Direct cell reprogramming: approaches, mechanisms and progress
The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion with...
Uloženo v:
| Vydáno v: | Nature reviews. Molecular cell biology Ročník 22; číslo 6; s. 410 - 424 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.06.2021
Nature Publishing Group |
| Témata: | |
| ISSN: | 1471-0072, 1471-0080, 1471-0080 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies.
Direct reprogramming converts cells from one lineage into cells of another without going through an intermediary pluripotent state. This Review describes our current understanding of the molecular mechanisms underlying direct reprogramming as well as the progress in improving its efficiency and the maturation of reprogrammed cells, and the challenges associated with its translational applications. |
|---|---|
| AbstractList | The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies. The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies. Direct reprogramming converts cells from one lineage into cells of another without going through an intermediary pluripotent state. This Review describes our current understanding of the molecular mechanisms underlying direct reprogramming as well as the progress in improving its efficiency and the maturation of reprogrammed cells, and the challenges associated with its translational applications. The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies. Direct reprogramming converts cells from one lineage into cells of another without going through an intermediary pluripotent state. This Review describes our current understanding of the molecular mechanisms underlying direct reprogramming as well as the progress in improving its efficiency and the maturation of reprogrammed cells, and the challenges associated with its translational applications. The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies.The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies. |
| Audience | Academic |
| Author | Qian, Li Liu, Jiandong Wang, Haofei Yang, Yuchen |
| AuthorAffiliation | 1 Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA 2 McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA |
| AuthorAffiliation_xml | – name: 1 Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA – name: 2 McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA |
| Author_xml | – sequence: 1 givenname: Haofei orcidid: 0000-0001-8914-442X surname: Wang fullname: Wang, Haofei organization: Department of Pathology and Laboratory Medicine, University of North Carolina, McAllister Heart Institute, University of North Carolina – sequence: 2 givenname: Yuchen surname: Yang fullname: Yang, Yuchen organization: Department of Pathology and Laboratory Medicine, University of North Carolina, McAllister Heart Institute, University of North Carolina – sequence: 3 givenname: Jiandong surname: Liu fullname: Liu, Jiandong organization: Department of Pathology and Laboratory Medicine, University of North Carolina, McAllister Heart Institute, University of North Carolina – sequence: 4 givenname: Li orcidid: 0000-0001-7614-5618 surname: Qian fullname: Qian, Li email: li_qian@med.unc.edu organization: Department of Pathology and Laboratory Medicine, University of North Carolina, McAllister Heart Institute, University of North Carolina |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33619373$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kslq3TAUhkVJaYb2Bboohm4aqFNNluUuAiGdAoFCh7WQpWNfBVu6lezS5ukj52boDSVoIR3p-39xhn2044MHhF4SfEQwk-8SJ5XEJaakxJixqrx8gvYIr5dQ4p27c0130X5KFxgTQerqGdplTJCG1WwPHX9wEcxUGBiGIsI6hj7qcXS-f1_odQ61WUF6W4xgVtq7NKZCe1tcc5DSc_S000OCFzf7Afr56eOP0y_l-dfPZ6cn56URnEwldA1h0tZEaN4Kgw3vWtFJK3BHAWorGt7olrHWArcWNMG6Mk0njTXMUoPZATre-K7ndgRrwE9RD2od3ajjXxW0U9sv3q1UH34rmVOuyGLw5sYghl8zpEmNLi1Jaw9hToryhooFJRl9_QC9CHP0OT1FK0Y5JVKwe6rXAyjnu5D_NYupOhEiY0Iymamj_1B5WRidye3sXL7fEhxuCTIzwZ-p13NK6uz7t2321b9FuavGbXczIDeAiSGlCJ0ybtKTC0uN3KAIVssgqc0gqTxI6nqQ1GWW0gfSW_dHRWwjShn2PcT7yj2iugLwPtoP |
| CitedBy_id | crossref_primary_10_1002_advs_202412548 crossref_primary_10_1007_s13752_024_00477_1 crossref_primary_10_1073_pnas_2119038119 crossref_primary_10_1111_febs_16930 crossref_primary_10_1007_s11033_022_07913_0 crossref_primary_10_1007_s13770_025_00719_8 crossref_primary_10_1038_s41392_024_01809_0 crossref_primary_10_1126_sciimmunol_add4817 crossref_primary_10_1186_s13046_025_03501_9 crossref_primary_10_3389_fcell_2022_929256 crossref_primary_10_3390_neuroglia6020020 crossref_primary_10_1186_s12967_024_06060_3 crossref_primary_10_3390_cells12020321 crossref_primary_10_3390_ijms251910615 crossref_primary_10_1016_j_stem_2023_03_001 crossref_primary_10_1016_j_kint_2024_07_028 crossref_primary_10_1038_s41580_021_00380_8 crossref_primary_10_1186_s12943_023_01753_7 crossref_primary_10_1093_nargab_lqab100 crossref_primary_10_3390_cells11091404 crossref_primary_10_3390_ijms231911941 crossref_primary_10_1371_journal_pone_0324179 crossref_primary_10_1016_j_celrep_2024_114170 crossref_primary_10_32604_biocell_2022_018432 crossref_primary_10_1016_j_tibs_2023_04_005 crossref_primary_10_1126_sciimmunol_abg5539 crossref_primary_10_1038_s41467_024_47315_3 crossref_primary_10_1002_adfm_202410910 crossref_primary_10_1016_j_bioactmat_2024_05_011 crossref_primary_10_3390_ijms25063268 crossref_primary_10_1016_j_bioactmat_2023_07_025 crossref_primary_10_3390_pharmaceutics14040711 crossref_primary_10_1101_gr_279955_124 crossref_primary_10_1038_s41556_022_00943_7 crossref_primary_10_1002_ctm2_70417 crossref_primary_10_1208_s12248_022_00692_3 crossref_primary_10_3390_biomedicines11112913 crossref_primary_10_1007_s11010_022_04442_z crossref_primary_10_1038_s41598_025_96807_9 crossref_primary_10_1088_1758_5090_ac8621 crossref_primary_10_7554_eLife_74576 crossref_primary_10_3389_fcell_2024_1343106 crossref_primary_10_1002_advs_202403177 crossref_primary_10_3389_fbioe_2025_1558735 crossref_primary_10_3390_ijms22179517 crossref_primary_10_1002_mabi_202200174 crossref_primary_10_3389_fphar_2025_1506552 crossref_primary_10_1093_lifemedi_lnac010 crossref_primary_10_3390_ijms26073063 crossref_primary_10_61186_ibj_4271 crossref_primary_10_1038_s41467_025_59190_7 crossref_primary_10_1007_s00011_023_01729_9 crossref_primary_10_1186_s13072_025_00601_w crossref_primary_10_1186_s12974_023_02949_w crossref_primary_10_1038_s41593_025_01981_8 crossref_primary_10_3390_pharmaceutics15030777 crossref_primary_10_1016_j_stemcr_2025_102600 crossref_primary_10_1002_mco2_70005 crossref_primary_10_1089_cell_2025_0009 crossref_primary_10_1016_j_bbadis_2023_166852 crossref_primary_10_1089_cell_2025_0008 crossref_primary_10_4103_NRR_NRR_D_23_01612 crossref_primary_10_1002_pmic_202100206 crossref_primary_10_1016_j_molcel_2022_11_002 crossref_primary_10_3390_ijms25020993 crossref_primary_10_3389_fpubh_2023_1156749 crossref_primary_10_3390_cancers17020203 crossref_primary_10_1109_TNSE_2025_3555962 crossref_primary_10_1016_j_gde_2024_102226 crossref_primary_10_4103_1673_5374_360171 crossref_primary_10_1016_j_cej_2025_166728 crossref_primary_10_1038_s41589_025_01874_8 crossref_primary_10_1002_adma_202211609 crossref_primary_10_1186_s40779_022_00372_5 crossref_primary_10_3389_fcell_2022_927555 crossref_primary_10_1109_TMBMC_2025_3556883 crossref_primary_10_3389_fnins_2023_1198041 crossref_primary_10_1007_s00018_025_05677_x crossref_primary_10_3892_etm_2023_12360 crossref_primary_10_1097_BS9_0000000000000215 crossref_primary_10_1038_s41568_023_00648_5 crossref_primary_10_1242_dev_203090 crossref_primary_10_3390_cells13110897 crossref_primary_10_1016_j_intimp_2024_113404 crossref_primary_10_3390_cells11050800 crossref_primary_10_3390_ani14040589 crossref_primary_10_3390_jfb14010021 crossref_primary_10_1038_s41536_025_00411_4 crossref_primary_10_1002_adma_202206933 crossref_primary_10_1073_pnas_2510306122 crossref_primary_10_1038_s41525_025_00493_5 crossref_primary_10_3389_fnagi_2022_885707 crossref_primary_10_3390_ijms241512433 crossref_primary_10_3389_fcvm_2021_750438 crossref_primary_10_1186_s13287_024_04059_7 crossref_primary_10_1186_s13287_025_04285_7 crossref_primary_10_1111_jnc_70170 crossref_primary_10_1093_nar_gkac848 crossref_primary_10_1038_s41556_024_01411_0 crossref_primary_10_1007_s12975_025_01331_7 crossref_primary_10_3103_S0095452725040024 crossref_primary_10_1016_j_gde_2023_102084 crossref_primary_10_3389_fmolb_2025_1538806 crossref_primary_10_1016_j_cell_2025_07_039 crossref_primary_10_1089_cell_2023_0123 crossref_primary_10_1038_s41563_022_01312_3 crossref_primary_10_3390_cells12081166 crossref_primary_10_1016_j_jbc_2024_107994 crossref_primary_10_1186_s12915_025_02264_1 crossref_primary_10_1186_s13148_024_01682_2 crossref_primary_10_1038_s42003_023_04627_2 crossref_primary_10_1016_j_ymthe_2025_04_004 crossref_primary_10_1038_s41598_025_00524_2 crossref_primary_10_1002_advs_202409642 crossref_primary_10_1016_j_bioelechem_2025_109089 crossref_primary_10_1186_s13045_025_01731_0 crossref_primary_10_1007_s10072_023_07175_z crossref_primary_10_1186_s13619_025_00229_x crossref_primary_10_1016_j_immuni_2025_08_001 crossref_primary_10_1016_j_stem_2022_09_006 crossref_primary_10_1126_sciadv_adq7855 crossref_primary_10_3389_fcvm_2022_972591 crossref_primary_10_1089_cell_2023_0015 crossref_primary_10_1089_cell_2021_0172 crossref_primary_10_3390_biomedicines10092070 crossref_primary_10_1167_iovs_64_15_32 crossref_primary_10_1186_s13024_025_00805_4 crossref_primary_10_1002_advs_202411735 crossref_primary_10_1093_stmcls_sxaf002 crossref_primary_10_1016_j_ajhg_2024_03_007 crossref_primary_10_1002_advs_202303395 crossref_primary_10_4103_NRR_NRR_D_23_01784 crossref_primary_10_1242_dev_202997 crossref_primary_10_1007_s13770_025_00738_5 crossref_primary_10_1016_j_molcel_2025_07_005 crossref_primary_10_1038_s41598_024_65337_1 crossref_primary_10_3390_cells11142242 crossref_primary_10_3389_fcell_2021_713434 crossref_primary_10_3390_ijms26010405 crossref_primary_10_1038_s41392_023_01343_5 crossref_primary_10_3389_fbioe_2021_681705 crossref_primary_10_3389_fncel_2023_1237641 crossref_primary_10_1007_s42114_025_01331_z crossref_primary_10_1016_j_jiec_2023_08_042 crossref_primary_10_3389_fncel_2023_1305896 crossref_primary_10_1002_advs_202308032 crossref_primary_10_1038_s41598_024_78115_w crossref_primary_10_1016_j_matt_2022_09_017 crossref_primary_10_1038_s41467_025_59026_4 crossref_primary_10_3390_jdb11030037 crossref_primary_10_1007_s44340_025_00035_w crossref_primary_10_1038_s41587_023_01931_4 crossref_primary_10_3389_fcell_2022_983195 crossref_primary_10_1038_s41467_022_34854_w crossref_primary_10_3390_cells12131673 crossref_primary_10_1016_j_bioactmat_2024_04_011 crossref_primary_10_1016_j_tibs_2025_03_004 crossref_primary_10_1038_s41433_024_03441_2 crossref_primary_10_3390_biom15060794 crossref_primary_10_1016_j_colsurfb_2023_113189 crossref_primary_10_1016_j_heliyon_2024_e33736 crossref_primary_10_1186_s13148_021_01131_4 crossref_primary_10_3389_fendo_2024_1350958 crossref_primary_10_3390_cells10092276 crossref_primary_10_1089_cell_2022_0128 crossref_primary_10_4103_1673_5374_390965 crossref_primary_10_1242_dev_200433 crossref_primary_10_4274_jtgga_galenos_2023_2022_12_13 crossref_primary_10_1016_j_cels_2025_101206 crossref_primary_10_1016_j_cels_2025_101205 crossref_primary_10_1089_cell_2023_0041 crossref_primary_10_1002_advs_202304103 crossref_primary_10_1002_advs_202403105 crossref_primary_10_1371_journal_pbio_3002237 crossref_primary_10_3389_fcell_2025_1513163 crossref_primary_10_1038_s41587_023_01905_6 crossref_primary_10_1089_cell_2022_0110 crossref_primary_10_3390_jcdd8070072 crossref_primary_10_4103_1673_5374_390957 crossref_primary_10_3389_fbioe_2022_799152 crossref_primary_10_4103_1673_5374_355981 crossref_primary_10_1016_j_gde_2025_102354 crossref_primary_10_1016_j_tice_2024_102553 crossref_primary_10_2478_aoas_2025_0073 crossref_primary_10_1242_dev_199961 crossref_primary_10_4252_wjsc_v16_i2_137 crossref_primary_10_1016_j_yjmcc_2023_03_008 crossref_primary_10_1038_s41467_024_46956_8 crossref_primary_10_3389_fnut_2023_1225233 crossref_primary_10_1016_j_yjmcc_2023_03_009 crossref_primary_10_1038_s12276_023_01003_2 crossref_primary_10_1016_j_yjmcc_2022_08_004 crossref_primary_10_1016_j_biomaterials_2025_123463 crossref_primary_10_1038_s41467_024_55286_8 crossref_primary_10_1039_D1BM00400J crossref_primary_10_3389_fbioe_2021_748942 crossref_primary_10_1016_j_devcel_2023_08_023 crossref_primary_10_1002_adbi_202300092 crossref_primary_10_1016_j_pneurobio_2022_102284 crossref_primary_10_1016_j_expneurol_2022_114054 crossref_primary_10_1093_stcltm_szad019 crossref_primary_10_1002_mco2_427 crossref_primary_10_1016_j_stemcr_2025_102473 crossref_primary_10_1016_j_ymthe_2024_06_018 crossref_primary_10_1038_s41467_023_40803_y crossref_primary_10_1096_fj_202400400RR crossref_primary_10_3389_fmolb_2022_1009402 crossref_primary_10_1080_17425255_2024_2362183 crossref_primary_10_1186_s13287_025_04489_x crossref_primary_10_1093_bfgp_elac008 crossref_primary_10_3390_biomedicines10020399 crossref_primary_10_3389_fonc_2023_1207603 crossref_primary_10_1098_rsob_240328 crossref_primary_10_1109_TCYB_2024_3473945 crossref_primary_10_3389_fendo_2024_1484829 crossref_primary_10_1186_s13036_025_00499_8 crossref_primary_10_1016_j_bbrc_2022_09_015 crossref_primary_10_1089_cell_2025_0020 crossref_primary_10_3390_cells11233914 crossref_primary_10_1089_scd_2024_0181 crossref_primary_10_1016_j_pharmr_2025_100077 crossref_primary_10_1038_s41419_023_06001_w crossref_primary_10_1016_j_identj_2024_08_009 crossref_primary_10_1016_j_matt_2022_04_026 crossref_primary_10_1186_s13619_021_00106_3 crossref_primary_10_1021_acssynbio_4c00037 crossref_primary_10_3389_fnins_2021_771687 crossref_primary_10_1016_j_csm_2024_08_003 crossref_primary_10_1002_adhm_202201824 crossref_primary_10_3390_cells11213435 crossref_primary_10_1038_s41467_024_46004_5 crossref_primary_10_1016_j_semcdb_2021_07_010 crossref_primary_10_1016_j_colsurfb_2025_114550 crossref_primary_10_1038_s43587_023_00539_2 crossref_primary_10_1038_s43587_024_00596_1 crossref_primary_10_1016_j_reth_2024_12_014 crossref_primary_10_1097_HC9_0000000000000788 crossref_primary_10_1186_s13287_025_04217_5 crossref_primary_10_1681_ASN_2021111425 crossref_primary_10_3390_ijms222413449 crossref_primary_10_17816_morph_637000 crossref_primary_10_1016_j_jare_2025_08_018 crossref_primary_10_15283_ijsc24121 crossref_primary_10_1038_s44318_025_00385_5 crossref_primary_10_1038_s41589_024_01799_8 |
| Cites_doi | 10.1016/j.cell.2015.03.017 10.1016/j.molcel.2017.11.030 10.1038/nmeth.3961 10.1016/j.stemcr.2014.10.007 10.1073/pnas.1103113108 10.1016/j.cell.2015.05.002 10.1016/j.stemcr.2018.12.017 10.1016/j.jtcvs.2014.03.033 10.1016/j.cell.2012.09.045 10.1038/s41576-018-0088-9 10.1016/j.yexcr.2016.07.026 10.1038/s41587-019-0071-9 10.1038/s41576-019-0122-6 10.1161/CIRCRESAHA.116.304510 10.1016/j.cell.2006.02.041 10.1016/j.molcel.2019.07.015 10.1038/s41587-019-0206-z 10.1016/j.molcel.2020.07.012 10.1038/nature09973 10.1126/science.aaf1502 10.1016/j.stem.2014.01.003 10.1016/j.stem.2017.09.014 10.1056/NEJMra1716145 10.1038/srep23017 10.1016/j.stem.2016.01.010 10.1016/j.scr.2015.06.001 10.1016/j.biomaterials.2018.11.034 10.1038/ng.710 10.1016/S0092-8674(04)00419-2 10.1016/j.celrep.2017.09.011 10.1038/nature13173 10.1038/nature10263 10.1038/s41592-019-0547-z 10.1038/nature23283 10.1016/j.molcel.2016.10.039 10.1038/nature23001 10.1186/s13059-017-1269-0 10.1016/S1097-2765(02)00459-8 10.1016/j.neuron.2016.08.004 10.1016/j.cell.2005.03.013 10.1016/j.jacbts.2019.02.006 10.1038/ncomms14049 10.1016/j.cell.2006.07.024 10.1016/j.stem.2019.03.022 10.3389/fnmol.2017.00359 10.1016/j.celrep.2014.04.011 10.1016/j.celrep.2018.09.067 10.1016/j.cell.2016.08.055 10.1016/j.gde.2017.06.008 10.1101/gr.245399.118 10.1016/j.scr.2016.02.037 10.1016/j.ncrna.2017.04.002 10.1038/s12276-018-0071-8 10.1038/s41586-020-2388-4 10.1016/j.tig.2015.07.005 10.1016/j.celrep.2017.09.005 10.1038/nbt.3082 10.1523/JNEUROSCI.3975-14.2015 10.1016/j.stem.2015.12.003 10.1016/j.gde.2014.09.006 10.1038/550451a 10.1038/cr.2015.99 10.1038/nature14966 10.1038/s41594-019-0323-x 10.1016/j.cell.2010.07.002 10.1016/j.neuron.2010.09.009 10.1242/dev.128389 10.1016/j.stemcr.2014.05.020 10.1038/s41586-018-0414-6 10.1038/ncomms4338 10.1016/j.devcel.2013.03.002 10.1038/s41576-019-0093-7 10.3389/fonc.2012.00026 10.1016/j.cell.2014.07.020 10.1016/0092-8674(87)90585-X 10.1016/j.stem.2015.06.003 10.1016/j.stem.2018.09.003 10.1161/CIRCRESAHA.112.269035 10.1038/ncb2660 10.1016/j.tibtech.2018.04.002 10.1101/gad.9.10.1250 10.1073/pnas.1303829110 10.1038/nrm.2016.8 10.1038/nature10116 10.1093/nar/gkx754 10.1038/nrg3833 10.1101/gr.078378.108 10.1073/pnas.0511041103 10.1038/nature13182 10.1002/sctm.18-0282 10.1093/nar/gks1094 10.1073/pnas.0709002105 10.1016/j.ceb.2012.03.009 10.1016/j.cell.2018.03.074 10.1038/nature08894 10.1016/j.cell.2012.11.045 10.1016/j.biomaterials.2015.02.029 10.1016/j.stem.2016.02.003 10.1139/cjpp-2016-0515 10.1038/srep38815 10.1097/FJC.0b013e3181e74a14 10.1038/s41592-019-0502-z 10.1126/science.346.6206.237 10.1074/jbc.R111.271999 10.1016/j.stem.2013.12.001 10.1242/dev.114025 10.1038/nature18323 10.1073/pnas.1516237112 10.7554/eLife.13374 10.1016/j.stem.2017.11.010 10.1016/j.stem.2018.05.020 10.1038/emboj.2011.459 10.1038/nature10398 10.1038/nmeth.1315 10.1186/gb-2009-10-3-r29 10.1038/nrm.2016.6 10.1016/j.cell.2013.03.035 10.1016/j.cell.2012.08.023 10.1038/nature24454 10.1038/ncomms2582 10.1016/j.tig.2015.11.001 10.1038/ng.3487 10.1038/nature11044 10.1038/nrg3473 10.7554/eLife.40197 10.1038/s41551-018-0260-8 10.1038/nn.3299 10.1016/j.cell.2018.06.052 10.1016/j.cell.2018.02.014 10.1253/circj.CJ-14-1372 10.1038/s41551-020-0539-4 10.1038/nature14136 10.1038/nbt.3749 10.1038/cr.2011.22 10.1155/2016/3162363 10.1126/science.aau0730 10.1038/nature10323 10.1016/j.stem.2017.08.002 10.1038/nature08797 10.1038/ncb2843 10.1016/j.stem.2017.11.020 10.1016/j.cell.2019.05.006 10.1038/s41586-018-0425-3 10.1016/j.cell.2009.05.035 10.15252/embj.201387605 10.1101/gad.2019811 10.1016/j.stemcr.2015.09.016 10.1101/gad.253443.114 10.1038/natrevmats.2016.71 10.1093/nar/gkx692 10.7554/eLife.41770 10.1016/j.stem.2019.06.012 10.3164/jcbn.15-39 10.1126/science.1199010 10.1016/j.stem.2015.01.013 10.1038/s41467-018-03904-7 10.1038/nature11139 10.1093/cvr/cvu023 10.1038/nature07314 10.1038/cr.2014.165 10.1186/s13059-015-0737-7 10.1038/ncomms3373 10.1016/j.cell.2013.09.028 10.1038/ncomms13396 10.1038/nmeth.4155 10.1016/j.devcel.2018.06.007 10.1016/j.immuni.2006.09.011 10.1016/j.stem.2015.09.002 10.1016/j.stem.2017.06.011 10.1172/JCI66514 10.1101/cshperspect.a019364 10.1073/pnas.1313192110 10.1016/j.cell.2014.06.027 10.1101/gr.190595.115 10.1016/j.stem.2019.05.020 10.1016/j.stem.2012.05.005 10.1161/CIRCRESAHA.116.308741 10.1002/advs.201900344 10.1016/j.neuron.2015.03.035 10.1038/nature24045 10.1016/j.stem.2015.09.012 10.1101/gad.305482.117 10.1016/bs.pbr.2016.11.004 10.1016/j.stemcr.2014.09.013 10.1161/CIRCRESAHA.116.305547 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2021 COPYRIGHT 2021 Nature Publishing Group Springer Nature Limited 2021. |
| Copyright_xml | – notice: Springer Nature Limited 2021 – notice: COPYRIGHT 2021 Nature Publishing Group – notice: Springer Nature Limited 2021. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7RV 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M7N M7P NAPCQ P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
| DOI | 10.1038/s41580-021-00335-z |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Medicine |
| EISSN | 1471-0080 |
| EndPage | 424 |
| ExternalDocumentID | PMC8161510 A663246838 33619373 10_1038_s41580_021_00335_z |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL139976 – fundername: American Heart Association-American Stroke Association grantid: 18TPA34180058 – fundername: NHLBI NIH HHS grantid: R01 HL139880 – fundername: NHLBI NIH HHS grantid: R01 HL144551 – fundername: NHLBI NIH HHS grantid: R56 HL133081 – fundername: NHLBI NIH HHS grantid: R01 HL128331 |
| GroupedDBID | --- .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D0L D1J DB5 DU5 EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC LK8 M0L M1P M7P N9A NAPCQ NNMJJ O9- ODYON PCBAR PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION CGR CUY CVF ECM EIF NFIDA NPM PHGZM PHGZT PJZUB PPXIY PQGLB 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c641t-ef9138d716a4b6c0c4fb6f8d60f2ee7d6949ab33bde4ddea10a5c9f8cdc3d2c03 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 301 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620415800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-0072 1471-0080 |
| IngestDate | Tue Nov 04 01:56:56 EST 2025 Thu Oct 02 12:13:35 EDT 2025 Sun Nov 30 04:44:13 EST 2025 Sat Nov 29 13:55:37 EST 2025 Sat Nov 29 10:35:19 EST 2025 Wed Nov 26 10:55:16 EST 2025 Mon Jul 21 05:35:46 EDT 2025 Sat Nov 29 06:43:42 EST 2025 Tue Nov 18 20:02:46 EST 2025 Fri Feb 21 02:38:00 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c641t-ef9138d716a4b6c0c4fb6f8d60f2ee7d6949ab33bde4ddea10a5c9f8cdc3d2c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 The authors contributed equally to all aspects of the article. Author contributions |
| ORCID | 0000-0001-8914-442X 0000-0001-7614-5618 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8161510 |
| PMID | 33619373 |
| PQID | 2532421863 |
| PQPubID | 27585 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8161510 proquest_miscellaneous_2492661511 proquest_journals_2532421863 gale_infotracmisc_A663246838 gale_infotracacademiconefile_A663246838 gale_incontextgauss_ISR_A663246838 pubmed_primary_33619373 crossref_citationtrail_10_1038_s41580_021_00335_z crossref_primary_10_1038_s41580_021_00335_z springer_journals_10_1038_s41580_021_00335_z |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature reviews. Molecular cell biology |
| PublicationTitleAbbrev | Nat Rev Mol Cell Biol |
| PublicationTitleAlternate | Nat Rev Mol Cell Biol |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | ZhouHZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expressionGenes Dev.201731177017831:CAS:528:DC%2BC2sXhslCnsLvI28982760566667510.1101/gad.305482.117 SongKHeart repair by reprogramming non-myocytes with cardiac transcription factorsNature20124855996041:CAS:528:DC%2BC38XnvVyqsbg%3D22660318336739010.1038/nature11139 EraslanGAvsecŽGagneurJTheisFJDeep learning: new computational modelling techniques for genomicsNat. Rev. Genet.2019203894031:CAS:528:DC%2BC1MXosFKgsr4%3D3097180610.1038/s41576-019-0122-6 HeinrichCSox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortexStem Cell Rep.20143100010141:CAS:528:DC%2BC2cXitFOns7zE10.1016/j.stemcr.2014.10.007 StegleOTeichmannSAMarioniJCComputational and analytical challenges in single-cell transcriptomicsNat. Rev. Genet.2015161331451:CAS:528:DC%2BC2MXhs1Shur4%3D2562821710.1038/nrg3833 LiXSmall-molecule-driven direct reprogramming of mouse fibroblasts into functional neuronsCell Stem Cell2015171952031:CAS:528:DC%2BC2MXhtFCktLbO2625320110.1016/j.stem.2015.06.003 RheeCMechanisms of transcription factor-mediated direct reprogramming of mouse embryonic stem cells to trophoblast stem-like cellsNucleic Acids Res.20174510103101141:CAS:528:DC%2BC1cXmtV2nu7o%3D28973471573733410.1093/nar/gkx692 StuartTSatijaRIntegrative single-cell analysisNat. Rev. Genet.2019202572721:CAS:528:DC%2BC1MXmtFKjtbs%3D3069698010.1038/s41576-019-0093-7 ParkGConversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatmentsBiomaterials2015542012121:CAS:528:DC%2BC2MXltFajsbw%3D2590705310.1016/j.biomaterials.2015.02.029 KaremakerIDVermeulenMSingle-cell DNA methylation profiling: technologies and biological applicationsTrends Biotechnol.2018369529651:CAS:528:DC%2BC1cXot1Ckt7c%3D2972449510.1016/j.tibtech.2018.04.002 KulessaHFramptonJGrafTGATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblastsGenes Dev.19959125012621:CAS:528:DyaK2MXlvFShsLg%3D775894910.1101/gad.9.10.1250 WangLStoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogrammingCirc. Res.20151162372442541613310.1161/CIRCRESAHA.116.3055471:CAS:528:DC%2BC2MXpslGruw%3D%3D JayawardenaTMMicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytesCirc. Res.2012110146514731:CAS:528:DC%2BC38XnsVCisr8%3D22539765338062410.1161/CIRCRESAHA.112.269035 ConacoCOttoSHanJJMandelGReciprocal actions of REST and a microRNA promote neuronal identityProc. Natl Acad. Sci. USA2006103242224271:CAS:528:DC%2BD28XhslGjtLo%3D1646191810.1073/pnas.05110411031413753 SaelensWCannoodtRTodorovHSaeysYA comparison of single-cell trajectory inference methodsNat. Biotechnol.2019375475541:CAS:528:DC%2BC1MXosV2qsrk%3D3093655910.1038/s41587-019-0071-9Saelens et al. comprehensively evaluated the performance of 45 single-cell trajectory inference methods on 110 real and 229 synthetic datasets and provide guidelines for method selection in direct reprogramming. Rozenblatt-RosenOStubbingtonMJTRegevATeichmannSAThe human cell atlas: from vision to realityNature20175504514531:CAS:528:DC%2BC2sXhslajtr7M2907228910.1038/550451a CaoJYanQHistone ubiquitination and deubiquitination in transcription, DNA damage response, and cancerFront. Oncol.201222622649782335587510.3389/fonc.2012.00026 Dal-PraSHodgkinsonCPMirotsouMKirsteIDzauVJDemethylation of H3K27 is essential for the induction of direct cardiac reprogramming by MIR ComboCirculation Res.2017120140314131:CAS:528:DC%2BC2sXmslaqtr8%3D2820971810.1161/CIRCRESAHA.116.308741 XueYDirect conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuitsCell201315282961:CAS:528:DC%2BC3sXmvFSrtQ%3D%3D23313552355202610.1016/j.cell.2012.11.045 ZhouYComparative gene expression analyses reveal distinct molecular signatures between differentially reprogrammed cardiomyocytesCell Rep.201720301430241:CAS:528:DC%2BC2sXhsFOhs7jF28954220565984010.1016/j.celrep.2017.09.005 PottSLiebJDSingle-cell ATAC-seq: strength in numbersGenome Biol.20151626294014454616110.1186/s13059-015-0737-71:CAS:528:DC%2BC28XmtVCrtrk%3D WangYEndogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewalDev. Cell20132569801:CAS:528:DC%2BC3sXltVCjtr0%3D2354192110.1016/j.devcel.2013.03.002 ZhengXMetabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylationeLife2016527282387496319810.7554/eLife.133741:CAS:528:DC%2BC1cXmsFams7c%3D LiHChenGIn vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cellsNeuron2016917287381:CAS:528:DC%2BC28Xhtlyju7fM27537482546636410.1016/j.neuron.2016.08.004 TangYLiuMLZangTZhangCLDirect reprogramming rather than iPSC-based reprogramming maintains aging hallmarks in human motor neuronsFront. Mol. Neurosci.20171035929163034567677910.3389/fnmol.2017.003591:CAS:528:DC%2BC1cXisVOkur7P IedaMDirect reprogramming of fibroblasts into functional cardiomyocytes by defined factorsCell20101423753861:CAS:528:DC%2BC3cXpvFKrsbY%3D20691899291984410.1016/j.cell.2010.07.002Idea et al. identified reprogramming factors that could reprogramme mouse cardiac fibroblasts to cardiomyocyte-like cells in vitro. ChandaSGeneration of induced neuronal cells by the single reprogramming factor ASCL1Stem Cell Rep.201432822961:CAS:528:DC%2BC2cXhtFWitLjL10.1016/j.stemcr.2014.05.020 NgS-YJohnsonRStantonLWHuman long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factorsEMBO J.2012315225331:CAS:528:DC%2BC3MXhs1Gks7vO2219371910.1038/emboj.2011.459 ZhouYSingle-cell transcriptomic analyses of cell fate transitions during human cardiac reprogrammingCell Stem Cell201925149164.e91:CAS:528:DC%2BC1MXht1Wqt7fL31230860668413710.1016/j.stem.2019.05.020Zhou et al. revealed an early decision point at which cells either continue reprogramming or regress toward the original fibroblast state during human cardiac reprogramming. QianHReversing a model of Parkinson’s disease with in situ converted nigral neuronsNature20205825505561:CAS:528:DC%2BB3cXht1ClsrvP32581380752145510.1038/s41586-020-2388-4 CirilloLAOpening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4Mol. Cell200292792891:CAS:528:DC%2BD38XhvFKhu7o%3D1186460210.1016/S1097-2765(02)00459-8 GrünDSingle-cell messenger RNA sequencing reveals rare intestinal cell typesNature20155252512552628746710.1038/nature149661:CAS:528:DC%2BC2MXhtlKlu7zJ QianLIn vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytesNature20124855935981:CAS:528:DC%2BC38XlslSitrY%3D22522929336910710.1038/nature11044Qian et al. demonstrated the feasibility of using in vivo direct reprogramming for heart repair. LiWLong-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cellsNat. Biotechnol.201432122312301:CAS:528:DC%2BC2cXhvFKlsrnK2540261310.1038/nbt.3082 BaoXThe p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promotersCell Res.20152580921:CAS:528:DC%2BC2cXitFyhurbN2551234110.1038/cr.2014.165 NamYJInduction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factorsDevelopment2014141426742781:CAS:528:DC%2BC2MXivFCjtA%3D%3D25344074430291610.1242/dev.114025 NoorN3D printing of personalized thick and perfusable cardiac patches and heartsAdv. Sci.20196190034410.1002/advs.2019003441:CAS:528:DC%2BC1MXhtFWgur7E HashimotoHCardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancersCell Stem Cell2019256986.e51:CAS:528:DC%2BC1MXpsVWlt78%3D31080136675426610.1016/j.stem.2019.03.022 LoewerSLarge intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cellsNat. Genet.201042111311171:CAS:528:DC%2BC3cXhtl2jsbzE21057500304065010.1038/ng.710 CliffTSDaltonSMetabolic switching and cell fate decisions: implications for pluripotency, reprogramming and developmentCurr. Opin. Genet. Dev.20174644491:CAS:528:DC%2BC2sXhtVGnsLnE28662447584206310.1016/j.gde.2017.06.008 LiuYCRISPR activation screens systematically identify factors that drive neuronal fate and reprogrammingCell Stem Cell201823758771.e81:CAS:528:DC%2BC1cXhvFSqsrbO30318302621476110.1016/j.stem.2018.09.003 WapinskiOLRapid chromatin switch in the direct reprogramming of fibroblasts to neuronsCell Rep.201720323632471:CAS:528:DC%2BC2sXhsFOhs7nN28954238564637910.1016/j.celrep.2017.09.011 RichardsDJHuman cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicityNat. Biomed. Eng.202044464621:CAS:528:DC%2BB3cXntVOgtb8%3D32284552742294110.1038/s41551-020-0539-4 YooASMicroRNA-mediated conversion of human fibroblasts to neuronsNature20114762282311:CAS:528:DC%2BC3MXoslymtr4%3D21753754334886210.1038/nature10323 CollombatPThe ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cellsCell20091384494621:CAS:528:DC%2BD1MXhsVChs7nO19665969279220310.1016/j.cell.2009.05.035 BramswigNCEpigenomic plasticity enables human pancreatic α to β cell reprogrammingJ. Clin. Invest.2013123127512841:CAS:528:DC%2BC3sXjvVyht70%3D23434589358214010.1172/JCI66514 JinYThree-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neuronsNat. Biomed. Eng.201825225391:CAS:528:DC%2BC1MXhtFensr7P3094883110.1038/s41551-018-0260-8 JiaCAccounting for technical noise in differential expression analysis of single-cell RNA sequencing dataNucleic Acids Res.20174510978109881:CAS:528:DC%2BC1cXhtVyisb3N29036714573767610.1093/nar/gkx754 XieHYeMFengRGrafTStepwise reprogramming of B cells into macrophagesCell20041176636761:CAS:528:DC%2BD2cXkvVyhsrc%3D1516341310.1016/S0092-8674(04)00419-2 HumeresCFrangogiannisNGFibroblasts in the infarcted, remodeling, and failing heartJACC Basic. Transl. Sci.201944494673 M Xin (335_CR154) 2013; 110 W Li (335_CR43) 2014; 32 Y Li (335_CR47) 2016; 6 N Ballas (335_CR125) 2005; 121 A Buffo (335_CR50) 2008; 105 GXY Zheng (335_CR151) 2017; 8 S Chanda (335_CR89) 2014; 3 H Hashimoto (335_CR90) 2019; 25 O Rozenblatt-Rosen (335_CR161) 2017; 550 HM Blau (335_CR30) 2019; 380 M Guttman (335_CR133) 2011; 477 X Xiao (335_CR54) 2018; 22 A Soufi (335_CR88) 2012; 151 H Li (335_CR10) 2016; 91 D Grün (335_CR164) 2015; 525 S Gascón (335_CR42) 2017; 21 B Hwang (335_CR149) 2018; 50 V Lo Sardo (335_CR83) 2017; 35 S Gascón (335_CR140) 2016; 18 Z Liu (335_CR75) 2017; 551 ID Karemaker (335_CR184) 2018; 36 Y Chang (335_CR65) 2019; 192 VY Kiselev (335_CR152) 2019; 20 NL Jorstad (335_CR9) 2017; 548 P Dai (335_CR70) 2015; 56 L Zhang (335_CR72) 2015; 17 A Grande (335_CR34) 2013; 4 SW Santoro (335_CR113) 2015; 31 M Ieda (335_CR18) 2010; 142 E Ezhkova (335_CR102) 2011; 25 JS Becker (335_CR106) 2017; 68 A Soufi (335_CR84) 2015; 161 W Saelens (335_CR158) 2019; 37 C Trapnell (335_CR157) 2015; 25 Y Wang (335_CR69) 2016; 347 F Thorel (335_CR44) 2010; 464 K Horisawa (335_CR95) 2020; 79 JP Leach (335_CR155) 2017; 550 NC Bramswig (335_CR56) 2013; 123 N Noor (335_CR79) 2019; 6 O Stegle (335_CR163) 2015; 16 D Srivastava (335_CR8) 2016; 166 H Qian (335_CR81) 2020; 582 TM Jayawardena (335_CR25) 2015; 116 B Mahata (335_CR166) 2014; 7 Y Liu (335_CR57) 2015; 35 NR Stone (335_CR13) 2019; 25 DJ Richards (335_CR78) 2020; 4 M Mathison (335_CR94) 2014; 148 K Lee (335_CR62) 2015; 10 Y Zhou (335_CR143) 2017; 20 N Muraoka (335_CR121) 2014; 33 Y Buganim (335_CR5) 2013; 14 K Miyamoto (335_CR61) 2018; 22 B Treutlein (335_CR77) 2016; 534 G La Manno (335_CR160) 2018; 560 Y Tang (335_CR177) 2017; 10 T Finkel (335_CR145) 2012; 287 OL Wapinski (335_CR96) 2017; 20 JP Magnusson (335_CR48) 2014; 346 C Conaco (335_CR126) 2006; 103 X Li (335_CR144) 2016; 95 OJL Rackham (335_CR179) 2016; 48 J Li (335_CR74) 2016; 1 BE Bernstein (335_CR112) 2006; 125 Y Liu (335_CR64) 2018; 23 S-Y Ng (335_CR134) 2012; 31 SW Lee (335_CR124) 2018; 46 T Nagano (335_CR169) 2017; 547 DS Lee (335_CR190) 2019; 16 DA Cusanovich (335_CR127) 2018; 174 N Cao (335_CR68) 2016; 352 T Vierbuchen (335_CR20) 2010; 463 H Hirai (335_CR107) 2014; 102 DG Abernathy (335_CR123) 2017; 21 SH Kang (335_CR51) 2010; 68 AS Yoo (335_CR23) 2011; 476 K Yao (335_CR40) 2018; 560 YJ Nam (335_CR60) 2014; 141 G Colasante (335_CR58) 2015; 17 Q Zhou (335_CR17) 2008; 455 X Zheng (335_CR137) 2016; 5 Z Guo (335_CR35) 2014; 14 OL Wapinski (335_CR87) 2013; 155 HT Fang (335_CR117) 2018; 9 M Zarbin (335_CR29) 2019; 8 S Pott (335_CR186) 2015; 16 LA Cirillo (335_CR86) 2002; 9 F Dong (335_CR116) 2016; 2016 W Niu (335_CR33) 2013; 15 H Kulessa (335_CR14) 1995; 9 K Song (335_CR19) 2012; 485 X Hu (335_CR49) 2019; 12 J Kim (335_CR99) 2011; 108 J Luginbühl (335_CR120) 2017; 2 Z Su (335_CR38) 2014; 5 S Dal-Pra (335_CR103) 2017; 120 AJ Bannister (335_CR97) 2011; 21 JD Welch (335_CR173) 2017; 18 G Eraslan (335_CR175) 2019; 20 H Cheng (335_CR118) 2016; 7 P Collombat (335_CR55) 2009; 138 BA Benayoun (335_CR101) 2014; 158 J Cao (335_CR110) 2012; 2 K Adachi (335_CR128) 2018; 23 X Wang (335_CR147) 2016; 6 X Li (335_CR71) 2015; 17 JD Buenrostro (335_CR168) 2018; 173 C Rouaux (335_CR53) 2013; 15 335_CR27 C Heinrich (335_CR37) 2014; 3 Z Liu (335_CR98) 2016; 16 L Qian (335_CR11) 2012; 485 NL Vastenhouw (335_CR111) 2012; 24 AC D’Alessio (335_CR180) 2015; 5 S Loewer (335_CR130) 2010; 42 T Heallen (335_CR156) 2011; 332 Y Zhou (335_CR80) 2016; 18 JD Welch (335_CR172) 2019; 177 C Rhee (335_CR109) 2017; 45 CV Laiosa (335_CR16) 2006; 25 L Wang (335_CR93) 2015; 116 R Spektor (335_CR191) 2019; 29 P Huang (335_CR105) 2014; 14 TS Cliff (335_CR138) 2017; 46 G Song (335_CR39) 2016; 18 W Li (335_CR59) 2014; 3 S Chakraborty (335_CR63) 2014; 3 K Takahashi (335_CR6) 2016; 17 G Park (335_CR67) 2015; 54 AT Satpathy (335_CR185) 2019; 37 P Cahan (335_CR12) 2014; 158 JD Fu (335_CR41) 2015; 79 S Sekiya (335_CR21) 2011; 475 F Tang (335_CR148) 2009; 6 H Zhou (335_CR176) 2017; 31 Y Jin (335_CR46) 2018; 2 CE Ang (335_CR129) 2019; 8 AP West (335_CR146) 2011; 472 X Bao (335_CR132) 2015; 25 LF Cheow (335_CR174) 2016; 13 Y Xue (335_CR122) 2013; 152 H Li (335_CR31) 2016; 91 O Torper (335_CR36) 2013; 110 S Henikoff (335_CR114) 2015; 7 TM Jayawardena (335_CR24) 2012; 110 335_CR1 J Mathieu (335_CR139) 2017; 144 A Franceschini (335_CR182) 2012; 41 H Xie (335_CR15) 2004; 117 C Humeres (335_CR45) 2019; 4 Q Wang (335_CR170) 2019; 76 TM Jayawardena (335_CR32) 2014; 116 G Barbagiovanni (335_CR100) 2018; 25 ZD Smith (335_CR7) 2016; 17 J Xu (335_CR26) 2015; 16 P Huang (335_CR22) 2011; 475 TMA Mohamed (335_CR153) 2018; 173 ME Dinger (335_CR136) 2008; 18 S Konermann (335_CR183) 2014; 517 Y Fu (335_CR66) 2015; 25 C Yu (335_CR73) 2014; 28 S Yamanaka (335_CR4) 2012; 10 T Stuart (335_CR162) 2019; 20 J Cao (335_CR171) 2018; 361 B Treutlein (335_CR167) 2014; 509 V Ramani (335_CR188) 2017; 14 EZ Macosko (335_CR150) 2015; 161 C Jia (335_CR165) 2017; 45 ARR Forrest (335_CR181) 2014; 507 Y Wang (335_CR131) 2013; 25 A De La Rossa (335_CR52) 2013; 16 AK Jain (335_CR135) 2016; 64 A Gaspar-Maia (335_CR115) 2013; 4 C Luo (335_CR119) 2019; 8 H Zhou (335_CR91) 2015; 112 WA Whyte (335_CR108) 2013; 153 M Iwafuchi-Doi (335_CR85) 2014; 28 Y Zhou (335_CR76) 2019; 25 Y Buganim (335_CR159) 2012; 150 K Takahashi (335_CR3) 2006; 126 RL Davis (335_CR2) 1987; 51 R Trokovic (335_CR82) 2015; 15 JS Becker (335_CR104) 2016; 32 GD Lopaschuk (335_CR142) 2010; 56 DL Fulton (335_CR178) 2009; 10 C Zhu (335_CR189) 2019; 26 L Wang (335_CR92) 2015; 105 PJ Magistretti (335_CR141) 2015; 86 G Li (335_CR187) 2019; 16 RA Barker (335_CR28) 2017; 21 |
| References_xml | – reference: SaelensWCannoodtRTodorovHSaeysYA comparison of single-cell trajectory inference methodsNat. Biotechnol.2019375475541:CAS:528:DC%2BC1MXosV2qsrk%3D3093655910.1038/s41587-019-0071-9Saelens et al. comprehensively evaluated the performance of 45 single-cell trajectory inference methods on 110 real and 229 synthetic datasets and provide guidelines for method selection in direct reprogramming. – reference: ZhouYComparative gene expression analyses reveal distinct molecular signatures between differentially reprogrammed cardiomyocytesCell Rep.201720301430241:CAS:528:DC%2BC2sXhsFOhs7jF28954220565984010.1016/j.celrep.2017.09.005 – reference: LeachJPHippo pathway deficiency reverses systolic heart failure after infarctionNature201755026026428976966572974310.1038/nature240451:CAS:528:DC%2BC2sXhs1Sktr%2FE – reference: JayawardenaTMMicroRNA induced cardiac reprogramming in vivo evidence for mature cardiac myocytes and improved cardiac functionCirc. Res.201411641842425351576431253110.1161/CIRCRESAHA.116.3045101:CAS:528:DC%2BC2MXhs12kt78%3D – reference: BeckerJSGenomic and proteomic resolution of heterochromatin and its restriction of alternate fate genesMol. Cell20176810231037.e151:CAS:528:DC%2BC2sXitVegt77E29272703585891910.1016/j.molcel.2017.11.030 – reference: ForrestARRA promoter-level mammalian expression atlasNature20145074624701:CAS:528:DC%2BC2cXkvV2mt7c%3D2467076410.1038/nature13182 – reference: LiuZRe-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytesStem Cell Res.2016165075181:CAS:528:DC%2BC28XjsVaku74%3D26957038482825710.1016/j.scr.2016.02.037 – reference: JorstadNLStimulation of functional neuronal regeneration from Müller glia in adult miceNature20175481031071:CAS:528:DC%2BC2sXht1ars73M28746305599183710.1038/nature23283 – reference: BeckerJSNicettoDZaretKSH3K9me3-dependent heterochromatin: barrier to cell fate changesTrends Genet.20163229411:CAS:528:DC%2BC2MXhvVKmt7zF2667538410.1016/j.tig.2015.11.001 – reference: KangSHFukayaMYangJKRothsteinJDBerglesDENG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegenerationNeuron2010686686811:CAS:528:DC%2BC3cXhsVGntb3F21092857298982710.1016/j.neuron.2010.09.009 – reference: LeeKPeptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cellsInt. J. Nanomed.201510184118541:CAS:528:DC%2BC2MXlsFSms7c%3D – reference: DongFDynamic changes in occupancy of histone variant H2a.Z during induced somatic cell reprogrammingStem Cells Int.2016201631623632678340110.1155/2016/31623631:CAS:528:DC%2BC1cXlvFGmsrg%3D – reference: RichardsDJHuman cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicityNat. Biomed. Eng.202044464621:CAS:528:DC%2BB3cXntVOgtb8%3D32284552742294110.1038/s41551-020-0539-4 – reference: SoufiAPioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogrammingCell20151615555681:CAS:528:DC%2BC2MXms1yns7Y%3D25892221440993410.1016/j.cell.2015.03.017 – reference: NgS-YJohnsonRStantonLWHuman long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factorsEMBO J.2012315225331:CAS:528:DC%2BC3MXhs1Gks7vO2219371910.1038/emboj.2011.459 – reference: WelchJDSingle-cell multi-omic integration compares and contrasts features of brain cell identityCell201917718731887.e171:CAS:528:DC%2BC1MXhtFens7vK31178122671679710.1016/j.cell.2019.05.006 – reference: RackhamOJLA predictive computational framework for direct reprogramming between human cell typesNat. Genet.2016483313351:CAS:528:DC%2BC28Xps1Cqtw%3D%3D2678060810.1038/ng.3487 – reference: HwangBLeeJHBangDSingle-cell RNA sequencing technologies and bioinformatics pipelinesExp. Mol. Med.20185010.1038/s12276-018-0071-81:CAS:528:DC%2BC1cXhsVynsrbI6082860 – reference: FuYDirect reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktailsCell Res.201525101310241:CAS:528:DC%2BC2MXhsVSjs7fP26292833455981910.1038/cr.2015.99 – reference: KimJDirect reprogramming of mouse fibroblasts to neural progenitorsProc. Natl Acad. Sci. USA2011108783878431:CAS:528:DC%2BC3MXmsVSktLs%3D2152179010.1073/pnas.11031131083093517 – reference: D’AlessioACA systematic approach to identify candidate transcription factors that control cell identityStem Cell Rep.2015576377510.1016/j.stemcr.2015.09.0161:CAS:528:DC%2BC2MXhslensr7O – reference: LeeSWOhYMLuYLKimWKYooASMicroRNAs overcome cell fate barrier by reducing EZH2-controlled REST stability during neuronal conversion of human adult fibroblastsDev. Cell2018467384.e71:CAS:528:DC%2BC1cXht1yis73K29974865608242810.1016/j.devcel.2018.06.007 – reference: LiJMooneyDJDesigning hydrogels for controlled drug deliveryNat. Rev. Mater.20161160711:CAS:528:DC%2BC2sXhtVerurw%3D29657852589861410.1038/natrevmats.2016.71 – reference: WangYEndogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewalDev. Cell20132569801:CAS:528:DC%2BC3sXltVCjtr0%3D2354192110.1016/j.devcel.2013.03.002 – reference: MathieuJRuohola-BakerHMetabolic remodeling during the loss and acquisition of pluripotencyDevelopment20171445415511:CAS:528:DC%2BC2sXhtF2gtrzN28196802531203110.1242/dev.128389 – reference: JiaCAccounting for technical noise in differential expression analysis of single-cell RNA sequencing dataNucleic Acids Res.20174510978109881:CAS:528:DC%2BC1cXhtVyisb3N29036714573767610.1093/nar/gkx754 – reference: LiGJoint profiling of DNA methylation and chromatin architecture in single cellsNat. Methods2019169919931:CAS:528:DC%2BC1MXhsFWqsb%2FP31384045676542910.1038/s41592-019-0502-z – reference: StegleOTeichmannSAMarioniJCComputational and analytical challenges in single-cell transcriptomicsNat. Rev. Genet.2015161331451:CAS:528:DC%2BC2MXhs1Shur4%3D2562821710.1038/nrg3833 – reference: CaoJYanQHistone ubiquitination and deubiquitination in transcription, DNA damage response, and cancerFront. Oncol.201222622649782335587510.3389/fonc.2012.00026 – reference: LuoCGlobal DNA methylation remodeling during direct reprogramming of fibroblasts to neuronseLife2019830644360633343910.7554/eLife.40197 – reference: VierbuchenTDirect conversion of fibroblasts to functional neurons by defined factorsNature2010463103510411:CAS:528:DC%2BC3cXhtFCgsr0%3D20107439282912110.1038/nature08797Vierbuchen et al. identified a combination of three factors to directly convert mouse fibroblasts into functional neurons in vitro. – reference: RamaniVMassively multiplex single-cell Hi-CNat. Methods2017142632661:CAS:528:DC%2BC2sXhvV2hs7w%3D28135255533080910.1038/nmeth.4155 – reference: ZhouYSingle-cell transcriptomic analyses of cell fate transitions during human cardiac reprogrammingCell Stem Cell201925149164.e91:CAS:528:DC%2BC1MXht1Wqt7fL31230860668413710.1016/j.stem.2019.05.020Zhou et al. revealed an early decision point at which cells either continue reprogramming or regress toward the original fibroblast state during human cardiac reprogramming. – reference: LopaschukGDJaswalJSEnergy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturationJ. Cardiovasc. Pharmacol.2010561301401:CAS:528:DC%2BC3cXhtVektbzM2050552410.1097/FJC.0b013e3181e74a14 – reference: ChangYEfficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrierBiomaterials20191925005091:CAS:528:DC%2BC1cXitlyhtLnP3051347510.1016/j.biomaterials.2018.11.034 – reference: EzhkovaEEZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repairGenes Dev.2011254854981:CAS:528:DC%2BC3MXjslCitr4%3D21317239304928910.1101/gad.2019811 – reference: XuJDuYDengHDirect lineage reprogramming: strategies, mechanisms, and applicationsCell Stem Cell2015161191341:CAS:528:DC%2BC2MXhslelu78%3D2565836910.1016/j.stem.2015.01.013 – reference: SantoroSWDulacCHistone variants and cellular plasticityTrends Genet.2015315165271:CAS:528:DC%2BC2MXhtleksrnI26299477511155410.1016/j.tig.2015.07.005 – reference: FranceschiniASTRING v9.1: protein-protein interaction networks, with increased coverage and integrationNucleic Acids Res.201241D808D81523203871353110310.1093/nar/gks10941:CAS:528:DC%2BC38XhvV2ksb3I – reference: WapinskiOLHierarchical mechanisms for direct reprogramming of fibroblasts to neuronsCell20131556216351:CAS:528:DC%2BC3sXhs1yqsbzM2424301910.1016/j.cell.2013.09.028Wapinski et al. describe the role of Ascl1 as an ‘on-target’ Pioneer factor and its association to the ‘trivalent’ chromatin state in murine neuronal reprogramming. – reference: WangXSelenium augments microRNA directed reprogramming of fibroblasts to cardiomyocytes via nanogSci. Rep.201661:CAS:528:DC%2BC28XktFKmtbg%3D26975336479215310.1038/srep23017 – reference: LaiosaCVStadtfeldMXieHde Andres-AguayoLGrafTReprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU.1 transcription factorsImmunity2006257317441:CAS:528:DC%2BD28Xht1Gnt7zP1708808410.1016/j.immuni.2006.09.011 – reference: Waddington, C. H. The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology. With an Appendix by H. Kacser (George Allen & Unwin, Ltd., 1957). – reference: KonermannSGenome-scale transcriptional activation by an engineered CRISPR-Cas9 complexNature2014517583588254942024420636 – reference: Lo SardoVInfluence of donor age on induced pluripotent stem cellsNat. Biotechnol.20173569741:CAS:528:DC%2BC28XitFWnsbnK2794180210.1038/nbt.3749 – reference: TrapnellCDefining cell types and states with single-cell genomicsGenome Res.201525149114981:CAS:528:DC%2BC2MXhs1Oitb%2FK26430159457933410.1101/gr.190595.115 – reference: SatpathyATMassively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustionNat. Biotechnol.2019379259361:CAS:528:DC%2BC1MXhsFWqt7fO31375813729916110.1038/s41587-019-0206-z – reference: LiXSmall-molecule-driven direct reprogramming of mouse fibroblasts into functional neuronsCell Stem Cell2015171952031:CAS:528:DC%2BC2MXhtFCktLbO2625320110.1016/j.stem.2015.06.003 – reference: CheowLFSingle-cell multimodal profiling reveals cellular epigenetic heterogeneityNat. Methods2016138338361:CAS:528:DC%2BC28Xhtlehu7fP2752597510.1038/nmeth.3961 – reference: ZhouQBrownJKanarekARajagopalJMeltonDAIn vivo reprogramming of adult pancreatic exocrine cells to β-cellsNature20084556276321:CAS:528:DC%2BD1cXhtF2hsbvI1875401110.1038/nature073149011918 – reference: CollombatPThe ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cellsCell20091384494621:CAS:528:DC%2BD1MXhsVChs7nO19665969279220310.1016/j.cell.2009.05.035 – reference: ChandaSGeneration of induced neuronal cells by the single reprogramming factor ASCL1Stem Cell Rep.201432822961:CAS:528:DC%2BC2cXhtFWitLjL10.1016/j.stemcr.2014.05.020 – reference: BenayounBAH3K4me3 breadth is linked to cell identity and transcriptional consistencyCell20141586736881:CAS:528:DC%2BC2cXht1ymtLjP25083876413789410.1016/j.cell.2014.06.027 – reference: BannisterAJKouzaridesTRegulation of chromatin by histone modificationsCell Res.2011213813951:CAS:528:DC%2BC3MXivVCgurc%3D21321607319342010.1038/cr.2011.22 – reference: AdachiKEsrrb unlocks silenced enhancers for reprogramming to naive pluripotencyCell Stem Cell201823266275.e61:CAS:528:DC%2BC1cXhtFCqtLbM2991014910.1016/j.stem.2018.05.020 – reference: YooASMicroRNA-mediated conversion of human fibroblasts to neuronsNature20114762282311:CAS:528:DC%2BC3MXoslymtr4%3D21753754334886210.1038/nature10323 – reference: XueYDirect conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuitsCell201315282961:CAS:528:DC%2BC3sXmvFSrtQ%3D%3D23313552355202610.1016/j.cell.2012.11.045 – reference: WangQCoBATCH for high-throughput single-cell epigenomic profilingMol. Cell201976206216.e71:CAS:528:DC%2BC1MXhs12jtb7K3147118810.1016/j.molcel.2019.07.015 – reference: QianLIn vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytesNature20124855935981:CAS:528:DC%2BC38XlslSitrY%3D22522929336910710.1038/nature11044Qian et al. demonstrated the feasibility of using in vivo direct reprogramming for heart repair. – reference: HeinrichCSox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortexStem Cell Rep.20143100010141:CAS:528:DC%2BC2cXitFOns7zE10.1016/j.stemcr.2014.10.007 – reference: ThorelFConversion of adult pancreatic α-cells to B-cells after extreme B-cell lossNature2010464114911541:CAS:528:DC%2BC3cXkt1aqtLc%3D20364121287763510.1038/nature08894 – reference: NamYJInduction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factorsDevelopment2014141426742781:CAS:528:DC%2BC2MXivFCjtA%3D%3D25344074430291610.1242/dev.114025 – reference: FuJDSrivastavaDDirect reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicineCirc. J.2015792452542574473810.1253/circj.CJ-14-1372 – reference: WhyteWAMaster transcription factors and mediator establish super-enhancers at key cell identity genesCell20131533073191:CAS:528:DC%2BC3sXlvVCrtbg%3D23582322365312910.1016/j.cell.2013.03.035 – reference: FultonDLTFCat: the curated catalog of mouse and human transcription factorsGenome Biol.20091019284633269100010.1186/gb-2009-10-3-r291:CAS:528:DC%2BD1MXksFGrtrs%3D – reference: FinkelTSignal transduction by mitochondrial oxidantsJ. Biol. Chem.2012287443444401:CAS:528:DC%2BC38XitFahurs%3D2183204510.1074/jbc.R111.271999 – reference: StuartTSatijaRIntegrative single-cell analysisNat. Rev. Genet.2019202572721:CAS:528:DC%2BC1MXmtFKjtbs%3D3069698010.1038/s41576-019-0093-7 – reference: BallasNGrunseichCLuDDSpehJCMandelGREST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesisCell20051216456571:CAS:528:DC%2BD2MXkslelsLY%3D1590747610.1016/j.cell.2005.03.013 – reference: StoneNRContext-specific transcription factor functions regulate epigenomic and transcriptional dynamics during cardiac reprogrammingCell Stem Cell20192587102.e91:CAS:528:DC%2BC1MXhtlWns7vE31271750663209310.1016/j.stem.2019.06.012 – reference: LiuYCRISPR activation screens systematically identify factors that drive neuronal fate and reprogrammingCell Stem Cell201823758771.e81:CAS:528:DC%2BC1cXhvFSqsrbO30318302621476110.1016/j.stem.2018.09.003 – reference: GuttmanMlincRNAs act in the circuitry controlling pluripotency and differentiationNature20114772953001:CAS:528:DC%2BC3MXhtFers7rL21874018317532710.1038/nature10398 – reference: LeeDSSimultaneous profiling of 3D genome structure and DNA methylation in single human cellsNat. Methods20191699910061:CAS:528:DC%2BC1MXhsleltLjE31501549676542310.1038/s41592-019-0547-z – reference: De La RossaAIn vivo reprogramming of circuit connectivity in postmitotic neocortical neuronsNat. Neurosci.2013161932002329268210.1038/nn.32991:CAS:528:DC%2BC3sXjslGkug%3D%3D – reference: MagistrettiPJAllamanIA cellular perspective on brain energy metabolism and functional imagingNeuron2015868839011:CAS:528:DC%2BC2MXpt1Snu7w%3D2599613310.1016/j.neuron.2015.03.035 – reference: WangYChemical conversion of mouse fibroblasts into functional dopaminergic neuronsExp. Cell Res.20163472832921:CAS:528:DC%2BC28XhsVWmtb7J2748585810.1016/j.yexcr.2016.07.026 – reference: ZhangLSmall molecules efficiently reprogram human astroglial cells into functional neuronsCell Stem Cell2015177357471:CAS:528:DC%2BC2MXhs1OrsbbE26481520467572610.1016/j.stem.2015.09.012 – reference: JinYThree-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neuronsNat. Biomed. Eng.201825225391:CAS:528:DC%2BC1MXhtFensr7P3094883110.1038/s41551-018-0260-8 – reference: SrivastavaDDeWittNIn vivo cellular reprogramming: the next generationCell2016166138613961:CAS:528:DC%2BC28XhsFSltL3O27610565623400710.1016/j.cell.2016.08.055 – reference: WapinskiOLRapid chromatin switch in the direct reprogramming of fibroblasts to neuronsCell Rep.201720323632471:CAS:528:DC%2BC2sXhsFOhs7nN28954238564637910.1016/j.celrep.2017.09.011 – reference: CusanovichDAA single-cell atlas of in vivo mammalian chromatin accessibilityCell201817413091324.e181:CAS:528:DC%2BC1cXhsVers7fN30078704615830010.1016/j.cell.2018.06.052 – reference: WestAPTLR signalling augments macrophage bactericidal activity through mitochondrial ROSNature20114724764801:CAS:528:DC%2BC3MXlsVShsro%3D21525932346053810.1038/nature09973 – reference: XiaoXEndogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetesCell Stem Cell2018227890.e41:CAS:528:DC%2BC1cXkslGlsw%3D%3D29304344575724910.1016/j.stem.2017.11.020 – reference: SuZNiuWLiuMLZouYZhangCLIn vivo conversion of astrocytes to neurons in the injured adult spinal cordNat. Commun.201452456943510.1038/ncomms43381:CAS:528:DC%2BC2cXmtV2is7c%3D – reference: BarbagiovanniGKMT2B is selectively required for neuronal transdifferentiation, and its loss exposes dystonia candidate genesCell Rep.20182598810011:CAS:528:DC%2BC1cXhvFyrtrrO30355503621820410.1016/j.celrep.2018.09.067 – reference: SongGDirect reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosisCell Stem Cell2016187978081:CAS:528:DC%2BC28Xjtlersr4%3D2692320110.1016/j.stem.2016.01.010 – reference: YamanakaSInduced pluripotent stem cells: past, present, and futureCell Stem Cell2012106786841:CAS:528:DC%2BC38XosFCiurc%3D2270450710.1016/j.stem.2012.05.005 – reference: RheeCMechanisms of transcription factor-mediated direct reprogramming of mouse embryonic stem cells to trophoblast stem-like cellsNucleic Acids Res.20174510103101141:CAS:528:DC%2BC1cXmtV2nu7o%3D28973471573733410.1093/nar/gkx692 – reference: KaremakerIDVermeulenMSingle-cell DNA methylation profiling: technologies and biological applicationsTrends Biotechnol.2018369529651:CAS:528:DC%2BC1cXot1Ckt7c%3D2972449510.1016/j.tibtech.2018.04.002 – reference: Iwafuchi-DoiMZaretKSPioneer transcription factors in cell reprogrammingGenes Dev.2014282679269225512556426567210.1101/gad.253443.1141:CAS:528:DC%2BC2MXhtlamu7c%3D – reference: ZhuCAn ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptomeNat. Struct. Mol. Biol.201926106310701:CAS:528:DC%2BC1MXitFWnur7L31695190723156010.1038/s41594-019-0323-x – reference: NoorN3D printing of personalized thick and perfusable cardiac patches and heartsAdv. Sci.20196190034410.1002/advs.2019003441:CAS:528:DC%2BC1MXhtFWgur7E – reference: PottSLiebJDSingle-cell ATAC-seq: strength in numbersGenome Biol.20151626294014454616110.1186/s13059-015-0737-71:CAS:528:DC%2BC28XmtVCrtrk%3D – reference: Gaspar-MaiaAMacroH2A histone variants act as a barrier upon reprogramming towards pluripotencyNat. Commun.201342346300810.1038/ncomms25821:CAS:528:DC%2BC3sXptVGmsbo%3D – reference: SoufiADonahueGZaretKSFacilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genomeCell201215199410041:CAS:528:DC%2BC38Xhs12gtbrL23159369350813410.1016/j.cell.2012.09.045 – reference: XieHYeMFengRGrafTStepwise reprogramming of B cells into macrophagesCell20041176636761:CAS:528:DC%2BD2cXkvVyhsrc%3D1516341310.1016/S0092-8674(04)00419-2 – reference: LiYTissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAsSci. Rep.201661:CAS:528:DC%2BC28XitFGjsLzF27941896515063910.1038/srep38815 – reference: HiraiHKikyoNInhibitors of suppressive histone modification promote direct reprogramming of fibroblasts to cardiomyocyte-like cellsCardiovasc. Res.20141021881901:CAS:528:DC%2BC2cXks12itLc%3D24477643395862110.1093/cvr/cvu023 – reference: TreutleinBDissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seqNature201653439139527281220492886010.1038/nature183231:CAS:528:DC%2BC28XpsVCqsb8%3DTreutlein et al. described the existence of an alternative reprogramming route in murine neuronal reprogramming using single-cell RNA-seq. – reference: TangYLiuMLZangTZhangCLDirect reprogramming rather than iPSC-based reprogramming maintains aging hallmarks in human motor neuronsFront. Mol. Neurosci.20171035929163034567677910.3389/fnmol.2017.003591:CAS:528:DC%2BC1cXisVOkur7P – reference: WelchJDHarteminkAJPrinsJFMATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamicsGenome Biol.20171828738873552527910.1186/s13059-017-1269-01:CAS:528:DC%2BC1cXitVektLfP – reference: MohamedTMARegulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regenerationCell2018173104116.e121:CAS:528:DC%2BC1cXjslOgs7w%3D29502971597378610.1016/j.cell.2018.02.014 – reference: DavisRLWeintraubHLassarABExpression of a single transfected cDNA converts fibroblasts to myoblastsCell19875198710001:CAS:528:DyaL1cXhvF2iurc%3D369066810.1016/0092-8674(87)90585-XDavis et al. demonstrated, for the first time, that the overexpression of one transcription factor could rewrite cell fate in vitro. – reference: HuXRegion-restrict astrocytes exhibit heterogeneous susceptibility to neuronal reprogrammingStem Cell Rep.2019122903041:CAS:528:DC%2BC1MXitlCktb8%3D10.1016/j.stemcr.2018.12.017 – reference: JayawardenaTMMicroRNA induced cardiac reprogramming in vivoCirc. Res.20151164184241:CAS:528:DC%2BC2MXhs12kt78%3D2535157610.1161/CIRCRESAHA.116.304510 – reference: TakahashiKYamanakaSA decade of transcription factor-mediated reprogramming to pluripotencyNat. Rev. Mol. Cell Biol.2016171831931:CAS:528:DC%2BC28Xis1artr0%3D2688300310.1038/nrm.2016.8 – reference: TakahashiKYamanakaSInduction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factorsCell20061266636761:CAS:528:DC%2BD28Xpt1aktbs%3D10.1016/j.cell.2006.07.02416904174 – reference: LoewerSLarge intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cellsNat. Genet.201042111311171:CAS:528:DC%2BC3cXhtl2jsbzE21057500304065010.1038/ng.710 – reference: BuenrostroJDIntegrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiationCell201817315351548.e161:CAS:528:DC%2BC1cXosFWhsb0%3D29706549598972710.1016/j.cell.2018.03.074 – reference: Rozenblatt-RosenOStubbingtonMJTRegevATeichmannSAThe human cell atlas: from vision to realityNature20175504514531:CAS:528:DC%2BC2sXhslajtr7M2907228910.1038/550451a – reference: BlauHMDaleyGQStem cells in the treatment of diseaseN. Engl. J. Med.2019380174817601:CAS:528:DC%2BB3cXnsFGru7c%3D3104282710.1056/NEJMra1716145 – reference: VastenhouwNLSchierAFBivalent histone modifications in early embryogenesisCurr. Opin. Cell Biol.2012243743861:CAS:528:DC%2BC38Xls1eltLs%3D22513113337257310.1016/j.ceb.2012.03.009 – reference: ParkGConversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatmentsBiomaterials2015542012121:CAS:528:DC%2BC2MXltFajsbw%3D2590705310.1016/j.biomaterials.2015.02.029 – reference: LiuZSingle-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyteNature201755110010429072293595498410.1038/nature244541:CAS:528:DC%2BC2sXhslajtr3PLiu et al. constructed the routes of iCM formation using single-cell RNA-seq and discovered the critical role of splicing factor PTBP1 during murine cardiac reprogramming. – reference: ConacoCOttoSHanJJMandelGReciprocal actions of REST and a microRNA promote neuronal identityProc. Natl Acad. Sci. USA2006103242224271:CAS:528:DC%2BD28XhslGjtLo%3D1646191810.1073/pnas.05110411031413753 – reference: JainAKLncPRESS1 Is a p53-regulated LncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56Mol. Cell2016649679811:CAS:528:DC%2BC28XitVSms7bO27912097513779410.1016/j.molcel.2016.10.039 – reference: GrandeAEnvironmental impact on direct neuronal reprogramming in vivo in the adult brainNat. Commun.201342397443310.1038/ncomms3373 – reference: HeallenTHippo pathway inhibits wnt signaling to restrain cardiomyocyte proliferation and heart sizeScience20113324584611:CAS:528:DC%2BC3MXkvValsrw%3D21512031313374310.1126/science.1199010 – reference: LiHChenGIn vivo reprogramming for CNS repair: regenerating neurons endogenous glial cellsNeuron2016917287381:CAS:528:DC%2BC28Xhtlyju7fM27537482546636410.1016/j.neuron.2016.08.004 – reference: BarkerRAParmarMStuderLTakahashiJHuman trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new eraCell Stem Cell2017215695731:CAS:528:DC%2BC2sXhslOju7vK2910001010.1016/j.stem.2017.09.014 – reference: SongKHeart repair by reprogramming non-myocytes with cardiac transcription factorsNature20124855996041:CAS:528:DC%2BC38XnvVyqsbg%3D22660318336739010.1038/nature11139 – reference: BramswigNCEpigenomic plasticity enables human pancreatic α to β cell reprogrammingJ. Clin. Invest.2013123127512841:CAS:528:DC%2BC3sXjvVyht70%3D23434589358214010.1172/JCI66514 – reference: ChengHReprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitorsNat. Commun.201671:CAS:528:DC%2BC28XhvFaht7rE27869129512133210.1038/ncomms13396 – reference: HashimotoHCardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancersCell Stem Cell2019256986.e51:CAS:528:DC%2BC1MXpsVWlt78%3D31080136675426610.1016/j.stem.2019.03.022 – reference: CliffTSDaltonSMetabolic switching and cell fate decisions: implications for pluripotency, reprogramming and developmentCurr. Opin. Genet. Dev.20174644491:CAS:528:DC%2BC2sXhtVGnsLnE28662447584206310.1016/j.gde.2017.06.008 – reference: TreutleinBReconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seqNature20145093713751:CAS:528:DC%2BC2cXotVyqtLk%3D24739965414585310.1038/nature13173 – reference: JayawardenaTMMicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytesCirc. Res.2012110146514731:CAS:528:DC%2BC38XnsVCisr8%3D22539765338062410.1161/CIRCRESAHA.112.269035 – reference: DaiPHaradaYTakamatsuTHighly efficient direct conversion of human fibroblasts to neuronal cells by chemical compoundsJ. Clin. Biochem. Nutr.2015561661701:CAS:528:DC%2BC2MXhtlKrt7vF26060345445407810.3164/jcbn.15-39 – reference: Takahashi, J. Strategies for bringing stem cell-derived dopamine neurons to the clinic: the Kyoto trial. in Progress in Brain Research 230, 213–226 (Elsevier B.V., 2017). – reference: QianHReversing a model of Parkinson’s disease with in situ converted nigral neuronsNature20205825505561:CAS:528:DC%2BB3cXht1ClsrvP32581380752145510.1038/s41586-020-2388-4 – reference: MuraokaNMiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signaturesEMBO J.201433156515811:CAS:528:DC%2BC2cXhsVWrtLrM24920580419805210.15252/embj.201387605 – reference: GascónSMasserdottiGRussoGLGötzMDirect neuronal reprogramming: achievements, hurdles, and new roads to successCell Stem Cell20172118342868686610.1016/j.stem.2017.06.0111:CAS:528:DC%2BC2sXhtFChu7vO – reference: GascónSIdentification and successful negotiation of a metabolic checkpoint in direct neuronal reprogrammingCell Stem Cell2016183964092674841810.1016/j.stem.2015.12.0031:CAS:528:DC%2BC28XhtlKrsw%3D%3DGascón et al. revealed a critical metabolic checkpoint important for successful murine neuronal reprogramming in vivo and in vitro. – reference: LiWLong-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cellsNat. Biotechnol.201432122312301:CAS:528:DC%2BC2cXhvFKlsrnK2540261310.1038/nbt.3082 – reference: FangHTGlobal H3.3 dynamic deposition defines its bimodal role in cell fate transitionNat. Commun.2018929670118590663210.1038/s41467-018-03904-71:CAS:528:DC%2BC1cXhtFCjurrE – reference: MahataBSingle-cell RNA sequencing reveals T helper cells synthesizing steroids De Novo to contribute to immune homeostasisCell Rep.20147113011421:CAS:528:DC%2BC2cXnslGnurk%3D24813893403999110.1016/j.celrep.2014.04.011 – reference: SmithZDSindhuCMeissnerAMolecular features of cellular reprogramming and developmentNat. Rev. Mol. Cell Biol.2016171391541:CAS:528:DC%2BC28Xis1artrg%3D26883001 – reference: BaoXThe p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promotersCell Res.20152580921:CAS:528:DC%2BC2cXitFyhurbN2551234110.1038/cr.2014.165 – reference: BuganimYFaddahDAJaenischRMechanisms and models of somatic cell reprogrammingNat. Rev. Genet.2013144274391:CAS:528:DC%2BC3sXnslahsbk%3D23681063406015010.1038/nrg3473 – reference: ChakrabortySA CRISPR/Cas9-based system for reprogramming cell lineage specificationStem Cell Rep.201439409471:CAS:528:DC%2BC2cXhvVWms7fN10.1016/j.stemcr.2014.09.013 – reference: CaoJJoint profiling of chromatin accessibility and gene expression in thousands of single cellsScience2018361138013851:CAS:528:DC%2BC1cXhslOrur3I30166440657101310.1126/science.aau0730 – reference: MacoskoEZHighly parallel genome-wide expression profiling of individual cells using nanoliter dropletsCell2015161120212141:CAS:528:DC%2BC2MXpt1Sgt7o%3D26000488448113910.1016/j.cell.2015.05.002 – reference: RouauxCArlottaPDirect lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivoNat. Cell Biol.2013152142211:CAS:528:DC%2BC3sXhtFSnt7s%3D23334497411859110.1038/ncb2660 – reference: TrokovicRWeltnerJNoisaPRaivioTOtonkoskiTCombined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cellsStem Cell Res.2015152542622609615210.1016/j.scr.2015.06.001 – reference: ColasanteGRapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogrammingCell Stem Cell2015177197341:CAS:528:DC%2BC2MXhslGltbnL2652672610.1016/j.stem.2015.09.002 – reference: CirilloLAOpening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4Mol. Cell200292792891:CAS:528:DC%2BD38XhvFKhu7o%3D1186460210.1016/S1097-2765(02)00459-8 – reference: HorisawaKThe dynamics of transcriptional activation by hepatic reprogramming factorsMol. Cell202079660676.e81:CAS:528:DC%2BB3cXhsFGit7%2FK3275559310.1016/j.molcel.2020.07.012 – reference: ZhouHDicksonMEKimMSBassel-DubyROlsonENAkt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytesProc. Natl Acad. Sci. USA201511211864118691:CAS:528:DC%2BC2MXhsVOmtb3P2635412110.1073/pnas.15162371124586885 – reference: LiXMitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cellsCan. J. Physiol. Pharmacol.20169524725227925481533649210.1139/cjpp-2016-05151:CAS:528:DC%2BC28XitVajsrvO – reference: HuangPInduction of functional hepatocyte-like cells from mouse fibroblasts by defined factorsNature20114753863891:CAS:528:DC%2BC3MXmsFyqsro%3D2156249210.1038/nature10116 – reference: WangLStoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogrammingCirc. Res.20151162372442541613310.1161/CIRCRESAHA.116.3055471:CAS:528:DC%2BC2MXpslGruw%3D%3D – reference: WangLImproved generation of induced cardiomyocytes using a polycistronic construct expressing optimal ratio of Gata4, Mef2c and Tbx5J. Vis. Exp.201510553426 – reference: BernsteinBEA bivalent chromatin structure marks key developmental genes in embryonic stem cellsCell20061253153261:CAS:528:DC%2BD28Xkt1Oqur4%3D1663081910.1016/j.cell.2006.02.041 – reference: EraslanGAvsecŽGagneurJTheisFJDeep learning: new computational modelling techniques for genomicsNat. Rev. Genet.2019203894031:CAS:528:DC%2BC1MXosFKgsr4%3D3097180610.1038/s41576-019-0122-6 – reference: TorperOGeneration of induced neurons via direct conversion in vivoProc. Natl Acad. Sci. USA2013110703870431:CAS:528:DC%2BC3sXot1Ghtb4%3D2353023510.1073/pnas.13038291103637783 – reference: LuginbühlJSivaramanDMShinJWThe essentiality of non-coding RNAs in cell reprogrammingNoncoding RNA Res.20172748230159423609640310.1016/j.ncrna.2017.04.002 – reference: MagnussonJPA latent neurogenic program in astrocytes regulated by Notch signaling in the mouseScience20143462372411:CAS:528:DC%2BC2cXhs12nsLbM2530162810.1126/science.346.6206.237 – reference: CaoNConversion of human fibroblasts into functional cardiomyocytes by small moleculesScience2016352121612201:CAS:528:DC%2BC28XoslOqs7Y%3D2712723910.1126/science.aaf1502 – reference: Dal-PraSHodgkinsonCPMirotsouMKirsteIDzauVJDemethylation of H3K27 is essential for the induction of direct cardiac reprogramming by MIR ComboCirculation Res.2017120140314131:CAS:528:DC%2BC2sXmslaqtr8%3D2820971810.1161/CIRCRESAHA.116.308741 – reference: La MannoGRNA velocity of single cellsNature201856049449830089906613080110.1038/s41586-018-0414-61:CAS:528:DC%2BC1cXhsVynsrrL – reference: XinMHippo pathway effector Yap promotes cardiac regenerationProc. Natl Acad. Sci. USA201311013839138441:CAS:528:DC%2BC3sXhtlKqu7jO2391838810.1073/pnas.13131921103752208 – reference: ZarbinMSuginoITownes-AndersonEConcise review: update on retinal pigment epithelium transplantation for age-related macular degenerationStem Cell Transl. Med.2019846647710.1002/sctm.18-0282 – reference: LiHChenGIn vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cellsNeuron2016917287381:CAS:528:DC%2BC28Xhtlyju7fM27537482546636410.1016/j.neuron.2016.08.004 – reference: SekiyaSSuzukiADirect conversion of mouse fibroblasts to hepatocyte-like cells by defined factorsNature20114753903931:CAS:528:DC%2BC3MXotlClsLk%3D2171629110.1038/nature10263 – reference: KiselevVYAndrewsTSHembergMChallenges in unsupervised clustering of single-cell RNA-seq dataNat. Rev. Genet.2019202732821:CAS:528:DC%2BC1MXlvFSit7s%3D3061734110.1038/s41576-018-0088-9 – reference: BuffoAOrigin and progeny of reactive gliosis: a source of multipotent cells in the injured brainProc. Natl Acad. Sci. USA2008105358135861:CAS:528:DC%2BD1cXjtlars7k%3D1829956510.1073/pnas.07090021052265175 – reference: SpektorRTippensNDMimosoCASolowayPDMethyl-ATAC-seq measures DNA methylation at accessible chromatinGenome Res.2019299699771:CAS:528:DC%2BC1MXhs1GrsrrN31160376658105210.1101/gr.245399.118 – reference: ZhengXMetabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylationeLife2016527282387496319810.7554/eLife.133741:CAS:528:DC%2BC1cXmsFams7c%3D – reference: GuoZIn vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease modelCell Stem Cell2014141882021:CAS:528:DC%2BC3sXhvFyktrzJ2436088310.1016/j.stem.2013.12.001 – reference: ZhouHZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expressionGenes Dev.201731177017831:CAS:528:DC%2BC2sXhslCnsLvI28982760566667510.1101/gad.305482.117 – reference: AngCEThe novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorderseLife2019830628890638084110.7554/eLife.41770 – reference: NaganoTCell-cycle dynamics of chromosomal organization at single-cell resolutionNature201754761671:CAS:528:DC%2BC2sXhtFaqt7bN28682332556781210.1038/nature23001 – reference: YaoKRestoration of vision after de novo genesis of rod photoreceptors in mammalian retinasNature20185604844881:CAS:528:DC%2BC1cXhsFahsbrM30111842610741610.1038/s41586-018-0425-3 – reference: HenikoffSSmithMMHistone variants and epigeneticsCold Spring Harb. Perspect. Biol.20157a01936425561719429216210.1101/cshperspect.a0193641:CAS:528:DC%2BC28XhsFOqu7zF – reference: ZhengGXYMassively parallel digital transcriptional profiling of single cellsNat. Commun.201781:CAS:528:DC%2BC2sXht1WlsLo%3D28091601524181810.1038/ncomms14049 – reference: LiuYAscl1 converts dorsal midbrain astrocytes into functional neurons in vivoJ. Neurosci.201535933693551:CAS:528:DC%2BC2MXhtFymtb%2FN26109658660519310.1523/JNEUROSCI.3975-14.2015 – reference: TangFmRNA-Seq whole-transcriptome analysis of a single cellNat. Methods200963773821:CAS:528:DC%2BD1MXktVKgu78%3D1934998010.1038/nmeth.1315 – reference: MathisonM‘Triplet’ polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectorsJ. Thorac. Cardiovasc. Surg.201414816561664.e21:CAS:528:DC%2BC2cXmvVWgtr0%3D2475533210.1016/j.jtcvs.2014.03.033 – reference: DingerMELong noncoding RNAs in mouse embryonic stem cell pluripotency and differentiationGenome Res.200818143314451:CAS:528:DC%2BD1cXhtV2qsr3N18562676252770410.1101/gr.078378.108 – reference: KulessaHFramptonJGrafTGATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblastsGenes Dev.19959125012621:CAS:528:DyaK2MXlvFShsLg%3D775894910.1101/gad.9.10.1250 – reference: MiyamotoKDirect in vivo reprogramming with sendai virus vectors improves cardiac function after myocardial infarctionCell Stem Cell20182291103.e51:CAS:528:DC%2BC2sXitVehtLzM2927614110.1016/j.stem.2017.11.010 – reference: HuangPDirect reprogramming of human fibroblasts to functional and expandable hepatocytesCell Stem Cell2014143703841:CAS:528:DC%2BC2cXjsVWmtr0%3D2458292710.1016/j.stem.2014.01.003 – reference: LiWIn vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypeseLife201431846 – reference: AbernathyDGMicroRNAs induce a permissive chromatin environment that enables neuronal subtype-specific reprogramming of adult human fibroblastsCell Stem Cell201721332348.e91:CAS:528:DC%2BC2sXhsVOhu7%2FI28886366567923910.1016/j.stem.2017.08.002 – reference: GrünDSingle-cell messenger RNA sequencing reveals rare intestinal cell typesNature20155252512552628746710.1038/nature149661:CAS:528:DC%2BC2MXhtlKlu7zJ – reference: YuCLiuKTangSDingSChemical approaches to cell reprogrammingCurr. Opin. Genet. Dev.201428505625461450474724410.1016/j.gde.2014.09.0061:CAS:528:DC%2BC2cXhs1Gms7nF – reference: ZhouYBmi1 is a key epigenetic barrier to direct cardiac reprogrammingCell Stem Cell2016183823951:CAS:528:DC%2BC28XivFyiur4%3D26942853477917810.1016/j.stem.2016.02.003 – reference: BuganimYSingle-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phaseCell2012150120912221:CAS:528:DC%2BC38XhtlKrs7vM22980981345765610.1016/j.cell.2012.08.023 – reference: CahanPCellNet: network biology applied to stem cell engineeringCell20141589039151:CAS:528:DC%2BC2cXhtlymtLnK25126793423368010.1016/j.cell.2014.07.020 – reference: HumeresCFrangogiannisNGFibroblasts in the infarcted, remodeling, and failing heartJACC Basic. Transl. Sci.2019444946731312768661000210.1016/j.jacbts.2019.02.006 – reference: NiuWIn vivo reprogramming of astrocytes to neuroblasts in the adult brainNat. Cell Biol.201315116411751:CAS:528:DC%2BC3sXhsVyqurrI2405630210.1038/ncb2843 – reference: IedaMDirect reprogramming of fibroblasts into functional cardiomyocytes by defined factorsCell20101423753861:CAS:528:DC%2BC3cXpvFKrsbY%3D20691899291984410.1016/j.cell.2010.07.002Idea et al. identified reprogramming factors that could reprogramme mouse cardiac fibroblasts to cardiomyocyte-like cells in vitro. – volume: 161 start-page: 555 year: 2015 ident: 335_CR84 publication-title: Cell doi: 10.1016/j.cell.2015.03.017 – volume: 68 start-page: 1023 year: 2017 ident: 335_CR106 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.11.030 – volume: 13 start-page: 833 year: 2016 ident: 335_CR174 publication-title: Nat. Methods doi: 10.1038/nmeth.3961 – volume: 3 start-page: 1000 year: 2014 ident: 335_CR37 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2014.10.007 – volume: 108 start-page: 7838 year: 2011 ident: 335_CR99 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1103113108 – volume: 161 start-page: 1202 year: 2015 ident: 335_CR150 publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 12 start-page: 290 year: 2019 ident: 335_CR49 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2018.12.017 – volume: 148 start-page: 1656 year: 2014 ident: 335_CR94 publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2014.03.033 – volume: 151 start-page: 994 year: 2012 ident: 335_CR88 publication-title: Cell doi: 10.1016/j.cell.2012.09.045 – volume: 20 start-page: 273 year: 2019 ident: 335_CR152 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0088-9 – volume: 347 start-page: 283 year: 2016 ident: 335_CR69 publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2016.07.026 – volume: 37 start-page: 547 year: 2019 ident: 335_CR158 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0071-9 – volume: 20 start-page: 389 year: 2019 ident: 335_CR175 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0122-6 – volume: 116 start-page: 418 year: 2014 ident: 335_CR32 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.304510 – volume: 125 start-page: 315 year: 2006 ident: 335_CR112 publication-title: Cell doi: 10.1016/j.cell.2006.02.041 – volume: 76 start-page: 206 year: 2019 ident: 335_CR170 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.07.015 – volume: 37 start-page: 925 year: 2019 ident: 335_CR185 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0206-z – volume: 79 start-page: 660 year: 2020 ident: 335_CR95 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.07.012 – volume: 472 start-page: 476 year: 2011 ident: 335_CR146 publication-title: Nature doi: 10.1038/nature09973 – volume: 352 start-page: 1216 year: 2016 ident: 335_CR68 publication-title: Science doi: 10.1126/science.aaf1502 – volume: 14 start-page: 370 year: 2014 ident: 335_CR105 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.01.003 – volume: 21 start-page: 569 year: 2017 ident: 335_CR28 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.09.014 – volume: 380 start-page: 1748 year: 2019 ident: 335_CR30 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1716145 – volume: 6 year: 2016 ident: 335_CR147 publication-title: Sci. Rep. doi: 10.1038/srep23017 – volume: 18 start-page: 797 year: 2016 ident: 335_CR39 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.01.010 – volume: 15 start-page: 254 year: 2015 ident: 335_CR82 publication-title: Stem Cell Res. doi: 10.1016/j.scr.2015.06.001 – ident: 335_CR1 – volume: 192 start-page: 500 year: 2019 ident: 335_CR65 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.11.034 – volume: 42 start-page: 1113 year: 2010 ident: 335_CR130 publication-title: Nat. Genet. doi: 10.1038/ng.710 – volume: 117 start-page: 663 year: 2004 ident: 335_CR15 publication-title: Cell doi: 10.1016/S0092-8674(04)00419-2 – volume: 20 start-page: 3236 year: 2017 ident: 335_CR96 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.011 – volume: 509 start-page: 371 year: 2014 ident: 335_CR167 publication-title: Nature doi: 10.1038/nature13173 – volume: 475 start-page: 390 year: 2011 ident: 335_CR21 publication-title: Nature doi: 10.1038/nature10263 – volume: 16 start-page: 999 year: 2019 ident: 335_CR190 publication-title: Nat. Methods doi: 10.1038/s41592-019-0547-z – volume: 548 start-page: 103 year: 2017 ident: 335_CR9 publication-title: Nature doi: 10.1038/nature23283 – volume: 64 start-page: 967 year: 2016 ident: 335_CR135 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.10.039 – volume: 547 start-page: 61 year: 2017 ident: 335_CR169 publication-title: Nature doi: 10.1038/nature23001 – volume: 18 year: 2017 ident: 335_CR173 publication-title: Genome Biol. doi: 10.1186/s13059-017-1269-0 – volume: 9 start-page: 279 year: 2002 ident: 335_CR86 publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00459-8 – volume: 91 start-page: 728 year: 2016 ident: 335_CR10 publication-title: Neuron doi: 10.1016/j.neuron.2016.08.004 – volume: 121 start-page: 645 year: 2005 ident: 335_CR125 publication-title: Cell doi: 10.1016/j.cell.2005.03.013 – volume: 4 start-page: 449 year: 2019 ident: 335_CR45 publication-title: JACC Basic. Transl. Sci. doi: 10.1016/j.jacbts.2019.02.006 – volume: 8 year: 2017 ident: 335_CR151 publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – volume: 126 start-page: 663 year: 2006 ident: 335_CR3 publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 25 start-page: 69 year: 2019 ident: 335_CR90 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.03.022 – volume: 10 start-page: 359 year: 2017 ident: 335_CR177 publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2017.00359 – volume: 7 start-page: 1130 year: 2014 ident: 335_CR166 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.04.011 – volume: 25 start-page: 988 year: 2018 ident: 335_CR100 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.09.067 – volume: 166 start-page: 1386 year: 2016 ident: 335_CR8 publication-title: Cell doi: 10.1016/j.cell.2016.08.055 – volume: 46 start-page: 44 year: 2017 ident: 335_CR138 publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2017.06.008 – volume: 29 start-page: 969 year: 2019 ident: 335_CR191 publication-title: Genome Res. doi: 10.1101/gr.245399.118 – volume: 16 start-page: 507 year: 2016 ident: 335_CR98 publication-title: Stem Cell Res. doi: 10.1016/j.scr.2016.02.037 – volume: 2 start-page: 74 year: 2017 ident: 335_CR120 publication-title: Noncoding RNA Res. doi: 10.1016/j.ncrna.2017.04.002 – volume: 50 year: 2018 ident: 335_CR149 publication-title: Exp. Mol. Med. doi: 10.1038/s12276-018-0071-8 – volume: 582 start-page: 550 year: 2020 ident: 335_CR81 publication-title: Nature doi: 10.1038/s41586-020-2388-4 – volume: 31 start-page: 516 year: 2015 ident: 335_CR113 publication-title: Trends Genet. doi: 10.1016/j.tig.2015.07.005 – volume: 20 start-page: 3014 year: 2017 ident: 335_CR143 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.005 – volume: 32 start-page: 1223 year: 2014 ident: 335_CR43 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3082 – volume: 35 start-page: 9336 year: 2015 ident: 335_CR57 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3975-14.2015 – volume: 18 start-page: 396 year: 2016 ident: 335_CR140 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.12.003 – volume: 28 start-page: 50 year: 2014 ident: 335_CR73 publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2014.09.006 – volume: 550 start-page: 451 year: 2017 ident: 335_CR161 publication-title: Nature doi: 10.1038/550451a – volume: 25 start-page: 1013 year: 2015 ident: 335_CR66 publication-title: Cell Res. doi: 10.1038/cr.2015.99 – volume: 525 start-page: 251 year: 2015 ident: 335_CR164 publication-title: Nature doi: 10.1038/nature14966 – volume: 26 start-page: 1063 year: 2019 ident: 335_CR189 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0323-x – volume: 142 start-page: 375 year: 2010 ident: 335_CR18 publication-title: Cell doi: 10.1016/j.cell.2010.07.002 – volume: 68 start-page: 668 year: 2010 ident: 335_CR51 publication-title: Neuron doi: 10.1016/j.neuron.2010.09.009 – volume: 144 start-page: 541 year: 2017 ident: 335_CR139 publication-title: Development doi: 10.1242/dev.128389 – volume: 3 start-page: 282 year: 2014 ident: 335_CR89 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2014.05.020 – volume: 560 start-page: 494 year: 2018 ident: 335_CR160 publication-title: Nature doi: 10.1038/s41586-018-0414-6 – volume: 5 year: 2014 ident: 335_CR38 publication-title: Nat. Commun. doi: 10.1038/ncomms4338 – volume: 25 start-page: 69 year: 2013 ident: 335_CR131 publication-title: Dev. Cell doi: 10.1016/j.devcel.2013.03.002 – volume: 20 start-page: 257 year: 2019 ident: 335_CR162 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0093-7 – volume: 2 start-page: 26 year: 2012 ident: 335_CR110 publication-title: Front. Oncol. doi: 10.3389/fonc.2012.00026 – volume: 158 start-page: 903 year: 2014 ident: 335_CR12 publication-title: Cell doi: 10.1016/j.cell.2014.07.020 – volume: 51 start-page: 987 year: 1987 ident: 335_CR2 publication-title: Cell doi: 10.1016/0092-8674(87)90585-X – volume: 17 start-page: 195 year: 2015 ident: 335_CR71 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.06.003 – volume: 23 start-page: 758 year: 2018 ident: 335_CR64 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.09.003 – volume: 110 start-page: 1465 year: 2012 ident: 335_CR24 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.269035 – volume: 15 start-page: 214 year: 2013 ident: 335_CR53 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2660 – volume: 36 start-page: 952 year: 2018 ident: 335_CR184 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.04.002 – volume: 105 start-page: 53426 year: 2015 ident: 335_CR92 publication-title: J. Vis. Exp. – volume: 9 start-page: 1250 year: 1995 ident: 335_CR14 publication-title: Genes Dev. doi: 10.1101/gad.9.10.1250 – volume: 110 start-page: 7038 year: 2013 ident: 335_CR36 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1303829110 – volume: 17 start-page: 183 year: 2016 ident: 335_CR6 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.8 – volume: 475 start-page: 386 year: 2011 ident: 335_CR22 publication-title: Nature doi: 10.1038/nature10116 – volume: 45 start-page: 10978 year: 2017 ident: 335_CR165 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx754 – volume: 16 start-page: 133 year: 2015 ident: 335_CR163 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3833 – volume: 18 start-page: 1433 year: 2008 ident: 335_CR136 publication-title: Genome Res. doi: 10.1101/gr.078378.108 – volume: 103 start-page: 2422 year: 2006 ident: 335_CR126 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0511041103 – volume: 10 start-page: 1841 year: 2015 ident: 335_CR62 publication-title: Int. J. Nanomed. – volume: 507 start-page: 462 year: 2014 ident: 335_CR181 publication-title: Nature doi: 10.1038/nature13182 – volume: 8 start-page: 466 year: 2019 ident: 335_CR29 publication-title: Stem Cell Transl. Med. doi: 10.1002/sctm.18-0282 – volume: 41 start-page: D808 year: 2012 ident: 335_CR182 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1094 – volume: 105 start-page: 3581 year: 2008 ident: 335_CR50 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0709002105 – volume: 24 start-page: 374 year: 2012 ident: 335_CR111 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2012.03.009 – volume: 173 start-page: 1535 year: 2018 ident: 335_CR168 publication-title: Cell doi: 10.1016/j.cell.2018.03.074 – volume: 464 start-page: 1149 year: 2010 ident: 335_CR44 publication-title: Nature doi: 10.1038/nature08894 – volume: 152 start-page: 82 year: 2013 ident: 335_CR122 publication-title: Cell doi: 10.1016/j.cell.2012.11.045 – volume: 54 start-page: 201 year: 2015 ident: 335_CR67 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.02.029 – volume: 18 start-page: 382 year: 2016 ident: 335_CR80 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.02.003 – volume: 95 start-page: 247 year: 2016 ident: 335_CR144 publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/cjpp-2016-0515 – volume: 6 year: 2016 ident: 335_CR47 publication-title: Sci. Rep. doi: 10.1038/srep38815 – volume: 56 start-page: 130 year: 2010 ident: 335_CR142 publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/FJC.0b013e3181e74a14 – volume: 16 start-page: 991 year: 2019 ident: 335_CR187 publication-title: Nat. Methods doi: 10.1038/s41592-019-0502-z – volume: 346 start-page: 237 year: 2014 ident: 335_CR48 publication-title: Science doi: 10.1126/science.346.6206.237 – volume: 287 start-page: 4434 year: 2012 ident: 335_CR145 publication-title: J. Biol. Chem. doi: 10.1074/jbc.R111.271999 – volume: 14 start-page: 188 year: 2014 ident: 335_CR35 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.12.001 – volume: 141 start-page: 4267 year: 2014 ident: 335_CR60 publication-title: Development doi: 10.1242/dev.114025 – volume: 534 start-page: 391 year: 2016 ident: 335_CR77 publication-title: Nature doi: 10.1038/nature18323 – volume: 112 start-page: 11864 year: 2015 ident: 335_CR91 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1516237112 – volume: 5 year: 2016 ident: 335_CR137 publication-title: eLife doi: 10.7554/eLife.13374 – volume: 22 start-page: 91 year: 2018 ident: 335_CR61 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.11.010 – volume: 23 start-page: 266 year: 2018 ident: 335_CR128 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.05.020 – volume: 31 start-page: 522 year: 2012 ident: 335_CR134 publication-title: EMBO J. doi: 10.1038/emboj.2011.459 – volume: 477 start-page: 295 year: 2011 ident: 335_CR133 publication-title: Nature doi: 10.1038/nature10398 – volume: 6 start-page: 377 year: 2009 ident: 335_CR148 publication-title: Nat. Methods doi: 10.1038/nmeth.1315 – volume: 10 year: 2009 ident: 335_CR178 publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r29 – volume: 17 start-page: 139 year: 2016 ident: 335_CR7 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.6 – volume: 91 start-page: 728 year: 2016 ident: 335_CR31 publication-title: Neuron doi: 10.1016/j.neuron.2016.08.004 – volume: 153 start-page: 307 year: 2013 ident: 335_CR108 publication-title: Cell doi: 10.1016/j.cell.2013.03.035 – volume: 150 start-page: 1209 year: 2012 ident: 335_CR159 publication-title: Cell doi: 10.1016/j.cell.2012.08.023 – volume: 551 start-page: 100 year: 2017 ident: 335_CR75 publication-title: Nature doi: 10.1038/nature24454 – volume: 4 year: 2013 ident: 335_CR115 publication-title: Nat. Commun. doi: 10.1038/ncomms2582 – volume: 32 start-page: 29 year: 2016 ident: 335_CR104 publication-title: Trends Genet. doi: 10.1016/j.tig.2015.11.001 – volume: 48 start-page: 331 year: 2016 ident: 335_CR179 publication-title: Nat. Genet. doi: 10.1038/ng.3487 – volume: 485 start-page: 593 year: 2012 ident: 335_CR11 publication-title: Nature doi: 10.1038/nature11044 – volume: 14 start-page: 427 year: 2013 ident: 335_CR5 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3473 – volume: 8 year: 2019 ident: 335_CR119 publication-title: eLife doi: 10.7554/eLife.40197 – volume: 2 start-page: 522 year: 2018 ident: 335_CR46 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0260-8 – volume: 16 start-page: 193 year: 2013 ident: 335_CR52 publication-title: Nat. Neurosci. doi: 10.1038/nn.3299 – volume: 174 start-page: 1309 year: 2018 ident: 335_CR127 publication-title: Cell doi: 10.1016/j.cell.2018.06.052 – volume: 173 start-page: 104 year: 2018 ident: 335_CR153 publication-title: Cell doi: 10.1016/j.cell.2018.02.014 – volume: 79 start-page: 245 year: 2015 ident: 335_CR41 publication-title: Circ. J. doi: 10.1253/circj.CJ-14-1372 – volume: 4 start-page: 446 year: 2020 ident: 335_CR78 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-0539-4 – volume: 517 start-page: 583 year: 2014 ident: 335_CR183 publication-title: Nature doi: 10.1038/nature14136 – volume: 35 start-page: 69 year: 2017 ident: 335_CR83 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3749 – volume: 21 start-page: 381 year: 2011 ident: 335_CR97 publication-title: Cell Res. doi: 10.1038/cr.2011.22 – volume: 2016 start-page: 3162363 year: 2016 ident: 335_CR116 publication-title: Stem Cells Int. doi: 10.1155/2016/3162363 – volume: 361 start-page: 1380 year: 2018 ident: 335_CR171 publication-title: Science doi: 10.1126/science.aau0730 – volume: 476 start-page: 228 year: 2011 ident: 335_CR23 publication-title: Nature doi: 10.1038/nature10323 – volume: 21 start-page: 332 year: 2017 ident: 335_CR123 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.08.002 – volume: 463 start-page: 1035 year: 2010 ident: 335_CR20 publication-title: Nature doi: 10.1038/nature08797 – volume: 15 start-page: 1164 year: 2013 ident: 335_CR33 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2843 – volume: 22 start-page: 78 year: 2018 ident: 335_CR54 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.11.020 – volume: 177 start-page: 1873 year: 2019 ident: 335_CR172 publication-title: Cell doi: 10.1016/j.cell.2019.05.006 – volume: 560 start-page: 484 year: 2018 ident: 335_CR40 publication-title: Nature doi: 10.1038/s41586-018-0425-3 – volume: 138 start-page: 449 year: 2009 ident: 335_CR55 publication-title: Cell doi: 10.1016/j.cell.2009.05.035 – volume: 33 start-page: 1565 year: 2014 ident: 335_CR121 publication-title: EMBO J. doi: 10.15252/embj.201387605 – volume: 25 start-page: 485 year: 2011 ident: 335_CR102 publication-title: Genes Dev. doi: 10.1101/gad.2019811 – volume: 5 start-page: 763 year: 2015 ident: 335_CR180 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2015.09.016 – volume: 28 start-page: 2679 year: 2014 ident: 335_CR85 publication-title: Genes Dev. doi: 10.1101/gad.253443.114 – volume: 1 start-page: 16071 year: 2016 ident: 335_CR74 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.71 – volume: 45 start-page: 10103 year: 2017 ident: 335_CR109 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx692 – volume: 8 year: 2019 ident: 335_CR129 publication-title: eLife doi: 10.7554/eLife.41770 – volume: 25 start-page: 87 year: 2019 ident: 335_CR13 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.06.012 – volume: 56 start-page: 166 year: 2015 ident: 335_CR70 publication-title: J. Clin. Biochem. Nutr. doi: 10.3164/jcbn.15-39 – volume: 332 start-page: 458 year: 2011 ident: 335_CR156 publication-title: Science doi: 10.1126/science.1199010 – volume: 16 start-page: 119 year: 2015 ident: 335_CR26 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.01.013 – volume: 9 year: 2018 ident: 335_CR117 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03904-7 – volume: 485 start-page: 599 year: 2012 ident: 335_CR19 publication-title: Nature doi: 10.1038/nature11139 – volume: 102 start-page: 188 year: 2014 ident: 335_CR107 publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvu023 – volume: 455 start-page: 627 year: 2008 ident: 335_CR17 publication-title: Nature doi: 10.1038/nature07314 – volume: 25 start-page: 80 year: 2015 ident: 335_CR132 publication-title: Cell Res. doi: 10.1038/cr.2014.165 – volume: 16 year: 2015 ident: 335_CR186 publication-title: Genome Biol. doi: 10.1186/s13059-015-0737-7 – volume: 116 start-page: 418 year: 2015 ident: 335_CR25 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.304510 – volume: 4 year: 2013 ident: 335_CR34 publication-title: Nat. Commun. doi: 10.1038/ncomms3373 – volume: 155 start-page: 621 year: 2013 ident: 335_CR87 publication-title: Cell doi: 10.1016/j.cell.2013.09.028 – volume: 7 year: 2016 ident: 335_CR118 publication-title: Nat. Commun. doi: 10.1038/ncomms13396 – volume: 14 start-page: 263 year: 2017 ident: 335_CR188 publication-title: Nat. Methods doi: 10.1038/nmeth.4155 – volume: 46 start-page: 73 year: 2018 ident: 335_CR124 publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.06.007 – volume: 25 start-page: 731 year: 2006 ident: 335_CR16 publication-title: Immunity doi: 10.1016/j.immuni.2006.09.011 – volume: 17 start-page: 719 year: 2015 ident: 335_CR58 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.09.002 – volume: 21 start-page: 18 year: 2017 ident: 335_CR42 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.06.011 – volume: 123 start-page: 1275 year: 2013 ident: 335_CR56 publication-title: J. Clin. Invest. doi: 10.1172/JCI66514 – volume: 7 start-page: a019364 year: 2015 ident: 335_CR114 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a019364 – volume: 110 start-page: 13839 year: 2013 ident: 335_CR154 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1313192110 – volume: 158 start-page: 673 year: 2014 ident: 335_CR101 publication-title: Cell doi: 10.1016/j.cell.2014.06.027 – volume: 25 start-page: 1491 year: 2015 ident: 335_CR157 publication-title: Genome Res. doi: 10.1101/gr.190595.115 – volume: 25 start-page: 149 year: 2019 ident: 335_CR76 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.05.020 – volume: 10 start-page: 678 year: 2012 ident: 335_CR4 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.05.005 – volume: 120 start-page: 1403 year: 2017 ident: 335_CR103 publication-title: Circulation Res. doi: 10.1161/CIRCRESAHA.116.308741 – volume: 6 start-page: 1900344 year: 2019 ident: 335_CR79 publication-title: Adv. Sci. doi: 10.1002/advs.201900344 – volume: 86 start-page: 883 year: 2015 ident: 335_CR141 publication-title: Neuron doi: 10.1016/j.neuron.2015.03.035 – volume: 550 start-page: 260 year: 2017 ident: 335_CR155 publication-title: Nature doi: 10.1038/nature24045 – volume: 17 start-page: 735 year: 2015 ident: 335_CR72 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.09.012 – volume: 31 start-page: 1770 year: 2017 ident: 335_CR176 publication-title: Genes Dev. doi: 10.1101/gad.305482.117 – ident: 335_CR27 doi: 10.1016/bs.pbr.2016.11.004 – volume: 3 start-page: 1846 year: 2014 ident: 335_CR59 publication-title: eLife – volume: 3 start-page: 940 year: 2014 ident: 335_CR63 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2014.09.013 – volume: 116 start-page: 237 year: 2015 ident: 335_CR93 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.305547 |
| SSID | ssj0016175 |
| Score | 2.705465 |
| SecondaryResourceType | review_article |
| Snippet | The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 410 |
| SubjectTerms | 631/532 631/532/2435 Animals Biochemistry Bioengineering Biomedical and Life Sciences Cancer Research Cardiomyocytes Cell Biology Cell Differentiation - genetics Cell Differentiation - physiology Cell fate Cell metabolism Cell research Cell Transdifferentiation - genetics Cell Transdifferentiation - physiology Cellular Reprogramming - genetics Cellular Reprogramming - physiology Developmental Biology Epigenesis, Genetic - genetics Epigenetics Fibroblasts Genetic aspects Humans Life Sciences Maturation Medicine Metabolism Methods Molecular modelling Non-coding RNA Pluripotency Review Article Somatic cells Stem Cells Therapeutic applications Transcription factors Transdifferentiation Translation |
| Title | Direct cell reprogramming: approaches, mechanisms and progress |
| URI | https://link.springer.com/article/10.1038/s41580-021-00335-z https://www.ncbi.nlm.nih.gov/pubmed/33619373 https://www.proquest.com/docview/2532421863 https://www.proquest.com/docview/2492661511 https://pubmed.ncbi.nlm.nih.gov/PMC8161510 |
| Volume | 22 |
| WOSCitedRecordID | wos000620415800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDRAvfIwBgTEFhMQDi5bEiePwABrTJpBYVZUP9c1ybAcq0XQsLRL767lz3I5UYi-8-MVnJfad786-8-8AXiguSoV2PDJc6CjjmYmESbOojqsyVVWNLoLj9MdiMBDjcTn0F26tT6tc6kSnqM1M0x35QZqT6U8EZ2_PfkZUNYqiq76ExgZsEUpC6lL3hqsoAlrn3L0uKvDIHBepfzQTM3HQouEScUQJClTOLI8ueoZpXT3_ZZ_WcyfXAqjOLp3c-d8Z3YXb3iMNDzsRugfXbLMNN7oalb-34eapj77fhzedfgzpsj8kNEyX2jXF33odLrHJbbsfTi09J5600zZUjQkdHSrUHfhycvz56H3k6y9EmmfJPLJ1mTBh8ESlsorrWGd1xWtheFyn1haGl1mpKsYqYzPUkiqJVa7LWmijmUl1zB7AZjNr7CMITZlbVTIrKhSHKinQSxJ4-FYqzwuVpzqAZLn4UntwcqqR8UO6IDkTsmOYRIZJxzB5EcCr1ZizDprjSurnxFNJmBcNJdV8U4u2lR8-jeQhJ8x6LpgI4KUnqmf4ea38GwWcBMFk9Sh3e5S4KXW_e8lz6ZVCKy8ZHsCzVTeNpES3xs4WSEMAjuRlJgE87CRtNTnG8LTLChxd9GRwRUBQ4f2eZvLdQYYLcuyTOID9pbRe_ta_1-zx1bN4ArdSt4HoTmoXNufnC_sUrutf80l7vgcbxegrtePCtQJbcZTswda748FwtOe2KraD4ekf3Ec-mA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8rzwKK9AgYBAHKjVJE4cBwlQVai66naFSpF6M47twEpstjS7oPZH8RvxOI-SleitB84eJ7H9zYwnHn8D8Fwynknrx4lmXJGYxZpwHcWkCPIsknlhtwhupYfpaMQPDrKPS_C7vQuDaZWtTXSGWk8V_iNfjxJ0_SFn9N3hD4JVo_B0tS2hUcNixxz_siFb9Wbw3q7viyja-rC_uU2aqgJEsTicEVNkIeXaxgkyzpkKVFzkrOCaBUVkTKpZFmcypzTXJra6L8NAJioruNKK6kgF1D73AlxEJjvUKL7ZpZRgqJC420ypDdGDNGou6QSUr1fWUfKAYEIElk9LyEnPES66g7_84WKu5sKBrfODWzf-txm8CdebHbe_UavILVgy5QpcrmtwHq_Ald0mu-A2vK3tv4-HGT6yfbrUtYmdhtd-y71uqjV_YvC69LiaVL4ste_krMO4A5_PZRx3YbmcluY--DpLjMyo4bmFex6mdhfIU86lTJJUJpHyIGwXW6iGfB1rgHwXLgmAclEDRFiACAcQceLBq67PYU09cqb0M8SQQE6PEpOGvsp5VYnBpz2xwZCTn3HKPXjZCBVT-3olmzsYdhBIA9aTXO1JWqOj-s0txkRj9CpxCjAPnnbN2BMT-UoznVsZJKjEXXTowb0a2d3gKLXRPE1t77SH-U4AqdD7LeX4m6NE5xi4hIEHa612nH7Wv-fswdmjeAJXt_d3h2I4GO08hGuRU178_7YKy7OjuXkEl9TP2bg6euzMgA9fzltr_gBlhpkk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVRceJRXoEBAIA402iTOw0ECVGhXrFpWqxak3oxjO7ASmy3NLqj9afw6ZvIqWYneeuDscRLb84xnvgF4JiOeSLTjjo64coIo0A7XfuBkbpr4Ms3QRShPei8ejfjhYTJegd9NLQylVTY6sVTUeqboH3nfD8n0ezxi_axOixhvD94e_XCogxTdtDbtNCoW2TUnvzB8K14Pt_Gsn_v-YOfT-w9O3WHAUVHgzR2TJR7jGmMGGaSRclWQpVHGdeRmvjGxjpIgkSljqTYB6gHpuTJUScaVVkz7ymX43EuwGqOTEfRg9d3OaLzf3mGgbxCWtU0xBuxu7NclOy7j_QLNJncdSo-gZmqhc9oxi8vG4S_ruJy5uXR9W1rFwfX_eT9vwLXaF7e3KuG5CSsmX4crVXfOk3VY-1jnHdyCN5VlsOmawyYc0DKpbYpb8spuUNlNsWlPDRVST4ppYctc2yUdmpLb8PlC1nEHevksN_fA1kloZMIMT1EQUi9G_5DHnEsZhrEMfWWB1xy8UDUsO3UH-S7K9ADGRcUsAplFlMwiTi142c45qkBJzqV-SvwkCO0jp3P-KhdFIYYH-2IrIrT-iDNuwYuaKJvh65WsqzNwEQQQ1qHc6FCiOlLd4YbfRK0OC3HGbBY8aYdpJqX45Wa2QBqCriT_2rPgbsXl7eIYwzifxTg77vB_S0Ag6d2RfPKtBEvnFNJ4rgWbjaScfda_9-z--at4DGsoLGJvONp9AFf9Uo7px9wG9ObHC_MQLquf80lx_KjWCTZ8uWix-QMyvqOC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+cell+reprogramming%3A+approaches%2C+mechanisms+and+progress&rft.jtitle=Nature+reviews.+Molecular+cell+biology&rft.au=Wang%2C+Haofei&rft.au=Yang%2C+Yuchen&rft.au=Liu%2C+Jiandong&rft.au=Li%2C+Qian&rft.date=2021-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-0072&rft.eissn=1471-0080&rft.volume=22&rft.issue=6&rft.spage=410&rft.epage=424&rft_id=info:doi/10.1038%2Fs41580-021-00335-z&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0072&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0072&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0072&client=summon |