MolCompass: multi-tool for the navigation in chemical space and visual validation of QSAR/QSPR models

The exponential growth of data is challenging for humans because their ability to analyze data is limited. Especially in chemistry, there is a demand for tools that can visualize molecular datasets in a convenient graphical way. We propose a new, ready-to-use, multi-tool, and open-source framework f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cheminformatics Jg. 16; H. 1; S. 98 - 13
1. Verfasser: Sosnin, Sergey
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 12.08.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1758-2946, 1758-2946
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exponential growth of data is challenging for humans because their ability to analyze data is limited. Especially in chemistry, there is a demand for tools that can visualize molecular datasets in a convenient graphical way. We propose a new, ready-to-use, multi-tool, and open-source framework for visualizing and navigating chemical space. This framework adheres to the low-code/no-code (LCNC) paradigm, providing a KNIME node, a web-based tool, and a Python package, making it accessible to a broad cheminformatics community. The core technique of the MolCompass framework employs a pre-trained parametric t-SNE model. We demonstrate how this framework can be adapted for the visualisation of chemical space and visual validation of binary classification QSAR/QSPR models, revealing their weaknesses and identifying model cliffs. All parts of the framework are publicly available on GitHub, providing accessibility to the broad scientific community. Scientific contribution We provide an open-source, ready-to-use set of tools for the visualization of chemical space. These tools can be insightful for chemists to analyze compound datasets and for the visual validation of QSAR/QSPR models.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1758-2946
1758-2946
DOI:10.1186/s13321-024-00888-z