start-page: 123 year: 2000 ident: 10.1016/j.biomaterials.2021.120826_bib51 article-title: Dynamic light scattering measurement of nanometer particles in liquids publication-title: J. Nanoparticle Res. doi: 10.1023/A:1010067107182 – volume: 74 start-page: 1 issue: 6 year: 2006 ident: 10.1016/j.biomaterials.2021.120826_bib175 article-title: Mechanism for clogging of microchannels publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.74.061402 – volume: 33 start-page: 2373 issue: 10 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib9 article-title: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date publication-title: Pharm. Res. (N. Y.) doi: 10.1007/s11095-016-1958-5 – volume: 3 start-page: 1377 issue: 3 year: 2011 ident: 10.1016/j.biomaterials.2021.120826_bib117 article-title: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier publication-title: Polymers doi: 10.3390/polym3031377 – volume: 116 start-page: 18590 issue: 37 year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib150 article-title: Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1906929116 – volume: 17 start-page: 209 issue: 2 year: 2017 ident: 10.1016/j.biomaterials.2021.120826_bib6 article-title: Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications-a review publication-title: Lab Chip doi: 10.1039/C6LC01049K – volume: 1 start-page: 10 issue: 1 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib4 article-title: Nanoparticles in the clinic publication-title: Bioeng Transl Med doi: 10.1002/btm2.10003 – volume: 22 start-page: 2455 issue: 9 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib98 article-title: A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.02.014 – volume: 12 start-page: 912 issue: 2 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib146 article-title: Nanoparticles for immune cytokine TRAIL-based cancer therapy publication-title: ACS Nano doi: 10.1021/acsnano.7b05876 – volume: 38 start-page: 4 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib23 article-title: RNAi scores big wins publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0384-8 – start-page: 1 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib95 – volume: 1 start-page: 264 issue: 3 year: 2009 ident: 10.1016/j.biomaterials.2021.120826_bib5 article-title: Nanoparticle therapeutics: a personal perspective publication-title: Wiley Interdiscip Rev Nanomedicine Nanobiotechnology doi: 10.1002/wnan.6 – volume: 8 start-page: 5696 issue: 6 year: 2014 ident: 10.1016/j.biomaterials.2021.120826_bib172 article-title: Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency publication-title: ACS Nano doi: 10.1021/nn500299p – volume: 3 issue: 6 year: 2013 ident: 10.1016/j.biomaterials.2021.120826_bib21 article-title: Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials publication-title: J. Nanomater. – volume: 3 start-page: 318 issue: 4 year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib177 article-title: Exploration of the nanomedicine-design space with high-throughput screening and machine learning publication-title: Nat Biomed Eng doi: 10.1038/s41551-019-0351-1 – volume: 15 start-page: 440 issue: 3 year: 2004 ident: 10.1016/j.biomaterials.2021.120826_bib8 article-title: Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYXTM/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer publication-title: Ann. Oncol. doi: 10.1093/annonc/mdh097 – volume: 148 start-page: 402 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib76 article-title: Microfluidic synthesis of multifunctional liposomes for tumour targeting publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2016.09.016 – volume: 8 start-page: 6056 issue: 6 year: 2014 ident: 10.1016/j.biomaterials.2021.120826_bib137 article-title: Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer publication-title: ACS Nano doi: 10.1021/nn501371n – volume: 12 start-page: 4029 issue: 20 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib168 article-title: Electrode-free picoinjection of microfluidic drops publication-title: Lab Chip doi: 10.1039/c2lc40693d – year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib15 article-title: An mRNA vaccine against SARS-CoV-2 — preliminary report publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2022483 – volume: 7 start-page: 10671 issue: 12 year: 2013 ident: 10.1016/j.biomaterials.2021.120826_bib126 article-title: Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy publication-title: ACS Nano doi: 10.1021/nn403370e – volume: 107 start-page: 1864 issue: 5 year: 2010 ident: 10.1016/j.biomaterials.2021.120826_bib62 article-title: Lipid-like materials for low-dose, in vivo gene silencing publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0910603106 – volume: 17 start-page: 1041 issue: 5 year: 2015 ident: 10.1016/j.biomaterials.2021.120826_bib143 article-title: A review of clinical translation of inorganic nanoparticles publication-title: AAPS J. doi: 10.1208/s12248-015-9780-2 – volume: 32 start-page: 32 issue: 1 year: 2014 ident: 10.1016/j.biomaterials.2021.120826_bib30 article-title: Ligand-targeted liposome design: challenges and fundamental considerations publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2013.09.007 – volume: 78 start-page: 1625 issue: 15 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib12 article-title: Patisiran: first global approval publication-title: Drugs doi: 10.1007/s40265-018-0983-6 – volume: 24 start-page: 821 issue: 9 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib49 article-title: Microfluidics: a transformational tool for nanomedicine development and production publication-title: J. Drug Target. doi: 10.1080/1061186X.2016.1198354 – volume: 7 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.biomaterials.2021.120826_bib64 article-title: Ionizable lipid nanoparticles for in utero mRNA delivery publication-title: Sci Adv doi: 10.1126/sciadv.aba1028 – volume: 8 start-page: 287 issue: 2 year: 2008 ident: 10.1016/j.biomaterials.2021.120826_bib91 article-title: Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles publication-title: Lab Chip doi: 10.1039/B713141K – volume: 20 start-page: 101 issue: 2 year: 2021 ident: 10.1016/j.biomaterials.2021.120826_bib26 article-title: Engineering precision nanoparticles for drug delivery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-020-0090-8 – volume: 37 start-page: 224 issue: August year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib156 article-title: Synthesis of precision gold nanoparticles using Turkevich method publication-title: KONA Powder Part J doi: 10.14356/kona.2020011 – volume: 798 start-page: 714 year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib155 article-title: Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.05.153 – volume: 27 start-page: 2298 issue: 14 year: 2015 ident: 10.1016/j.biomaterials.2021.120826_bib132 article-title: A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties publication-title: Adv. Mater. doi: 10.1002/adma.201405408 – volume: 96 start-page: 203 issue: 2 year: 2007 ident: 10.1016/j.biomaterials.2021.120826_bib111 article-title: Microparticles and nanoparticles for drug delivery publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21301 – volume: 5 start-page: 584 issue: 8 year: 2017 ident: 10.1016/j.biomaterials.2021.120826_bib171 article-title: Microfluidics-mediated self-template synthesis of anisotropic hollow ellipsoidal mesoporous silica nanomaterials publication-title: Mater Res Lett doi: 10.1080/21663831.2017.1376720 – volume: 14 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib32 article-title: The effect of nanoparticle size, shape, and surface chemistry on biological systems publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071811-150124 – volume: 17 start-page: 261 issue: 4 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib13 article-title: mRNA vaccines-a new era in vaccinology publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.243 – volume: 337 start-page: 303 issue: 80 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib115 article-title: Nanomaterials for drug delivery publication-title: Science doi: 10.1126/science.1219657 – volume: 10 start-page: 4367 issue: 11 year: 2013 ident: 10.1016/j.biomaterials.2021.120826_bib136 article-title: Flash nanoprecipitation: particle structure and stability publication-title: Mol. Pharm. doi: 10.1021/mp400337f – volume: 39 start-page: 249 year: 2015 ident: 10.1016/j.biomaterials.2021.120826_bib169 article-title: Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.079 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib89 article-title: Robust microfabrication of highly parallelized three-dimensional microfluidics on silicon publication-title: Sci. Rep. doi: 10.1038/s41598-019-48515-4 – volume: 44 start-page: 410 issue: 1 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib145 article-title: Application of gold nanoparticles in biomedical and drug delivery. Artif Cells publication-title: Nanomedicine Biotechnol – volume: 80 start-page: 2310 issue: 5 year: 2001 ident: 10.1016/j.biomaterials.2021.120826_bib66 article-title: Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76202-9 – volume: 22 start-page: 362 issue: 3 year: 2005 ident: 10.1016/j.biomaterials.2021.120826_bib104 article-title: A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA publication-title: Pharm. Res. (N. Y.) doi: 10.1007/s11095-004-1873-z – volume: 443 start-page: 103 issue: 1–2 year: 2013 ident: 10.1016/j.biomaterials.2021.120826_bib121 article-title: Biocompatible gemcitabine-based nanomedicine engineered by Flow Focusing® for efficient antitumor activity publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2012.12.048 – volume: 59 start-page: 4134 issue: 9 year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib38 article-title: Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b04747 – volume: 34 start-page: 3961 issue: 13 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib120 article-title: Microfluidic assisted nanoprecipitation of PLGA nanoparticles for curcumin delivery to leukemia Jurkat cells publication-title: Langmuir doi: 10.1021/acs.langmuir.7b04335 – volume: 84 start-page: 134 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib122 article-title: Production of hyaluronic acid (HA) nanoparticles by a continuous process inside microchannels: effects of non-solvents, organic phase flow rate, and HA concentration publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.08.010 – volume: 85 start-page: 101 issue: 1010 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib148 article-title: Gold nanoparticles as novel agents for cancer therapy publication-title: Br. J. Radiol. doi: 10.1259/bjr/59448833 – volume: 16 start-page: 157 year: 1995 ident: 10.1016/j.biomaterials.2021.120826_bib54 article-title: Chemistry of polyethylene glycol conjugates with biologically active molecules publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/0169-409X(95)00023-Z – volume: 49 start-page: 433 issue: October 2018 year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib133 article-title: Microfluidic manufacturing improves polydispersity of multicomponent polymeric nanoparticles publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2018.12.009 – volume: 47 start-page: 6817 issue: 36 year: 2008 ident: 10.1016/j.biomaterials.2021.120826_bib165 article-title: Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200801360 – volume: 5 issue: 1 year: 2021 ident: 10.1016/j.biomaterials.2021.120826_bib31 article-title: Peptide functionalized liposomes for receptor targeted cancer therapy publication-title: APL Bioeng doi: 10.1063/5.0029860 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.biomaterials.2021.120826_bib70 article-title: Liposome technology for industrial purposes publication-title: J Drug Deliv doi: 10.1155/2011/591325 – volume: 4 start-page: 1671 issue: 3 year: 2010 ident: 10.1016/j.biomaterials.2021.120826_bib135 article-title: Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing publication-title: ACS Nano doi: 10.1021/nn901433u – volume: 17 start-page: 659 issue: 11 year: 2017 ident: 10.1016/j.biomaterials.2021.120826_bib29 article-title: Engineering and physical sciences in oncology: challenges and opportunities publication-title: Nat. Rev. Canc. doi: 10.1038/nrc.2017.83 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib166 article-title: Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles publication-title: Sci. Rep. doi: 10.1038/s41598-018-20754-x – volume: 35 start-page: 263 issue: 3 year: 1987 ident: 10.1016/j.biomaterials.2021.120826_bib68 article-title: Characterization of liposomes. The influence of extrusion of multilamellar vesicles through polycarbonate membranes on particle size, particle size distribution and number of bilayers publication-title: Int. J. Pharm. doi: 10.1016/0378-5173(87)90139-6 – volume: 21 start-page: 1 issue: 4 year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib161 article-title: Governing factors for preparation of silver nanoparticles using droplet-based microfluidic device publication-title: Biomed. Microdevices doi: 10.1007/s10544-019-0435-4 – volume: 114 start-page: 2060 issue: 8 year: 2017 ident: 10.1016/j.biomaterials.2021.120826_bib25 article-title: Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1620874114 – volume: 10 start-page: 1175 issue: 13 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib149 article-title: Gold nanoparticles-mediated photothermal therapy and immunotherapy publication-title: Immunotherapy doi: 10.2217/imt-2018-0029 – volume: 8 start-page: 271 issue: 2 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib142 article-title: Polymeric nanoparticles: the future of nanomedicine publication-title: Wiley Interdiscip Rev Nanomedicine Nanobiotechnology doi: 10.1002/wnan.1364 – volume: 63 start-page: 185 issue: 1 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib41 article-title: Nanoparticle delivery of cancer drugs publication-title: Annu. Rev. Med. doi: 10.1146/annurev-med-040210-162544 – volume: 200 start-page: 138 year: 2015 ident: 10.1016/j.biomaterials.2021.120826_bib22 article-title: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2014.12.030 – volume: 27 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.biomaterials.2021.120826_bib33 article-title: Microfluidic devices for the synthesis of nanoparticles and biomaterials publication-title: J. Med. Biol. Eng. – volume: 15 start-page: 4387 issue: 23 year: 2015 ident: 10.1016/j.biomaterials.2021.120826_bib93 article-title: Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED) publication-title: Lab Chip doi: 10.1039/C5LC01025J – volume: 25 start-page: 1165 issue: 10 year: 2007 ident: 10.1016/j.biomaterials.2021.120826_bib160 article-title: Renal clearance of nanoparticles publication-title: Nat. Biotechnol. doi: 10.1038/nbt1340 – volume: 8 start-page: 2906 issue: 9 year: 2008 ident: 10.1016/j.biomaterials.2021.120826_bib36 article-title: Microfluidic platform for controlled synthesis of polymeric nanoparticles publication-title: Nano Lett. doi: 10.1021/nl801736q – volume: 4 start-page: 3077 issue: 6 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib163 article-title: Two-phase microfluidic droplet flows of ionic liquids for the synthesis of gold and silver nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3004413 – volume: 105 start-page: 1813 issue: 6 year: 2017 ident: 10.1016/j.biomaterials.2021.120826_bib127 article-title: Continuous microfluidic assembly of biodegradable poly(Beta-amino ester)/DNA nanoparticles for enhanced gene delivery publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.36033 – volume: 27 start-page: 286 issue: 2 year: 1999 ident: 10.1016/j.biomaterials.2021.120826_bib101 article-title: Simple mixing device to reproducibly prepare cationic lipid-DNA complexes (lipoplexes) publication-title: Biotechniques doi: 10.2144/99272bm16 – volume: 18 start-page: 171 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2021.120826_bib103 article-title: Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment publication-title: Mol. Ther. doi: 10.1038/mt.2009.208 – volume: 18 start-page: 175 issue: 3 year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib57 article-title: Delivery technologies for cancer immunotherapy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-018-0006-z – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib99 article-title: Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA publication-title: Nat. Commun. – volume: 169 start-page: 128 year: 2017 ident: 10.1016/j.biomaterials.2021.120826_bib123 article-title: Fundamental studies on throughput capacities of hydrodynamic flow-focusing microfluidics for producing monodisperse polymer nanoparticles publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.04.046 – volume: 383 start-page: 2603 issue: 27 year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib19 article-title: Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – volume: 578 year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib24 article-title: Nanopharmaceuticals: a focus on their clinical translatability publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119098 – volume: 1 start-page: 149 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2021.120826_bib113 article-title: Polymers for drug delivery systems publication-title: Annu Rev Chem Biomol Eng doi: 10.1146/annurev-chembioeng-073009-100847 – volume: 292 start-page: 256 issue: October year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib112 article-title: Biomaterials for vaccine-based cancer immunotherapy publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2018.10.008 – year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib97 – volume: 49 start-page: 337 issue: 4 year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib110 article-title: Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview publication-title: J Pharm Investig doi: 10.1007/s40005-019-00453-z – volume: 13 start-page: 37 issue: 1 year: 2017 ident: 10.1016/j.biomaterials.2021.120826_bib174 article-title: Clogging of microfluidic systems publication-title: Soft Matter doi: 10.1039/C6SM01879C – volume: 28 start-page: 153 issue: 1 year: 1998 ident: 10.1016/j.biomaterials.2021.120826_bib45 article-title: Soft lithography publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev.matsci.28.1.153 – volume: 3 start-page: 5044 issue: 5 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib100 article-title: Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery publication-title: ACS Omega doi: 10.1021/acsomega.8b00341 – volume: 7 start-page: 319 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib14 article-title: mRNA vaccine delivery using lipid nanoparticles publication-title: Ther. Deliv. doi: 10.4155/tde-2016-0006 – volume: 9 issue: 1 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib92 article-title: Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles publication-title: Nat. Commun. doi: 10.1038/s41467-018-03515-2 – volume: 11 start-page: 673 issue: 6 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib173 article-title: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction publication-title: Nanomedicine doi: 10.2217/nnm.16.5 – volume: 2015 year: 2015 ident: 10.1016/j.biomaterials.2021.120826_bib119 article-title: Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent publication-title: J. Nanomater. doi: 10.1155/2015/794601 – volume: 235 start-page: 236 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib72 article-title: Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2016.05.059 – volume: 7 start-page: 9975 issue: 11 year: 2013 ident: 10.1016/j.biomaterials.2021.120826_bib130 article-title: Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics publication-title: ACS Nano doi: 10.1021/nn4039063 – volume: 7 start-page: 1409 year: 2014 ident: 10.1016/j.biomaterials.2021.120826_bib69 article-title: Outcomes analysis of an alternative formulation of PEGylated liposomal doxorubicin in recurrent epithelial ovarian carcinoma during the drug shortage era publication-title: OncoTargets Ther. – volume: 75 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.biomaterials.2021.120826_bib107 article-title: Biodegradable polymeric nanoparticles based drug delivery systems publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2009.09.001 – volume: 244 start-page: 108 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib27 article-title: To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2016.11.015 – volume: 28 start-page: 172 issue: 2 year: 2010 ident: 10.1016/j.biomaterials.2021.120826_bib67 article-title: Rational design of cationic lipids for siRNA delivery publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1602 – volume: 11 start-page: 1221 issue: 7 year: 2011 ident: 10.1016/j.biomaterials.2021.120826_bib167 article-title: A stable droplet reactor for high temperature nanocrystal synthesis publication-title: Lab Chip doi: 10.1039/C0LC00507J – volume: 7 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib158 article-title: Quantum dots: synthesis, bioapplications, and toxicity publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-7-480 – volume: 102 start-page: 87 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib170 article-title: Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.06.015 – volume: 582 start-page: 119266 issue: April year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib96 article-title: Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: a case study using protein-loaded liposomes publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119266 – volume: 16 start-page: 1 issue: 9 year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib3 article-title: Microfluidic generation of nanomaterials for biomedical applications publication-title: Small – volume: 23 issue: 5 year: 1960 ident: 10.1016/j.biomaterials.2021.120826_bib2 article-title: There's plenty of room at the bottom publication-title: Eng. Sci. – volume: 14 start-page: 2403 issue: 14 year: 2014 ident: 10.1016/j.biomaterials.2021.120826_bib78 article-title: A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array publication-title: Lab Chip doi: 10.1039/C4LC00334A – year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib58 article-title: Summary from the first kidney cancer research summit, september 12-13, 2019: a focus on translational research publication-title: JNCI J Natl Cancer Inst – volume: 23 start-page: 217 issue: 3 year: 2008 ident: 10.1016/j.biomaterials.2021.120826_bib10 article-title: Plasmonic photothermal therapy (PPTT) using gold nanoparticles publication-title: Laser Med. Sci. doi: 10.1007/s10103-007-0470-x – volume: 263 start-page: 797 issue: 5580 year: 1976 ident: 10.1016/j.biomaterials.2021.120826_bib106 article-title: Polymers for the sustained release of proteins and other macromolecules publication-title: Nature doi: 10.1038/263797a0 – volume: 16 start-page: 520 issue: 7–8 year: 2008 ident: 10.1016/j.biomaterials.2021.120826_bib55 article-title: Liposome research in drug delivery: the early days publication-title: J. Drug Target. doi: 10.1080/10611860802228350 – volume: 7 start-page: 1 issue: 314 year: 2015 ident: 10.1016/j.biomaterials.2021.120826_bib28 article-title: Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aac6522 – volume: 8 start-page: 2906 issue: 9 year: 2008 ident: 10.1016/j.biomaterials.2021.120826_bib48 article-title: Microfluidic platform for controlled synthesis of polymeric nanoparticles publication-title: Nano Lett. doi: 10.1021/nl801736q – volume: 19 start-page: 2089 issue: 12 year: 2019 ident: 10.1016/j.biomaterials.2021.120826_bib128 article-title: Controlled co-precipitation of biocompatible colorant-loaded nanoparticles by microfluidics for natural color drinks publication-title: Lab Chip doi: 10.1039/C9LC00240E – volume: 10 start-page: 661 issue: 3 year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib108 article-title: Cyclodextrins in drug delivery: applications in gene and combination therapy publication-title: Drug Deliv Transl Res doi: 10.1007/s13346-020-00724-5 – volume: 19 issue: 7 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib11 article-title: Gold nanoparticles in diagnostics and therapeutics for human cancer publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19071979 – volume: 132 start-page: 153 issue: 3 year: 2008 ident: 10.1016/j.biomaterials.2021.120826_bib114 article-title: The origins and evolution of “controlled” drug delivery systems publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2008.08.012 – volume: 1 start-page: e37 issue: 8 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib80 article-title: Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2012.28 – start-page: 403 year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib18 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N. Engl. J. Med. – volume: 20 start-page: 1578 issue: 3 year: 2020 ident: 10.1016/j.biomaterials.2021.120826_bib56 article-title: Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b04246 – volume: 4 start-page: 2077 issue: 4 year: 2010 ident: 10.1016/j.biomaterials.2021.120826_bib74 article-title: Microfluidic mixing and the formation of nanoscale lipid vesicles publication-title: ACS Nano doi: 10.1021/nn901676x – volume: vol. 1141 year: 2014 ident: 10.1016/j.biomaterials.2021.120826_bib94 – volume: 79 start-page: 3249 issue: 9 year: 2007 ident: 10.1016/j.biomaterials.2021.120826_bib87 article-title: When PDMS isn't the best publication-title: Anal. Chem. doi: 10.1021/ac071903e – volume: 8 start-page: 660 issue: 5 year: 1964 ident: 10.1016/j.biomaterials.2021.120826_bib50 article-title: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(64)80115-7 – volume: 15 start-page: 7300 issue: 11 year: 2015 ident: 10.1016/j.biomaterials.2021.120826_bib81 article-title: Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02497 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib65 article-title: Liposome production by microfluidics: potential and limiting factors publication-title: Sci. Rep. doi: 10.1038/srep25876 – volume: 25 start-page: 145 issue: 1–2 year: 1993 ident: 10.1016/j.biomaterials.2021.120826_bib118 article-title: The preparation of sub-200 nm poly(lactide-co-glycolide) microspheres for site-specific drug delivery publication-title: J. Contr. Release doi: 10.1016/0168-3659(93)90103-C – volume: 17 start-page: 1326 issue: 3 year: 2017 ident: 10.1016/j.biomaterials.2021.120826_bib59 article-title: Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03329 – volume: 49 start-page: 6268 issue: 36 year: 2010 ident: 10.1016/j.biomaterials.2021.120826_bib144 article-title: Microfluidics for inorganic chemistry publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200904285 – volume: 15 start-page: 541 year: 2014 ident: 10.1016/j.biomaterials.2021.120826_bib34 article-title: Non-viral vectors for gene-based therapy publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3763 – volume: 17 start-page: 606 issue: 2 year: 2017 ident: 10.1016/j.biomaterials.2021.120826_bib131 article-title: Core/shell nanocomposites produced by superfast sequential microfluidic nanoprecipitation publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03251 – volume: 2 start-page: 1700375 issue: 9 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib79 article-title: State-of-the-Art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery publication-title: Small Methods doi: 10.1002/smtd.201700375 – volume: 23 start-page: 79 issue: 12 year: 2011 ident: 10.1016/j.biomaterials.2021.120826_bib124 article-title: Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels publication-title: Adv. Mater. – volume: 112 start-page: 3892 issue: 13 year: 2015 ident: 10.1016/j.biomaterials.2021.120826_bib151 article-title: Immunomodulatory spherical nucleic acids publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1502850112 – volume: 7 start-page: 623 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib42 article-title: Microfluidic technologies for accelerating the clinical translation of nanoparticles publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.168 – volume: 30 start-page: 1 issue: 29 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib1 article-title: Advances in biomaterials for drug delivery publication-title: Adv. Mater. doi: 10.1002/adma.201705328 – volume: 28 start-page: 7007 issue: 17 year: 2012 ident: 10.1016/j.biomaterials.2021.120826_bib164 article-title: Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform publication-title: Langmuir doi: 10.1021/la205131e – volume: 18 start-page: 3814 issue: 6 year: 2018 ident: 10.1016/j.biomaterials.2021.120826_bib71 article-title: Lipid nanoparticle formulations for enhanced Co-delivery of siRNA and mRNA publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01101 – volume: 9 start-page: 49 year: 2016 ident: 10.1016/j.biomaterials.2021.120826_bib154 article-title: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles publication-title: Nanotechnol. Sci. Appl. doi: 10.2147/NSA.S99986 |
| SSID | ssj0014042 |
| Score | 2.7057633 |
| SecondaryResourceType | review_article |
| Snippet | Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility,... Nanomedicine has made significant advances in clinical applications since its introduction in the late-20th century, in part due to its distinct advantages in... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 120826 |
| SubjectTerms | biocompatibility biocompatible materials Drug delivery Drug Delivery Systems drugs gene therapy Imaging microfluidic technology Microfluidics Nanomedicine Nanoparticle Nanoparticles Polymers |
| Title | Microfluidic formulation of nanoparticles for biomedical applications |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0142961221001824 https://dx.doi.org/10.1016/j.biomaterials.2021.120826 https://www.ncbi.nlm.nih.gov/pubmed/33965797 https://www.proquest.com/docview/2524882544 https://www.proquest.com/docview/2551908864 https://pubmed.ncbi.nlm.nih.gov/PMC8752123 |
| Volume | 274 |
| WOSCitedRecordID | wos000663587100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014042 issn: 0142-9612 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DSF4QDAYlI8pSIi3VPlyHAvxMKFODHUFiQ71LfJXtE5VWtp02p_POXESBzYUHnhJK8eXD9_lfOf73Rmhd0olkQoZdhmPpBtlWLgsk8xVno6pCYxFmeH9Y0Km02Q-p98Gg-91Lsz1kuR5cnND1_-V1dAGzNaps__A7uai0AD_gelwBLbDsRfjzzXELlvuFnIhytxEs0FXCdlgOTjJBgtXITXL9PuqZIAVy-7EeqELK6pHbxZkLjU4bNMuKrfhpbPtlkmD3rUQ8zrtsChhpxZa31CZVYfAbxCqtaJMwPvE1Ksi0uqWNqNdAxJZ-tEPwOSIb1Xd1SrC1YhbLzXStx61RN162dOv6enFZJLOxvPZ-_VPV28lpkPuZl-VPXQQEExB1R2cnI3nX5rgUuSVeyo1j1vXoi1hf3fd_i675U-_5Hd4rWWvzB6jR8bRcE4qZj9BA5UfoodW-clDdP_cACueorEtNY4lNc4qczpSo086rdQ4ttQ8Qxen49mnz67ZYcMVcYQLNwFvRVFGOIEpLwskDb1IiEgqn8VZzD2F40gFgZSZ8hIFvwzLkHGslACvTPLwCO3nq1y9QI6SMaYsiKUAF50TwUNCOPW5YiEHn9gfIlqPXypM-Xm9C8oyrXGGV6k99qke-7Qa-yEKG9p1VYSlF9WHmk1pnWYME2MKAteL-mNDbYzRysjsTf-2lowUNLYOw7FcrXbQCQcwa-rSgH_rA54VGAAx9HleSVPz5mFIY0woGSLSkbOmg64Y3z2TLy7LyvHACG2qvuzxbK_Qg_a7f432i81OvUH3xHWx2G6O0R6ZJ8fmw_oF0J7onQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+formulation+of+nanoparticles+for+biomedical+applications&rft.jtitle=Biomaterials&rft.au=Shepherd%2C+Sarah+J&rft.au=Issadore%2C+David&rft.au=Mitchell%2C+Michael+J&rft.date=2021-07-01&rft.issn=1878-5905&rft.eissn=1878-5905&rft.volume=274&rft.spage=120826&rft_id=info:doi/10.1016%2Fj.biomaterials.2021.120826&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-9612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-9612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-9612&client=summon |