Predicting the tensile properties of heat treated and non-heat treated LPBFed AlSi10Mg alloy using machine learning regression algorithms

In this study, the ability of machine learning algorithms to predict tensile properties of both heat-treated and non-heat treated LPBFed AlSi10Mg alloy is investigated. The data was analyzed using various Machine Learning Regression (MLR) models such as Linear Regression (LR), Gaussian Process Regre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 20; H. 6; S. e0324049
Hauptverfasser: Jatti, Vijaykumar S., Saiyathibrahim, A., Yadav, Arvind, R., Murali Krishnan, Jayaprakash, B., Kaushal, Sumit, Jatti, Vinaykumar S., Jatti, Ashwini V., Jatti, Savita V., Kumar, Abhinav, Gouadria, Soumaya, Bonyah, Ebenezer
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 02.06.2025
Public Library of Science (PLoS)
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!