Direct cell reprogramming: approaches, mechanisms and progress

The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature reviews. Molecular cell biology Ročník 22; číslo 6; s. 410 - 424
Hlavní autoři: Wang, Haofei, Yang, Yuchen, Liu, Jiandong, Qian, Li
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.06.2021
Nature Publishing Group
Témata:
ISSN:1471-0072, 1471-0080, 1471-0080
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies. Direct reprogramming converts cells from one lineage into cells of another without going through an intermediary pluripotent state. This Review describes our current understanding of the molecular mechanisms underlying direct reprogramming as well as the progress in improving its efficiency and the maturation of reprogrammed cells, and the challenges associated with its translational applications.
AbstractList The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies.
The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies. Direct reprogramming converts cells from one lineage into cells of another without going through an intermediary pluripotent state. This Review describes our current understanding of the molecular mechanisms underlying direct reprogramming as well as the progress in improving its efficiency and the maturation of reprogrammed cells, and the challenges associated with its translational applications.
The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies. Direct reprogramming converts cells from one lineage into cells of another without going through an intermediary pluripotent state. This Review describes our current understanding of the molecular mechanisms underlying direct reprogramming as well as the progress in improving its efficiency and the maturation of reprogrammed cells, and the challenges associated with its translational applications.
The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies.The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional views on cell identity and cell fate determination. Direct reprogramming (also known as transdifferentiation) refers to cell fate conversion without transitioning through an intermediary pluripotent state. Given that the number of cell types that can be generated by direct reprogramming is rapidly increasing, it has become a promising strategy to produce functional cells for therapeutic purposes. This Review discusses the evolution of direct reprogramming from a transcription factor-based method to a small-molecule-driven approach, the recent progress in enhancing reprogrammed cell maturation, and the challenges associated with in vivo direct reprogramming for translational applications. It also describes our current understanding of the molecular mechanisms underlying direct reprogramming, including the role of transcription factors, epigenetic modifications, non-coding RNAs, and the function of metabolic reprogramming, and highlights novel insights gained from single-cell omics studies.
Audience Academic
Author Qian, Li
Liu, Jiandong
Wang, Haofei
Yang, Yuchen
AuthorAffiliation 1 Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
2 McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
AuthorAffiliation_xml – name: 1 Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
– name: 2 McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
Author_xml – sequence: 1
  givenname: Haofei
  orcidid: 0000-0001-8914-442X
  surname: Wang
  fullname: Wang, Haofei
  organization: Department of Pathology and Laboratory Medicine, University of North Carolina, McAllister Heart Institute, University of North Carolina
– sequence: 2
  givenname: Yuchen
  surname: Yang
  fullname: Yang, Yuchen
  organization: Department of Pathology and Laboratory Medicine, University of North Carolina, McAllister Heart Institute, University of North Carolina
– sequence: 3
  givenname: Jiandong
  surname: Liu
  fullname: Liu, Jiandong
  organization: Department of Pathology and Laboratory Medicine, University of North Carolina, McAllister Heart Institute, University of North Carolina
– sequence: 4
  givenname: Li
  orcidid: 0000-0001-7614-5618
  surname: Qian
  fullname: Qian, Li
  email: li_qian@med.unc.edu
  organization: Department of Pathology and Laboratory Medicine, University of North Carolina, McAllister Heart Institute, University of North Carolina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33619373$$D View this record in MEDLINE/PubMed
BookMark eNp9kslq3TAUhkVJaYb2Bboohm4aqFNNluUuAiGdAoFCh7WQpWNfBVu6lezS5ukj52boDSVoIR3p-39xhn2044MHhF4SfEQwk-8SJ5XEJaakxJixqrx8gvYIr5dQ4p27c0130X5KFxgTQerqGdplTJCG1WwPHX9wEcxUGBiGIsI6hj7qcXS-f1_odQ61WUF6W4xgVtq7NKZCe1tcc5DSc_S000OCFzf7Afr56eOP0y_l-dfPZ6cn56URnEwldA1h0tZEaN4Kgw3vWtFJK3BHAWorGt7olrHWArcWNMG6Mk0njTXMUoPZATre-K7ndgRrwE9RD2od3ajjXxW0U9sv3q1UH34rmVOuyGLw5sYghl8zpEmNLi1Jaw9hToryhooFJRl9_QC9CHP0OT1FK0Y5JVKwe6rXAyjnu5D_NYupOhEiY0Iymamj_1B5WRidye3sXL7fEhxuCTIzwZ-p13NK6uz7t2321b9FuavGbXczIDeAiSGlCJ0ybtKTC0uN3KAIVssgqc0gqTxI6nqQ1GWW0gfSW_dHRWwjShn2PcT7yj2iugLwPtoP
CitedBy_id crossref_primary_10_1002_advs_202412548
crossref_primary_10_1007_s13752_024_00477_1
crossref_primary_10_1073_pnas_2119038119
crossref_primary_10_1111_febs_16930
crossref_primary_10_1007_s11033_022_07913_0
crossref_primary_10_1007_s13770_025_00719_8
crossref_primary_10_1038_s41392_024_01809_0
crossref_primary_10_1126_sciimmunol_add4817
crossref_primary_10_1186_s13046_025_03501_9
crossref_primary_10_3389_fcell_2022_929256
crossref_primary_10_3390_neuroglia6020020
crossref_primary_10_1186_s12967_024_06060_3
crossref_primary_10_3390_cells12020321
crossref_primary_10_3390_ijms251910615
crossref_primary_10_1016_j_stem_2023_03_001
crossref_primary_10_1016_j_kint_2024_07_028
crossref_primary_10_1038_s41580_021_00380_8
crossref_primary_10_1186_s12943_023_01753_7
crossref_primary_10_1093_nargab_lqab100
crossref_primary_10_3390_cells11091404
crossref_primary_10_3390_ijms231911941
crossref_primary_10_1371_journal_pone_0324179
crossref_primary_10_1016_j_celrep_2024_114170
crossref_primary_10_32604_biocell_2022_018432
crossref_primary_10_1016_j_tibs_2023_04_005
crossref_primary_10_1126_sciimmunol_abg5539
crossref_primary_10_1038_s41467_024_47315_3
crossref_primary_10_1002_adfm_202410910
crossref_primary_10_1016_j_bioactmat_2024_05_011
crossref_primary_10_3390_ijms25063268
crossref_primary_10_1016_j_bioactmat_2023_07_025
crossref_primary_10_3390_pharmaceutics14040711
crossref_primary_10_1101_gr_279955_124
crossref_primary_10_1038_s41556_022_00943_7
crossref_primary_10_1002_ctm2_70417
crossref_primary_10_1208_s12248_022_00692_3
crossref_primary_10_3390_biomedicines11112913
crossref_primary_10_1007_s11010_022_04442_z
crossref_primary_10_1038_s41598_025_96807_9
crossref_primary_10_1088_1758_5090_ac8621
crossref_primary_10_7554_eLife_74576
crossref_primary_10_3389_fcell_2024_1343106
crossref_primary_10_1002_advs_202403177
crossref_primary_10_3389_fbioe_2025_1558735
crossref_primary_10_3390_ijms22179517
crossref_primary_10_1002_mabi_202200174
crossref_primary_10_3389_fphar_2025_1506552
crossref_primary_10_1093_lifemedi_lnac010
crossref_primary_10_3390_ijms26073063
crossref_primary_10_61186_ibj_4271
crossref_primary_10_1038_s41467_025_59190_7
crossref_primary_10_1007_s00011_023_01729_9
crossref_primary_10_1186_s13072_025_00601_w
crossref_primary_10_1186_s12974_023_02949_w
crossref_primary_10_1038_s41593_025_01981_8
crossref_primary_10_3390_pharmaceutics15030777
crossref_primary_10_1016_j_stemcr_2025_102600
crossref_primary_10_1002_mco2_70005
crossref_primary_10_1089_cell_2025_0009
crossref_primary_10_1016_j_bbadis_2023_166852
crossref_primary_10_1089_cell_2025_0008
crossref_primary_10_4103_NRR_NRR_D_23_01612
crossref_primary_10_1002_pmic_202100206
crossref_primary_10_1016_j_molcel_2022_11_002
crossref_primary_10_3390_ijms25020993
crossref_primary_10_3389_fpubh_2023_1156749
crossref_primary_10_3390_cancers17020203
crossref_primary_10_1109_TNSE_2025_3555962
crossref_primary_10_1016_j_gde_2024_102226
crossref_primary_10_4103_1673_5374_360171
crossref_primary_10_1016_j_cej_2025_166728
crossref_primary_10_1038_s41589_025_01874_8
crossref_primary_10_1002_adma_202211609
crossref_primary_10_1186_s40779_022_00372_5
crossref_primary_10_3389_fcell_2022_927555
crossref_primary_10_1109_TMBMC_2025_3556883
crossref_primary_10_3389_fnins_2023_1198041
crossref_primary_10_1007_s00018_025_05677_x
crossref_primary_10_3892_etm_2023_12360
crossref_primary_10_1097_BS9_0000000000000215
crossref_primary_10_1038_s41568_023_00648_5
crossref_primary_10_1242_dev_203090
crossref_primary_10_3390_cells13110897
crossref_primary_10_1016_j_intimp_2024_113404
crossref_primary_10_3390_cells11050800
crossref_primary_10_3390_ani14040589
crossref_primary_10_3390_jfb14010021
crossref_primary_10_1038_s41536_025_00411_4
crossref_primary_10_1002_adma_202206933
crossref_primary_10_1073_pnas_2510306122
crossref_primary_10_1038_s41525_025_00493_5
crossref_primary_10_3389_fnagi_2022_885707
crossref_primary_10_3390_ijms241512433
crossref_primary_10_3389_fcvm_2021_750438
crossref_primary_10_1186_s13287_024_04059_7
crossref_primary_10_1186_s13287_025_04285_7
crossref_primary_10_1111_jnc_70170
crossref_primary_10_1093_nar_gkac848
crossref_primary_10_1038_s41556_024_01411_0
crossref_primary_10_1007_s12975_025_01331_7
crossref_primary_10_3103_S0095452725040024
crossref_primary_10_1016_j_gde_2023_102084
crossref_primary_10_3389_fmolb_2025_1538806
crossref_primary_10_1016_j_cell_2025_07_039
crossref_primary_10_1089_cell_2023_0123
crossref_primary_10_1038_s41563_022_01312_3
crossref_primary_10_3390_cells12081166
crossref_primary_10_1016_j_jbc_2024_107994
crossref_primary_10_1186_s12915_025_02264_1
crossref_primary_10_1186_s13148_024_01682_2
crossref_primary_10_1038_s42003_023_04627_2
crossref_primary_10_1016_j_ymthe_2025_04_004
crossref_primary_10_1038_s41598_025_00524_2
crossref_primary_10_1002_advs_202409642
crossref_primary_10_1016_j_bioelechem_2025_109089
crossref_primary_10_1186_s13045_025_01731_0
crossref_primary_10_1007_s10072_023_07175_z
crossref_primary_10_1186_s13619_025_00229_x
crossref_primary_10_1016_j_immuni_2025_08_001
crossref_primary_10_1016_j_stem_2022_09_006
crossref_primary_10_1126_sciadv_adq7855
crossref_primary_10_3389_fcvm_2022_972591
crossref_primary_10_1089_cell_2023_0015
crossref_primary_10_1089_cell_2021_0172
crossref_primary_10_3390_biomedicines10092070
crossref_primary_10_1167_iovs_64_15_32
crossref_primary_10_1186_s13024_025_00805_4
crossref_primary_10_1002_advs_202411735
crossref_primary_10_1093_stmcls_sxaf002
crossref_primary_10_1016_j_ajhg_2024_03_007
crossref_primary_10_1002_advs_202303395
crossref_primary_10_4103_NRR_NRR_D_23_01784
crossref_primary_10_1242_dev_202997
crossref_primary_10_1007_s13770_025_00738_5
crossref_primary_10_1016_j_molcel_2025_07_005
crossref_primary_10_1038_s41598_024_65337_1
crossref_primary_10_3390_cells11142242
crossref_primary_10_3389_fcell_2021_713434
crossref_primary_10_3390_ijms26010405
crossref_primary_10_1038_s41392_023_01343_5
crossref_primary_10_3389_fbioe_2021_681705
crossref_primary_10_3389_fncel_2023_1237641
crossref_primary_10_1007_s42114_025_01331_z
crossref_primary_10_1016_j_jiec_2023_08_042
crossref_primary_10_3389_fncel_2023_1305896
crossref_primary_10_1002_advs_202308032
crossref_primary_10_1038_s41598_024_78115_w
crossref_primary_10_1016_j_matt_2022_09_017
crossref_primary_10_1038_s41467_025_59026_4
crossref_primary_10_3390_jdb11030037
crossref_primary_10_1007_s44340_025_00035_w
crossref_primary_10_1038_s41587_023_01931_4
crossref_primary_10_3389_fcell_2022_983195
crossref_primary_10_1038_s41467_022_34854_w
crossref_primary_10_3390_cells12131673
crossref_primary_10_1016_j_bioactmat_2024_04_011
crossref_primary_10_1016_j_tibs_2025_03_004
crossref_primary_10_1038_s41433_024_03441_2
crossref_primary_10_3390_biom15060794
crossref_primary_10_1016_j_colsurfb_2023_113189
crossref_primary_10_1016_j_heliyon_2024_e33736
crossref_primary_10_1186_s13148_021_01131_4
crossref_primary_10_3389_fendo_2024_1350958
crossref_primary_10_3390_cells10092276
crossref_primary_10_1089_cell_2022_0128
crossref_primary_10_4103_1673_5374_390965
crossref_primary_10_1242_dev_200433
crossref_primary_10_4274_jtgga_galenos_2023_2022_12_13
crossref_primary_10_1016_j_cels_2025_101206
crossref_primary_10_1016_j_cels_2025_101205
crossref_primary_10_1089_cell_2023_0041
crossref_primary_10_1002_advs_202304103
crossref_primary_10_1002_advs_202403105
crossref_primary_10_1371_journal_pbio_3002237
crossref_primary_10_3389_fcell_2025_1513163
crossref_primary_10_1038_s41587_023_01905_6
crossref_primary_10_1089_cell_2022_0110
crossref_primary_10_3390_jcdd8070072
crossref_primary_10_4103_1673_5374_390957
crossref_primary_10_3389_fbioe_2022_799152
crossref_primary_10_4103_1673_5374_355981
crossref_primary_10_1016_j_gde_2025_102354
crossref_primary_10_1016_j_tice_2024_102553
crossref_primary_10_2478_aoas_2025_0073
crossref_primary_10_1242_dev_199961
crossref_primary_10_4252_wjsc_v16_i2_137
crossref_primary_10_1016_j_yjmcc_2023_03_008
crossref_primary_10_1038_s41467_024_46956_8
crossref_primary_10_3389_fnut_2023_1225233
crossref_primary_10_1016_j_yjmcc_2023_03_009
crossref_primary_10_1038_s12276_023_01003_2
crossref_primary_10_1016_j_yjmcc_2022_08_004
crossref_primary_10_1016_j_biomaterials_2025_123463
crossref_primary_10_1038_s41467_024_55286_8
crossref_primary_10_1039_D1BM00400J
crossref_primary_10_3389_fbioe_2021_748942
crossref_primary_10_1016_j_devcel_2023_08_023
crossref_primary_10_1002_adbi_202300092
crossref_primary_10_1016_j_pneurobio_2022_102284
crossref_primary_10_1016_j_expneurol_2022_114054
crossref_primary_10_1093_stcltm_szad019
crossref_primary_10_1002_mco2_427
crossref_primary_10_1016_j_stemcr_2025_102473
crossref_primary_10_1016_j_ymthe_2024_06_018
crossref_primary_10_1038_s41467_023_40803_y
crossref_primary_10_1096_fj_202400400RR
crossref_primary_10_3389_fmolb_2022_1009402
crossref_primary_10_1080_17425255_2024_2362183
crossref_primary_10_1186_s13287_025_04489_x
crossref_primary_10_1093_bfgp_elac008
crossref_primary_10_3390_biomedicines10020399
crossref_primary_10_3389_fonc_2023_1207603
crossref_primary_10_1098_rsob_240328
crossref_primary_10_1109_TCYB_2024_3473945
crossref_primary_10_3389_fendo_2024_1484829
crossref_primary_10_1186_s13036_025_00499_8
crossref_primary_10_1016_j_bbrc_2022_09_015
crossref_primary_10_1089_cell_2025_0020
crossref_primary_10_3390_cells11233914
crossref_primary_10_1089_scd_2024_0181
crossref_primary_10_1016_j_pharmr_2025_100077
crossref_primary_10_1038_s41419_023_06001_w
crossref_primary_10_1016_j_identj_2024_08_009
crossref_primary_10_1016_j_matt_2022_04_026
crossref_primary_10_1186_s13619_021_00106_3
crossref_primary_10_1021_acssynbio_4c00037
crossref_primary_10_3389_fnins_2021_771687
crossref_primary_10_1016_j_csm_2024_08_003
crossref_primary_10_1002_adhm_202201824
crossref_primary_10_3390_cells11213435
crossref_primary_10_1038_s41467_024_46004_5
crossref_primary_10_1016_j_semcdb_2021_07_010
crossref_primary_10_1016_j_colsurfb_2025_114550
crossref_primary_10_1038_s43587_023_00539_2
crossref_primary_10_1038_s43587_024_00596_1
crossref_primary_10_1016_j_reth_2024_12_014
crossref_primary_10_1097_HC9_0000000000000788
crossref_primary_10_1186_s13287_025_04217_5
crossref_primary_10_1681_ASN_2021111425
crossref_primary_10_3390_ijms222413449
crossref_primary_10_17816_morph_637000
crossref_primary_10_1016_j_jare_2025_08_018
crossref_primary_10_15283_ijsc24121
crossref_primary_10_1038_s44318_025_00385_5
crossref_primary_10_1038_s41589_024_01799_8
Cites_doi 10.1016/j.cell.2015.03.017
10.1016/j.molcel.2017.11.030
10.1038/nmeth.3961
10.1016/j.stemcr.2014.10.007
10.1073/pnas.1103113108
10.1016/j.cell.2015.05.002
10.1016/j.stemcr.2018.12.017
10.1016/j.jtcvs.2014.03.033
10.1016/j.cell.2012.09.045
10.1038/s41576-018-0088-9
10.1016/j.yexcr.2016.07.026
10.1038/s41587-019-0071-9
10.1038/s41576-019-0122-6
10.1161/CIRCRESAHA.116.304510
10.1016/j.cell.2006.02.041
10.1016/j.molcel.2019.07.015
10.1038/s41587-019-0206-z
10.1016/j.molcel.2020.07.012
10.1038/nature09973
10.1126/science.aaf1502
10.1016/j.stem.2014.01.003
10.1016/j.stem.2017.09.014
10.1056/NEJMra1716145
10.1038/srep23017
10.1016/j.stem.2016.01.010
10.1016/j.scr.2015.06.001
10.1016/j.biomaterials.2018.11.034
10.1038/ng.710
10.1016/S0092-8674(04)00419-2
10.1016/j.celrep.2017.09.011
10.1038/nature13173
10.1038/nature10263
10.1038/s41592-019-0547-z
10.1038/nature23283
10.1016/j.molcel.2016.10.039
10.1038/nature23001
10.1186/s13059-017-1269-0
10.1016/S1097-2765(02)00459-8
10.1016/j.neuron.2016.08.004
10.1016/j.cell.2005.03.013
10.1016/j.jacbts.2019.02.006
10.1038/ncomms14049
10.1016/j.cell.2006.07.024
10.1016/j.stem.2019.03.022
10.3389/fnmol.2017.00359
10.1016/j.celrep.2014.04.011
10.1016/j.celrep.2018.09.067
10.1016/j.cell.2016.08.055
10.1016/j.gde.2017.06.008
10.1101/gr.245399.118
10.1016/j.scr.2016.02.037
10.1016/j.ncrna.2017.04.002
10.1038/s12276-018-0071-8
10.1038/s41586-020-2388-4
10.1016/j.tig.2015.07.005
10.1016/j.celrep.2017.09.005
10.1038/nbt.3082
10.1523/JNEUROSCI.3975-14.2015
10.1016/j.stem.2015.12.003
10.1016/j.gde.2014.09.006
10.1038/550451a
10.1038/cr.2015.99
10.1038/nature14966
10.1038/s41594-019-0323-x
10.1016/j.cell.2010.07.002
10.1016/j.neuron.2010.09.009
10.1242/dev.128389
10.1016/j.stemcr.2014.05.020
10.1038/s41586-018-0414-6
10.1038/ncomms4338
10.1016/j.devcel.2013.03.002
10.1038/s41576-019-0093-7
10.3389/fonc.2012.00026
10.1016/j.cell.2014.07.020
10.1016/0092-8674(87)90585-X
10.1016/j.stem.2015.06.003
10.1016/j.stem.2018.09.003
10.1161/CIRCRESAHA.112.269035
10.1038/ncb2660
10.1016/j.tibtech.2018.04.002
10.1101/gad.9.10.1250
10.1073/pnas.1303829110
10.1038/nrm.2016.8
10.1038/nature10116
10.1093/nar/gkx754
10.1038/nrg3833
10.1101/gr.078378.108
10.1073/pnas.0511041103
10.1038/nature13182
10.1002/sctm.18-0282
10.1093/nar/gks1094
10.1073/pnas.0709002105
10.1016/j.ceb.2012.03.009
10.1016/j.cell.2018.03.074
10.1038/nature08894
10.1016/j.cell.2012.11.045
10.1016/j.biomaterials.2015.02.029
10.1016/j.stem.2016.02.003
10.1139/cjpp-2016-0515
10.1038/srep38815
10.1097/FJC.0b013e3181e74a14
10.1038/s41592-019-0502-z
10.1126/science.346.6206.237
10.1074/jbc.R111.271999
10.1016/j.stem.2013.12.001
10.1242/dev.114025
10.1038/nature18323
10.1073/pnas.1516237112
10.7554/eLife.13374
10.1016/j.stem.2017.11.010
10.1016/j.stem.2018.05.020
10.1038/emboj.2011.459
10.1038/nature10398
10.1038/nmeth.1315
10.1186/gb-2009-10-3-r29
10.1038/nrm.2016.6
10.1016/j.cell.2013.03.035
10.1016/j.cell.2012.08.023
10.1038/nature24454
10.1038/ncomms2582
10.1016/j.tig.2015.11.001
10.1038/ng.3487
10.1038/nature11044
10.1038/nrg3473
10.7554/eLife.40197
10.1038/s41551-018-0260-8
10.1038/nn.3299
10.1016/j.cell.2018.06.052
10.1016/j.cell.2018.02.014
10.1253/circj.CJ-14-1372
10.1038/s41551-020-0539-4
10.1038/nature14136
10.1038/nbt.3749
10.1038/cr.2011.22
10.1155/2016/3162363
10.1126/science.aau0730
10.1038/nature10323
10.1016/j.stem.2017.08.002
10.1038/nature08797
10.1038/ncb2843
10.1016/j.stem.2017.11.020
10.1016/j.cell.2019.05.006
10.1038/s41586-018-0425-3
10.1016/j.cell.2009.05.035
10.15252/embj.201387605
10.1101/gad.2019811
10.1016/j.stemcr.2015.09.016
10.1101/gad.253443.114
10.1038/natrevmats.2016.71
10.1093/nar/gkx692
10.7554/eLife.41770
10.1016/j.stem.2019.06.012
10.3164/jcbn.15-39
10.1126/science.1199010
10.1016/j.stem.2015.01.013
10.1038/s41467-018-03904-7
10.1038/nature11139
10.1093/cvr/cvu023
10.1038/nature07314
10.1038/cr.2014.165
10.1186/s13059-015-0737-7
10.1038/ncomms3373
10.1016/j.cell.2013.09.028
10.1038/ncomms13396
10.1038/nmeth.4155
10.1016/j.devcel.2018.06.007
10.1016/j.immuni.2006.09.011
10.1016/j.stem.2015.09.002
10.1016/j.stem.2017.06.011
10.1172/JCI66514
10.1101/cshperspect.a019364
10.1073/pnas.1313192110
10.1016/j.cell.2014.06.027
10.1101/gr.190595.115
10.1016/j.stem.2019.05.020
10.1016/j.stem.2012.05.005
10.1161/CIRCRESAHA.116.308741
10.1002/advs.201900344
10.1016/j.neuron.2015.03.035
10.1038/nature24045
10.1016/j.stem.2015.09.012
10.1101/gad.305482.117
10.1016/bs.pbr.2016.11.004
10.1016/j.stemcr.2014.09.013
10.1161/CIRCRESAHA.116.305547
ContentType Journal Article
Copyright Springer Nature Limited 2021
COPYRIGHT 2021 Nature Publishing Group
Springer Nature Limited 2021.
Copyright_xml – notice: Springer Nature Limited 2021
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Springer Nature Limited 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7QP
7QR
7RV
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7N
M7P
NAPCQ
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/s41580-021-00335-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE


ProQuest Central Student

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
EISSN 1471-0080
EndPage 424
ExternalDocumentID PMC8161510
A663246838
33619373
10_1038_s41580_021_00335_z
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL139976
– fundername: American Heart Association-American Stroke Association
  grantid: 18TPA34180058
– fundername: NHLBI NIH HHS
  grantid: R01 HL139880
– fundername: NHLBI NIH HHS
  grantid: R01 HL144551
– fundername: NHLBI NIH HHS
  grantid: R56 HL133081
– fundername: NHLBI NIH HHS
  grantid: R01 HL128331
GroupedDBID ---
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D0L
D1J
DB5
DU5
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PCBAR
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c641t-ef9138d716a4b6c0c4fb6f8d60f2ee7d6949ab33bde4ddea10a5c9f8cdc3d2c03
IEDL.DBID M7P
ISICitedReferencesCount 301
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620415800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0072
1471-0080
IngestDate Tue Nov 04 01:56:56 EST 2025
Thu Oct 02 12:13:35 EDT 2025
Sun Nov 30 04:44:13 EST 2025
Sat Nov 29 13:55:37 EST 2025
Sat Nov 29 10:35:19 EST 2025
Wed Nov 26 10:55:16 EST 2025
Mon Jul 21 05:35:46 EDT 2025
Sat Nov 29 06:43:42 EST 2025
Tue Nov 18 20:02:46 EST 2025
Fri Feb 21 02:38:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-ef9138d716a4b6c0c4fb6f8d60f2ee7d6949ab33bde4ddea10a5c9f8cdc3d2c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
The authors contributed equally to all aspects of the article.
Author contributions
ORCID 0000-0001-8914-442X
0000-0001-7614-5618
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8161510
PMID 33619373
PQID 2532421863
PQPubID 27585
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8161510
proquest_miscellaneous_2492661511
proquest_journals_2532421863
gale_infotracmisc_A663246838
gale_infotracacademiconefile_A663246838
gale_incontextgauss_ISR_A663246838
pubmed_primary_33619373
crossref_citationtrail_10_1038_s41580_021_00335_z
crossref_primary_10_1038_s41580_021_00335_z
springer_journals_10_1038_s41580_021_00335_z
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Molecular cell biology
PublicationTitleAbbrev Nat Rev Mol Cell Biol
PublicationTitleAlternate Nat Rev Mol Cell Biol
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References ZhouHZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expressionGenes Dev.201731177017831:CAS:528:DC%2BC2sXhslCnsLvI28982760566667510.1101/gad.305482.117
SongKHeart repair by reprogramming non-myocytes with cardiac transcription factorsNature20124855996041:CAS:528:DC%2BC38XnvVyqsbg%3D22660318336739010.1038/nature11139
EraslanGAvsecŽGagneurJTheisFJDeep learning: new computational modelling techniques for genomicsNat. Rev. Genet.2019203894031:CAS:528:DC%2BC1MXosFKgsr4%3D3097180610.1038/s41576-019-0122-6
HeinrichCSox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortexStem Cell Rep.20143100010141:CAS:528:DC%2BC2cXitFOns7zE10.1016/j.stemcr.2014.10.007
StegleOTeichmannSAMarioniJCComputational and analytical challenges in single-cell transcriptomicsNat. Rev. Genet.2015161331451:CAS:528:DC%2BC2MXhs1Shur4%3D2562821710.1038/nrg3833
LiXSmall-molecule-driven direct reprogramming of mouse fibroblasts into functional neuronsCell Stem Cell2015171952031:CAS:528:DC%2BC2MXhtFCktLbO2625320110.1016/j.stem.2015.06.003
RheeCMechanisms of transcription factor-mediated direct reprogramming of mouse embryonic stem cells to trophoblast stem-like cellsNucleic Acids Res.20174510103101141:CAS:528:DC%2BC1cXmtV2nu7o%3D28973471573733410.1093/nar/gkx692
StuartTSatijaRIntegrative single-cell analysisNat. Rev. Genet.2019202572721:CAS:528:DC%2BC1MXmtFKjtbs%3D3069698010.1038/s41576-019-0093-7
ParkGConversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatmentsBiomaterials2015542012121:CAS:528:DC%2BC2MXltFajsbw%3D2590705310.1016/j.biomaterials.2015.02.029
KaremakerIDVermeulenMSingle-cell DNA methylation profiling: technologies and biological applicationsTrends Biotechnol.2018369529651:CAS:528:DC%2BC1cXot1Ckt7c%3D2972449510.1016/j.tibtech.2018.04.002
KulessaHFramptonJGrafTGATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblastsGenes Dev.19959125012621:CAS:528:DyaK2MXlvFShsLg%3D775894910.1101/gad.9.10.1250
WangLStoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogrammingCirc. Res.20151162372442541613310.1161/CIRCRESAHA.116.3055471:CAS:528:DC%2BC2MXpslGruw%3D%3D
JayawardenaTMMicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytesCirc. Res.2012110146514731:CAS:528:DC%2BC38XnsVCisr8%3D22539765338062410.1161/CIRCRESAHA.112.269035
ConacoCOttoSHanJJMandelGReciprocal actions of REST and a microRNA promote neuronal identityProc. Natl Acad. Sci. USA2006103242224271:CAS:528:DC%2BD28XhslGjtLo%3D1646191810.1073/pnas.05110411031413753
SaelensWCannoodtRTodorovHSaeysYA comparison of single-cell trajectory inference methodsNat. Biotechnol.2019375475541:CAS:528:DC%2BC1MXosV2qsrk%3D3093655910.1038/s41587-019-0071-9Saelens et al. comprehensively evaluated the performance of 45 single-cell trajectory inference methods on 110 real and 229 synthetic datasets and provide guidelines for method selection in direct reprogramming.
Rozenblatt-RosenOStubbingtonMJTRegevATeichmannSAThe human cell atlas: from vision to realityNature20175504514531:CAS:528:DC%2BC2sXhslajtr7M2907228910.1038/550451a
CaoJYanQHistone ubiquitination and deubiquitination in transcription, DNA damage response, and cancerFront. Oncol.201222622649782335587510.3389/fonc.2012.00026
Dal-PraSHodgkinsonCPMirotsouMKirsteIDzauVJDemethylation of H3K27 is essential for the induction of direct cardiac reprogramming by MIR ComboCirculation Res.2017120140314131:CAS:528:DC%2BC2sXmslaqtr8%3D2820971810.1161/CIRCRESAHA.116.308741
XueYDirect conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuitsCell201315282961:CAS:528:DC%2BC3sXmvFSrtQ%3D%3D23313552355202610.1016/j.cell.2012.11.045
ZhouYComparative gene expression analyses reveal distinct molecular signatures between differentially reprogrammed cardiomyocytesCell Rep.201720301430241:CAS:528:DC%2BC2sXhsFOhs7jF28954220565984010.1016/j.celrep.2017.09.005
PottSLiebJDSingle-cell ATAC-seq: strength in numbersGenome Biol.20151626294014454616110.1186/s13059-015-0737-71:CAS:528:DC%2BC28XmtVCrtrk%3D
WangYEndogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewalDev. Cell20132569801:CAS:528:DC%2BC3sXltVCjtr0%3D2354192110.1016/j.devcel.2013.03.002
ZhengXMetabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylationeLife2016527282387496319810.7554/eLife.133741:CAS:528:DC%2BC1cXmsFams7c%3D
LiHChenGIn vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cellsNeuron2016917287381:CAS:528:DC%2BC28Xhtlyju7fM27537482546636410.1016/j.neuron.2016.08.004
TangYLiuMLZangTZhangCLDirect reprogramming rather than iPSC-based reprogramming maintains aging hallmarks in human motor neuronsFront. Mol. Neurosci.20171035929163034567677910.3389/fnmol.2017.003591:CAS:528:DC%2BC1cXisVOkur7P
IedaMDirect reprogramming of fibroblasts into functional cardiomyocytes by defined factorsCell20101423753861:CAS:528:DC%2BC3cXpvFKrsbY%3D20691899291984410.1016/j.cell.2010.07.002Idea et al. identified reprogramming factors that could reprogramme mouse cardiac fibroblasts to cardiomyocyte-like cells in vitro.
ChandaSGeneration of induced neuronal cells by the single reprogramming factor ASCL1Stem Cell Rep.201432822961:CAS:528:DC%2BC2cXhtFWitLjL10.1016/j.stemcr.2014.05.020
NgS-YJohnsonRStantonLWHuman long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factorsEMBO J.2012315225331:CAS:528:DC%2BC3MXhs1Gks7vO2219371910.1038/emboj.2011.459
ZhouYSingle-cell transcriptomic analyses of cell fate transitions during human cardiac reprogrammingCell Stem Cell201925149164.e91:CAS:528:DC%2BC1MXht1Wqt7fL31230860668413710.1016/j.stem.2019.05.020Zhou et al. revealed an early decision point at which cells either continue reprogramming or regress toward the original fibroblast state during human cardiac reprogramming.
QianHReversing a model of Parkinson’s disease with in situ converted nigral neuronsNature20205825505561:CAS:528:DC%2BB3cXht1ClsrvP32581380752145510.1038/s41586-020-2388-4
CirilloLAOpening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4Mol. Cell200292792891:CAS:528:DC%2BD38XhvFKhu7o%3D1186460210.1016/S1097-2765(02)00459-8
GrünDSingle-cell messenger RNA sequencing reveals rare intestinal cell typesNature20155252512552628746710.1038/nature149661:CAS:528:DC%2BC2MXhtlKlu7zJ
QianLIn vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytesNature20124855935981:CAS:528:DC%2BC38XlslSitrY%3D22522929336910710.1038/nature11044Qian et al. demonstrated the feasibility of using in vivo direct reprogramming for heart repair.
LiWLong-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cellsNat. Biotechnol.201432122312301:CAS:528:DC%2BC2cXhvFKlsrnK2540261310.1038/nbt.3082
BaoXThe p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promotersCell Res.20152580921:CAS:528:DC%2BC2cXitFyhurbN2551234110.1038/cr.2014.165
NamYJInduction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factorsDevelopment2014141426742781:CAS:528:DC%2BC2MXivFCjtA%3D%3D25344074430291610.1242/dev.114025
NoorN3D printing of personalized thick and perfusable cardiac patches and heartsAdv. Sci.20196190034410.1002/advs.2019003441:CAS:528:DC%2BC1MXhtFWgur7E
HashimotoHCardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancersCell Stem Cell2019256986.e51:CAS:528:DC%2BC1MXpsVWlt78%3D31080136675426610.1016/j.stem.2019.03.022
LoewerSLarge intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cellsNat. Genet.201042111311171:CAS:528:DC%2BC3cXhtl2jsbzE21057500304065010.1038/ng.710
CliffTSDaltonSMetabolic switching and cell fate decisions: implications for pluripotency, reprogramming and developmentCurr. Opin. Genet. Dev.20174644491:CAS:528:DC%2BC2sXhtVGnsLnE28662447584206310.1016/j.gde.2017.06.008
LiuYCRISPR activation screens systematically identify factors that drive neuronal fate and reprogrammingCell Stem Cell201823758771.e81:CAS:528:DC%2BC1cXhvFSqsrbO30318302621476110.1016/j.stem.2018.09.003
WapinskiOLRapid chromatin switch in the direct reprogramming of fibroblasts to neuronsCell Rep.201720323632471:CAS:528:DC%2BC2sXhsFOhs7nN28954238564637910.1016/j.celrep.2017.09.011
RichardsDJHuman cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicityNat. Biomed. Eng.202044464621:CAS:528:DC%2BB3cXntVOgtb8%3D32284552742294110.1038/s41551-020-0539-4
YooASMicroRNA-mediated conversion of human fibroblasts to neuronsNature20114762282311:CAS:528:DC%2BC3MXoslymtr4%3D21753754334886210.1038/nature10323
CollombatPThe ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cellsCell20091384494621:CAS:528:DC%2BD1MXhsVChs7nO19665969279220310.1016/j.cell.2009.05.035
BramswigNCEpigenomic plasticity enables human pancreatic α to β cell reprogrammingJ. Clin. Invest.2013123127512841:CAS:528:DC%2BC3sXjvVyht70%3D23434589358214010.1172/JCI66514
JinYThree-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neuronsNat. Biomed. Eng.201825225391:CAS:528:DC%2BC1MXhtFensr7P3094883110.1038/s41551-018-0260-8
JiaCAccounting for technical noise in differential expression analysis of single-cell RNA sequencing dataNucleic Acids Res.20174510978109881:CAS:528:DC%2BC1cXhtVyisb3N29036714573767610.1093/nar/gkx754
XieHYeMFengRGrafTStepwise reprogramming of B cells into macrophagesCell20041176636761:CAS:528:DC%2BD2cXkvVyhsrc%3D1516341310.1016/S0092-8674(04)00419-2
HumeresCFrangogiannisNGFibroblasts in the infarcted, remodeling, and failing heartJACC Basic. Transl. Sci.201944494673
M Xin (335_CR154) 2013; 110
W Li (335_CR43) 2014; 32
Y Li (335_CR47) 2016; 6
N Ballas (335_CR125) 2005; 121
A Buffo (335_CR50) 2008; 105
GXY Zheng (335_CR151) 2017; 8
S Chanda (335_CR89) 2014; 3
H Hashimoto (335_CR90) 2019; 25
O Rozenblatt-Rosen (335_CR161) 2017; 550
HM Blau (335_CR30) 2019; 380
M Guttman (335_CR133) 2011; 477
X Xiao (335_CR54) 2018; 22
A Soufi (335_CR88) 2012; 151
H Li (335_CR10) 2016; 91
D Grün (335_CR164) 2015; 525
S Gascón (335_CR42) 2017; 21
B Hwang (335_CR149) 2018; 50
V Lo Sardo (335_CR83) 2017; 35
S Gascón (335_CR140) 2016; 18
Z Liu (335_CR75) 2017; 551
ID Karemaker (335_CR184) 2018; 36
Y Chang (335_CR65) 2019; 192
VY Kiselev (335_CR152) 2019; 20
NL Jorstad (335_CR9) 2017; 548
P Dai (335_CR70) 2015; 56
L Zhang (335_CR72) 2015; 17
A Grande (335_CR34) 2013; 4
SW Santoro (335_CR113) 2015; 31
M Ieda (335_CR18) 2010; 142
E Ezhkova (335_CR102) 2011; 25
JS Becker (335_CR106) 2017; 68
A Soufi (335_CR84) 2015; 161
W Saelens (335_CR158) 2019; 37
C Trapnell (335_CR157) 2015; 25
Y Wang (335_CR69) 2016; 347
F Thorel (335_CR44) 2010; 464
K Horisawa (335_CR95) 2020; 79
JP Leach (335_CR155) 2017; 550
NC Bramswig (335_CR56) 2013; 123
N Noor (335_CR79) 2019; 6
O Stegle (335_CR163) 2015; 16
D Srivastava (335_CR8) 2016; 166
H Qian (335_CR81) 2020; 582
TM Jayawardena (335_CR25) 2015; 116
B Mahata (335_CR166) 2014; 7
Y Liu (335_CR57) 2015; 35
NR Stone (335_CR13) 2019; 25
DJ Richards (335_CR78) 2020; 4
M Mathison (335_CR94) 2014; 148
K Lee (335_CR62) 2015; 10
Y Zhou (335_CR143) 2017; 20
N Muraoka (335_CR121) 2014; 33
Y Buganim (335_CR5) 2013; 14
K Miyamoto (335_CR61) 2018; 22
B Treutlein (335_CR77) 2016; 534
G La Manno (335_CR160) 2018; 560
Y Tang (335_CR177) 2017; 10
T Finkel (335_CR145) 2012; 287
OL Wapinski (335_CR96) 2017; 20
JP Magnusson (335_CR48) 2014; 346
C Conaco (335_CR126) 2006; 103
X Li (335_CR144) 2016; 95
OJL Rackham (335_CR179) 2016; 48
J Li (335_CR74) 2016; 1
BE Bernstein (335_CR112) 2006; 125
Y Liu (335_CR64) 2018; 23
S-Y Ng (335_CR134) 2012; 31
SW Lee (335_CR124) 2018; 46
T Nagano (335_CR169) 2017; 547
DS Lee (335_CR190) 2019; 16
DA Cusanovich (335_CR127) 2018; 174
N Cao (335_CR68) 2016; 352
T Vierbuchen (335_CR20) 2010; 463
H Hirai (335_CR107) 2014; 102
DG Abernathy (335_CR123) 2017; 21
SH Kang (335_CR51) 2010; 68
AS Yoo (335_CR23) 2011; 476
K Yao (335_CR40) 2018; 560
YJ Nam (335_CR60) 2014; 141
G Colasante (335_CR58) 2015; 17
Q Zhou (335_CR17) 2008; 455
X Zheng (335_CR137) 2016; 5
Z Guo (335_CR35) 2014; 14
OL Wapinski (335_CR87) 2013; 155
HT Fang (335_CR117) 2018; 9
M Zarbin (335_CR29) 2019; 8
S Pott (335_CR186) 2015; 16
LA Cirillo (335_CR86) 2002; 9
F Dong (335_CR116) 2016; 2016
W Niu (335_CR33) 2013; 15
H Kulessa (335_CR14) 1995; 9
K Song (335_CR19) 2012; 485
X Hu (335_CR49) 2019; 12
J Kim (335_CR99) 2011; 108
J Luginbühl (335_CR120) 2017; 2
Z Su (335_CR38) 2014; 5
S Dal-Pra (335_CR103) 2017; 120
AJ Bannister (335_CR97) 2011; 21
JD Welch (335_CR173) 2017; 18
G Eraslan (335_CR175) 2019; 20
H Cheng (335_CR118) 2016; 7
P Collombat (335_CR55) 2009; 138
BA Benayoun (335_CR101) 2014; 158
J Cao (335_CR110) 2012; 2
K Adachi (335_CR128) 2018; 23
X Wang (335_CR147) 2016; 6
X Li (335_CR71) 2015; 17
JD Buenrostro (335_CR168) 2018; 173
C Rouaux (335_CR53) 2013; 15
335_CR27
C Heinrich (335_CR37) 2014; 3
Z Liu (335_CR98) 2016; 16
L Qian (335_CR11) 2012; 485
NL Vastenhouw (335_CR111) 2012; 24
AC D’Alessio (335_CR180) 2015; 5
S Loewer (335_CR130) 2010; 42
T Heallen (335_CR156) 2011; 332
Y Zhou (335_CR80) 2016; 18
JD Welch (335_CR172) 2019; 177
C Rhee (335_CR109) 2017; 45
CV Laiosa (335_CR16) 2006; 25
L Wang (335_CR93) 2015; 116
R Spektor (335_CR191) 2019; 29
P Huang (335_CR105) 2014; 14
TS Cliff (335_CR138) 2017; 46
G Song (335_CR39) 2016; 18
W Li (335_CR59) 2014; 3
S Chakraborty (335_CR63) 2014; 3
K Takahashi (335_CR6) 2016; 17
G Park (335_CR67) 2015; 54
AT Satpathy (335_CR185) 2019; 37
P Cahan (335_CR12) 2014; 158
JD Fu (335_CR41) 2015; 79
S Sekiya (335_CR21) 2011; 475
F Tang (335_CR148) 2009; 6
H Zhou (335_CR176) 2017; 31
Y Jin (335_CR46) 2018; 2
CE Ang (335_CR129) 2019; 8
AP West (335_CR146) 2011; 472
X Bao (335_CR132) 2015; 25
LF Cheow (335_CR174) 2016; 13
Y Xue (335_CR122) 2013; 152
H Li (335_CR31) 2016; 91
O Torper (335_CR36) 2013; 110
S Henikoff (335_CR114) 2015; 7
TM Jayawardena (335_CR24) 2012; 110
335_CR1
J Mathieu (335_CR139) 2017; 144
A Franceschini (335_CR182) 2012; 41
H Xie (335_CR15) 2004; 117
C Humeres (335_CR45) 2019; 4
Q Wang (335_CR170) 2019; 76
TM Jayawardena (335_CR32) 2014; 116
G Barbagiovanni (335_CR100) 2018; 25
ZD Smith (335_CR7) 2016; 17
J Xu (335_CR26) 2015; 16
P Huang (335_CR22) 2011; 475
TMA Mohamed (335_CR153) 2018; 173
ME Dinger (335_CR136) 2008; 18
S Konermann (335_CR183) 2014; 517
Y Fu (335_CR66) 2015; 25
C Yu (335_CR73) 2014; 28
S Yamanaka (335_CR4) 2012; 10
T Stuart (335_CR162) 2019; 20
J Cao (335_CR171) 2018; 361
B Treutlein (335_CR167) 2014; 509
V Ramani (335_CR188) 2017; 14
EZ Macosko (335_CR150) 2015; 161
C Jia (335_CR165) 2017; 45
ARR Forrest (335_CR181) 2014; 507
Y Wang (335_CR131) 2013; 25
A De La Rossa (335_CR52) 2013; 16
AK Jain (335_CR135) 2016; 64
A Gaspar-Maia (335_CR115) 2013; 4
C Luo (335_CR119) 2019; 8
H Zhou (335_CR91) 2015; 112
WA Whyte (335_CR108) 2013; 153
M Iwafuchi-Doi (335_CR85) 2014; 28
Y Zhou (335_CR76) 2019; 25
Y Buganim (335_CR159) 2012; 150
K Takahashi (335_CR3) 2006; 126
RL Davis (335_CR2) 1987; 51
R Trokovic (335_CR82) 2015; 15
JS Becker (335_CR104) 2016; 32
GD Lopaschuk (335_CR142) 2010; 56
DL Fulton (335_CR178) 2009; 10
C Zhu (335_CR189) 2019; 26
L Wang (335_CR92) 2015; 105
PJ Magistretti (335_CR141) 2015; 86
G Li (335_CR187) 2019; 16
RA Barker (335_CR28) 2017; 21
References_xml – reference: SaelensWCannoodtRTodorovHSaeysYA comparison of single-cell trajectory inference methodsNat. Biotechnol.2019375475541:CAS:528:DC%2BC1MXosV2qsrk%3D3093655910.1038/s41587-019-0071-9Saelens et al. comprehensively evaluated the performance of 45 single-cell trajectory inference methods on 110 real and 229 synthetic datasets and provide guidelines for method selection in direct reprogramming.
– reference: ZhouYComparative gene expression analyses reveal distinct molecular signatures between differentially reprogrammed cardiomyocytesCell Rep.201720301430241:CAS:528:DC%2BC2sXhsFOhs7jF28954220565984010.1016/j.celrep.2017.09.005
– reference: LeachJPHippo pathway deficiency reverses systolic heart failure after infarctionNature201755026026428976966572974310.1038/nature240451:CAS:528:DC%2BC2sXhs1Sktr%2FE
– reference: JayawardenaTMMicroRNA induced cardiac reprogramming in vivo evidence for mature cardiac myocytes and improved cardiac functionCirc. Res.201411641842425351576431253110.1161/CIRCRESAHA.116.3045101:CAS:528:DC%2BC2MXhs12kt78%3D
– reference: BeckerJSGenomic and proteomic resolution of heterochromatin and its restriction of alternate fate genesMol. Cell20176810231037.e151:CAS:528:DC%2BC2sXitVegt77E29272703585891910.1016/j.molcel.2017.11.030
– reference: ForrestARRA promoter-level mammalian expression atlasNature20145074624701:CAS:528:DC%2BC2cXkvV2mt7c%3D2467076410.1038/nature13182
– reference: LiuZRe-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytesStem Cell Res.2016165075181:CAS:528:DC%2BC28XjsVaku74%3D26957038482825710.1016/j.scr.2016.02.037
– reference: JorstadNLStimulation of functional neuronal regeneration from Müller glia in adult miceNature20175481031071:CAS:528:DC%2BC2sXht1ars73M28746305599183710.1038/nature23283
– reference: BeckerJSNicettoDZaretKSH3K9me3-dependent heterochromatin: barrier to cell fate changesTrends Genet.20163229411:CAS:528:DC%2BC2MXhvVKmt7zF2667538410.1016/j.tig.2015.11.001
– reference: KangSHFukayaMYangJKRothsteinJDBerglesDENG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegenerationNeuron2010686686811:CAS:528:DC%2BC3cXhsVGntb3F21092857298982710.1016/j.neuron.2010.09.009
– reference: LeeKPeptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cellsInt. J. Nanomed.201510184118541:CAS:528:DC%2BC2MXlsFSms7c%3D
– reference: DongFDynamic changes in occupancy of histone variant H2a.Z during induced somatic cell reprogrammingStem Cells Int.2016201631623632678340110.1155/2016/31623631:CAS:528:DC%2BC1cXlvFGmsrg%3D
– reference: RichardsDJHuman cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicityNat. Biomed. Eng.202044464621:CAS:528:DC%2BB3cXntVOgtb8%3D32284552742294110.1038/s41551-020-0539-4
– reference: SoufiAPioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogrammingCell20151615555681:CAS:528:DC%2BC2MXms1yns7Y%3D25892221440993410.1016/j.cell.2015.03.017
– reference: NgS-YJohnsonRStantonLWHuman long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factorsEMBO J.2012315225331:CAS:528:DC%2BC3MXhs1Gks7vO2219371910.1038/emboj.2011.459
– reference: WelchJDSingle-cell multi-omic integration compares and contrasts features of brain cell identityCell201917718731887.e171:CAS:528:DC%2BC1MXhtFens7vK31178122671679710.1016/j.cell.2019.05.006
– reference: RackhamOJLA predictive computational framework for direct reprogramming between human cell typesNat. Genet.2016483313351:CAS:528:DC%2BC28Xps1Cqtw%3D%3D2678060810.1038/ng.3487
– reference: HwangBLeeJHBangDSingle-cell RNA sequencing technologies and bioinformatics pipelinesExp. Mol. Med.20185010.1038/s12276-018-0071-81:CAS:528:DC%2BC1cXhsVynsrbI6082860
– reference: FuYDirect reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktailsCell Res.201525101310241:CAS:528:DC%2BC2MXhsVSjs7fP26292833455981910.1038/cr.2015.99
– reference: KimJDirect reprogramming of mouse fibroblasts to neural progenitorsProc. Natl Acad. Sci. USA2011108783878431:CAS:528:DC%2BC3MXmsVSktLs%3D2152179010.1073/pnas.11031131083093517
– reference: D’AlessioACA systematic approach to identify candidate transcription factors that control cell identityStem Cell Rep.2015576377510.1016/j.stemcr.2015.09.0161:CAS:528:DC%2BC2MXhslensr7O
– reference: LeeSWOhYMLuYLKimWKYooASMicroRNAs overcome cell fate barrier by reducing EZH2-controlled REST stability during neuronal conversion of human adult fibroblastsDev. Cell2018467384.e71:CAS:528:DC%2BC1cXht1yis73K29974865608242810.1016/j.devcel.2018.06.007
– reference: LiJMooneyDJDesigning hydrogels for controlled drug deliveryNat. Rev. Mater.20161160711:CAS:528:DC%2BC2sXhtVerurw%3D29657852589861410.1038/natrevmats.2016.71
– reference: WangYEndogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewalDev. Cell20132569801:CAS:528:DC%2BC3sXltVCjtr0%3D2354192110.1016/j.devcel.2013.03.002
– reference: MathieuJRuohola-BakerHMetabolic remodeling during the loss and acquisition of pluripotencyDevelopment20171445415511:CAS:528:DC%2BC2sXhtF2gtrzN28196802531203110.1242/dev.128389
– reference: JiaCAccounting for technical noise in differential expression analysis of single-cell RNA sequencing dataNucleic Acids Res.20174510978109881:CAS:528:DC%2BC1cXhtVyisb3N29036714573767610.1093/nar/gkx754
– reference: LiGJoint profiling of DNA methylation and chromatin architecture in single cellsNat. Methods2019169919931:CAS:528:DC%2BC1MXhsFWqsb%2FP31384045676542910.1038/s41592-019-0502-z
– reference: StegleOTeichmannSAMarioniJCComputational and analytical challenges in single-cell transcriptomicsNat. Rev. Genet.2015161331451:CAS:528:DC%2BC2MXhs1Shur4%3D2562821710.1038/nrg3833
– reference: CaoJYanQHistone ubiquitination and deubiquitination in transcription, DNA damage response, and cancerFront. Oncol.201222622649782335587510.3389/fonc.2012.00026
– reference: LuoCGlobal DNA methylation remodeling during direct reprogramming of fibroblasts to neuronseLife2019830644360633343910.7554/eLife.40197
– reference: VierbuchenTDirect conversion of fibroblasts to functional neurons by defined factorsNature2010463103510411:CAS:528:DC%2BC3cXhtFCgsr0%3D20107439282912110.1038/nature08797Vierbuchen et al. identified a combination of three factors to directly convert mouse fibroblasts into functional neurons in vitro.
– reference: RamaniVMassively multiplex single-cell Hi-CNat. Methods2017142632661:CAS:528:DC%2BC2sXhvV2hs7w%3D28135255533080910.1038/nmeth.4155
– reference: ZhouYSingle-cell transcriptomic analyses of cell fate transitions during human cardiac reprogrammingCell Stem Cell201925149164.e91:CAS:528:DC%2BC1MXht1Wqt7fL31230860668413710.1016/j.stem.2019.05.020Zhou et al. revealed an early decision point at which cells either continue reprogramming or regress toward the original fibroblast state during human cardiac reprogramming.
– reference: LopaschukGDJaswalJSEnergy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturationJ. Cardiovasc. Pharmacol.2010561301401:CAS:528:DC%2BC3cXhtVektbzM2050552410.1097/FJC.0b013e3181e74a14
– reference: ChangYEfficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrierBiomaterials20191925005091:CAS:528:DC%2BC1cXitlyhtLnP3051347510.1016/j.biomaterials.2018.11.034
– reference: EzhkovaEEZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repairGenes Dev.2011254854981:CAS:528:DC%2BC3MXjslCitr4%3D21317239304928910.1101/gad.2019811
– reference: XuJDuYDengHDirect lineage reprogramming: strategies, mechanisms, and applicationsCell Stem Cell2015161191341:CAS:528:DC%2BC2MXhslelu78%3D2565836910.1016/j.stem.2015.01.013
– reference: SantoroSWDulacCHistone variants and cellular plasticityTrends Genet.2015315165271:CAS:528:DC%2BC2MXhtleksrnI26299477511155410.1016/j.tig.2015.07.005
– reference: FranceschiniASTRING v9.1: protein-protein interaction networks, with increased coverage and integrationNucleic Acids Res.201241D808D81523203871353110310.1093/nar/gks10941:CAS:528:DC%2BC38XhvV2ksb3I
– reference: WapinskiOLHierarchical mechanisms for direct reprogramming of fibroblasts to neuronsCell20131556216351:CAS:528:DC%2BC3sXhs1yqsbzM2424301910.1016/j.cell.2013.09.028Wapinski et al. describe the role of Ascl1 as an ‘on-target’ Pioneer factor and its association to the ‘trivalent’ chromatin state in murine neuronal reprogramming.
– reference: WangXSelenium augments microRNA directed reprogramming of fibroblasts to cardiomyocytes via nanogSci. Rep.201661:CAS:528:DC%2BC28XktFKmtbg%3D26975336479215310.1038/srep23017
– reference: LaiosaCVStadtfeldMXieHde Andres-AguayoLGrafTReprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU.1 transcription factorsImmunity2006257317441:CAS:528:DC%2BD28Xht1Gnt7zP1708808410.1016/j.immuni.2006.09.011
– reference: Waddington, C. H. The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology. With an Appendix by H. Kacser (George Allen & Unwin, Ltd., 1957).
– reference: KonermannSGenome-scale transcriptional activation by an engineered CRISPR-Cas9 complexNature2014517583588254942024420636
– reference: Lo SardoVInfluence of donor age on induced pluripotent stem cellsNat. Biotechnol.20173569741:CAS:528:DC%2BC28XitFWnsbnK2794180210.1038/nbt.3749
– reference: TrapnellCDefining cell types and states with single-cell genomicsGenome Res.201525149114981:CAS:528:DC%2BC2MXhs1Oitb%2FK26430159457933410.1101/gr.190595.115
– reference: SatpathyATMassively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustionNat. Biotechnol.2019379259361:CAS:528:DC%2BC1MXhsFWqt7fO31375813729916110.1038/s41587-019-0206-z
– reference: LiXSmall-molecule-driven direct reprogramming of mouse fibroblasts into functional neuronsCell Stem Cell2015171952031:CAS:528:DC%2BC2MXhtFCktLbO2625320110.1016/j.stem.2015.06.003
– reference: CheowLFSingle-cell multimodal profiling reveals cellular epigenetic heterogeneityNat. Methods2016138338361:CAS:528:DC%2BC28Xhtlehu7fP2752597510.1038/nmeth.3961
– reference: ZhouQBrownJKanarekARajagopalJMeltonDAIn vivo reprogramming of adult pancreatic exocrine cells to β-cellsNature20084556276321:CAS:528:DC%2BD1cXhtF2hsbvI1875401110.1038/nature073149011918
– reference: CollombatPThe ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into α and subsequently β cellsCell20091384494621:CAS:528:DC%2BD1MXhsVChs7nO19665969279220310.1016/j.cell.2009.05.035
– reference: ChandaSGeneration of induced neuronal cells by the single reprogramming factor ASCL1Stem Cell Rep.201432822961:CAS:528:DC%2BC2cXhtFWitLjL10.1016/j.stemcr.2014.05.020
– reference: BenayounBAH3K4me3 breadth is linked to cell identity and transcriptional consistencyCell20141586736881:CAS:528:DC%2BC2cXht1ymtLjP25083876413789410.1016/j.cell.2014.06.027
– reference: BannisterAJKouzaridesTRegulation of chromatin by histone modificationsCell Res.2011213813951:CAS:528:DC%2BC3MXivVCgurc%3D21321607319342010.1038/cr.2011.22
– reference: AdachiKEsrrb unlocks silenced enhancers for reprogramming to naive pluripotencyCell Stem Cell201823266275.e61:CAS:528:DC%2BC1cXhtFCqtLbM2991014910.1016/j.stem.2018.05.020
– reference: YooASMicroRNA-mediated conversion of human fibroblasts to neuronsNature20114762282311:CAS:528:DC%2BC3MXoslymtr4%3D21753754334886210.1038/nature10323
– reference: XueYDirect conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuitsCell201315282961:CAS:528:DC%2BC3sXmvFSrtQ%3D%3D23313552355202610.1016/j.cell.2012.11.045
– reference: WangQCoBATCH for high-throughput single-cell epigenomic profilingMol. Cell201976206216.e71:CAS:528:DC%2BC1MXhs12jtb7K3147118810.1016/j.molcel.2019.07.015
– reference: QianLIn vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytesNature20124855935981:CAS:528:DC%2BC38XlslSitrY%3D22522929336910710.1038/nature11044Qian et al. demonstrated the feasibility of using in vivo direct reprogramming for heart repair.
– reference: HeinrichCSox2-mediated conversion of NG2 glia into induced neurons in the injured adult cerebral cortexStem Cell Rep.20143100010141:CAS:528:DC%2BC2cXitFOns7zE10.1016/j.stemcr.2014.10.007
– reference: ThorelFConversion of adult pancreatic α-cells to B-cells after extreme B-cell lossNature2010464114911541:CAS:528:DC%2BC3cXkt1aqtLc%3D20364121287763510.1038/nature08894
– reference: NamYJInduction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factorsDevelopment2014141426742781:CAS:528:DC%2BC2MXivFCjtA%3D%3D25344074430291610.1242/dev.114025
– reference: FuJDSrivastavaDDirect reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicineCirc. J.2015792452542574473810.1253/circj.CJ-14-1372
– reference: WhyteWAMaster transcription factors and mediator establish super-enhancers at key cell identity genesCell20131533073191:CAS:528:DC%2BC3sXlvVCrtbg%3D23582322365312910.1016/j.cell.2013.03.035
– reference: FultonDLTFCat: the curated catalog of mouse and human transcription factorsGenome Biol.20091019284633269100010.1186/gb-2009-10-3-r291:CAS:528:DC%2BD1MXksFGrtrs%3D
– reference: FinkelTSignal transduction by mitochondrial oxidantsJ. Biol. Chem.2012287443444401:CAS:528:DC%2BC38XitFahurs%3D2183204510.1074/jbc.R111.271999
– reference: StuartTSatijaRIntegrative single-cell analysisNat. Rev. Genet.2019202572721:CAS:528:DC%2BC1MXmtFKjtbs%3D3069698010.1038/s41576-019-0093-7
– reference: BallasNGrunseichCLuDDSpehJCMandelGREST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesisCell20051216456571:CAS:528:DC%2BD2MXkslelsLY%3D1590747610.1016/j.cell.2005.03.013
– reference: StoneNRContext-specific transcription factor functions regulate epigenomic and transcriptional dynamics during cardiac reprogrammingCell Stem Cell20192587102.e91:CAS:528:DC%2BC1MXhtlWns7vE31271750663209310.1016/j.stem.2019.06.012
– reference: LiuYCRISPR activation screens systematically identify factors that drive neuronal fate and reprogrammingCell Stem Cell201823758771.e81:CAS:528:DC%2BC1cXhvFSqsrbO30318302621476110.1016/j.stem.2018.09.003
– reference: GuttmanMlincRNAs act in the circuitry controlling pluripotency and differentiationNature20114772953001:CAS:528:DC%2BC3MXhtFers7rL21874018317532710.1038/nature10398
– reference: LeeDSSimultaneous profiling of 3D genome structure and DNA methylation in single human cellsNat. Methods20191699910061:CAS:528:DC%2BC1MXhsleltLjE31501549676542310.1038/s41592-019-0547-z
– reference: De La RossaAIn vivo reprogramming of circuit connectivity in postmitotic neocortical neuronsNat. Neurosci.2013161932002329268210.1038/nn.32991:CAS:528:DC%2BC3sXjslGkug%3D%3D
– reference: MagistrettiPJAllamanIA cellular perspective on brain energy metabolism and functional imagingNeuron2015868839011:CAS:528:DC%2BC2MXpt1Snu7w%3D2599613310.1016/j.neuron.2015.03.035
– reference: WangYChemical conversion of mouse fibroblasts into functional dopaminergic neuronsExp. Cell Res.20163472832921:CAS:528:DC%2BC28XhsVWmtb7J2748585810.1016/j.yexcr.2016.07.026
– reference: ZhangLSmall molecules efficiently reprogram human astroglial cells into functional neuronsCell Stem Cell2015177357471:CAS:528:DC%2BC2MXhs1OrsbbE26481520467572610.1016/j.stem.2015.09.012
– reference: JinYThree-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neuronsNat. Biomed. Eng.201825225391:CAS:528:DC%2BC1MXhtFensr7P3094883110.1038/s41551-018-0260-8
– reference: SrivastavaDDeWittNIn vivo cellular reprogramming: the next generationCell2016166138613961:CAS:528:DC%2BC28XhsFSltL3O27610565623400710.1016/j.cell.2016.08.055
– reference: WapinskiOLRapid chromatin switch in the direct reprogramming of fibroblasts to neuronsCell Rep.201720323632471:CAS:528:DC%2BC2sXhsFOhs7nN28954238564637910.1016/j.celrep.2017.09.011
– reference: CusanovichDAA single-cell atlas of in vivo mammalian chromatin accessibilityCell201817413091324.e181:CAS:528:DC%2BC1cXhsVers7fN30078704615830010.1016/j.cell.2018.06.052
– reference: WestAPTLR signalling augments macrophage bactericidal activity through mitochondrial ROSNature20114724764801:CAS:528:DC%2BC3MXlsVShsro%3D21525932346053810.1038/nature09973
– reference: XiaoXEndogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetesCell Stem Cell2018227890.e41:CAS:528:DC%2BC1cXkslGlsw%3D%3D29304344575724910.1016/j.stem.2017.11.020
– reference: SuZNiuWLiuMLZouYZhangCLIn vivo conversion of astrocytes to neurons in the injured adult spinal cordNat. Commun.201452456943510.1038/ncomms43381:CAS:528:DC%2BC2cXmtV2is7c%3D
– reference: BarbagiovanniGKMT2B is selectively required for neuronal transdifferentiation, and its loss exposes dystonia candidate genesCell Rep.20182598810011:CAS:528:DC%2BC1cXhvFyrtrrO30355503621820410.1016/j.celrep.2018.09.067
– reference: SongGDirect reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosisCell Stem Cell2016187978081:CAS:528:DC%2BC28Xjtlersr4%3D2692320110.1016/j.stem.2016.01.010
– reference: YamanakaSInduced pluripotent stem cells: past, present, and futureCell Stem Cell2012106786841:CAS:528:DC%2BC38XosFCiurc%3D2270450710.1016/j.stem.2012.05.005
– reference: RheeCMechanisms of transcription factor-mediated direct reprogramming of mouse embryonic stem cells to trophoblast stem-like cellsNucleic Acids Res.20174510103101141:CAS:528:DC%2BC1cXmtV2nu7o%3D28973471573733410.1093/nar/gkx692
– reference: KaremakerIDVermeulenMSingle-cell DNA methylation profiling: technologies and biological applicationsTrends Biotechnol.2018369529651:CAS:528:DC%2BC1cXot1Ckt7c%3D2972449510.1016/j.tibtech.2018.04.002
– reference: Iwafuchi-DoiMZaretKSPioneer transcription factors in cell reprogrammingGenes Dev.2014282679269225512556426567210.1101/gad.253443.1141:CAS:528:DC%2BC2MXhtlamu7c%3D
– reference: ZhuCAn ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptomeNat. Struct. Mol. Biol.201926106310701:CAS:528:DC%2BC1MXitFWnur7L31695190723156010.1038/s41594-019-0323-x
– reference: NoorN3D printing of personalized thick and perfusable cardiac patches and heartsAdv. Sci.20196190034410.1002/advs.2019003441:CAS:528:DC%2BC1MXhtFWgur7E
– reference: PottSLiebJDSingle-cell ATAC-seq: strength in numbersGenome Biol.20151626294014454616110.1186/s13059-015-0737-71:CAS:528:DC%2BC28XmtVCrtrk%3D
– reference: Gaspar-MaiaAMacroH2A histone variants act as a barrier upon reprogramming towards pluripotencyNat. Commun.201342346300810.1038/ncomms25821:CAS:528:DC%2BC3sXptVGmsbo%3D
– reference: SoufiADonahueGZaretKSFacilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genomeCell201215199410041:CAS:528:DC%2BC38Xhs12gtbrL23159369350813410.1016/j.cell.2012.09.045
– reference: XieHYeMFengRGrafTStepwise reprogramming of B cells into macrophagesCell20041176636761:CAS:528:DC%2BD2cXkvVyhsrc%3D1516341310.1016/S0092-8674(04)00419-2
– reference: LiYTissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAsSci. Rep.201661:CAS:528:DC%2BC28XitFGjsLzF27941896515063910.1038/srep38815
– reference: HiraiHKikyoNInhibitors of suppressive histone modification promote direct reprogramming of fibroblasts to cardiomyocyte-like cellsCardiovasc. Res.20141021881901:CAS:528:DC%2BC2cXks12itLc%3D24477643395862110.1093/cvr/cvu023
– reference: TreutleinBDissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seqNature201653439139527281220492886010.1038/nature183231:CAS:528:DC%2BC28XpsVCqsb8%3DTreutlein et al. described the existence of an alternative reprogramming route in murine neuronal reprogramming using single-cell RNA-seq.
– reference: TangYLiuMLZangTZhangCLDirect reprogramming rather than iPSC-based reprogramming maintains aging hallmarks in human motor neuronsFront. Mol. Neurosci.20171035929163034567677910.3389/fnmol.2017.003591:CAS:528:DC%2BC1cXisVOkur7P
– reference: WelchJDHarteminkAJPrinsJFMATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamicsGenome Biol.20171828738873552527910.1186/s13059-017-1269-01:CAS:528:DC%2BC1cXitVektLfP
– reference: MohamedTMARegulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regenerationCell2018173104116.e121:CAS:528:DC%2BC1cXjslOgs7w%3D29502971597378610.1016/j.cell.2018.02.014
– reference: DavisRLWeintraubHLassarABExpression of a single transfected cDNA converts fibroblasts to myoblastsCell19875198710001:CAS:528:DyaL1cXhvF2iurc%3D369066810.1016/0092-8674(87)90585-XDavis et al. demonstrated, for the first time, that the overexpression of one transcription factor could rewrite cell fate in vitro.
– reference: HuXRegion-restrict astrocytes exhibit heterogeneous susceptibility to neuronal reprogrammingStem Cell Rep.2019122903041:CAS:528:DC%2BC1MXitlCktb8%3D10.1016/j.stemcr.2018.12.017
– reference: JayawardenaTMMicroRNA induced cardiac reprogramming in vivoCirc. Res.20151164184241:CAS:528:DC%2BC2MXhs12kt78%3D2535157610.1161/CIRCRESAHA.116.304510
– reference: TakahashiKYamanakaSA decade of transcription factor-mediated reprogramming to pluripotencyNat. Rev. Mol. Cell Biol.2016171831931:CAS:528:DC%2BC28Xis1artr0%3D2688300310.1038/nrm.2016.8
– reference: TakahashiKYamanakaSInduction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factorsCell20061266636761:CAS:528:DC%2BD28Xpt1aktbs%3D10.1016/j.cell.2006.07.02416904174
– reference: LoewerSLarge intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cellsNat. Genet.201042111311171:CAS:528:DC%2BC3cXhtl2jsbzE21057500304065010.1038/ng.710
– reference: BuenrostroJDIntegrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiationCell201817315351548.e161:CAS:528:DC%2BC1cXosFWhsb0%3D29706549598972710.1016/j.cell.2018.03.074
– reference: Rozenblatt-RosenOStubbingtonMJTRegevATeichmannSAThe human cell atlas: from vision to realityNature20175504514531:CAS:528:DC%2BC2sXhslajtr7M2907228910.1038/550451a
– reference: BlauHMDaleyGQStem cells in the treatment of diseaseN. Engl. J. Med.2019380174817601:CAS:528:DC%2BB3cXnsFGru7c%3D3104282710.1056/NEJMra1716145
– reference: VastenhouwNLSchierAFBivalent histone modifications in early embryogenesisCurr. Opin. Cell Biol.2012243743861:CAS:528:DC%2BC38Xls1eltLs%3D22513113337257310.1016/j.ceb.2012.03.009
– reference: ParkGConversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatmentsBiomaterials2015542012121:CAS:528:DC%2BC2MXltFajsbw%3D2590705310.1016/j.biomaterials.2015.02.029
– reference: LiuZSingle-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyteNature201755110010429072293595498410.1038/nature244541:CAS:528:DC%2BC2sXhslajtr3PLiu et al. constructed the routes of iCM formation using single-cell RNA-seq and discovered the critical role of splicing factor PTBP1 during murine cardiac reprogramming.
– reference: ConacoCOttoSHanJJMandelGReciprocal actions of REST and a microRNA promote neuronal identityProc. Natl Acad. Sci. USA2006103242224271:CAS:528:DC%2BD28XhslGjtLo%3D1646191810.1073/pnas.05110411031413753
– reference: JainAKLncPRESS1 Is a p53-regulated LncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56Mol. Cell2016649679811:CAS:528:DC%2BC28XitVSms7bO27912097513779410.1016/j.molcel.2016.10.039
– reference: GrandeAEnvironmental impact on direct neuronal reprogramming in vivo in the adult brainNat. Commun.201342397443310.1038/ncomms3373
– reference: HeallenTHippo pathway inhibits wnt signaling to restrain cardiomyocyte proliferation and heart sizeScience20113324584611:CAS:528:DC%2BC3MXkvValsrw%3D21512031313374310.1126/science.1199010
– reference: LiHChenGIn vivo reprogramming for CNS repair: regenerating neurons endogenous glial cellsNeuron2016917287381:CAS:528:DC%2BC28Xhtlyju7fM27537482546636410.1016/j.neuron.2016.08.004
– reference: BarkerRAParmarMStuderLTakahashiJHuman trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new eraCell Stem Cell2017215695731:CAS:528:DC%2BC2sXhslOju7vK2910001010.1016/j.stem.2017.09.014
– reference: SongKHeart repair by reprogramming non-myocytes with cardiac transcription factorsNature20124855996041:CAS:528:DC%2BC38XnvVyqsbg%3D22660318336739010.1038/nature11139
– reference: BramswigNCEpigenomic plasticity enables human pancreatic α to β cell reprogrammingJ. Clin. Invest.2013123127512841:CAS:528:DC%2BC3sXjvVyht70%3D23434589358214010.1172/JCI66514
– reference: ChengHReprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitorsNat. Commun.201671:CAS:528:DC%2BC28XhvFaht7rE27869129512133210.1038/ncomms13396
– reference: HashimotoHCardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancersCell Stem Cell2019256986.e51:CAS:528:DC%2BC1MXpsVWlt78%3D31080136675426610.1016/j.stem.2019.03.022
– reference: CliffTSDaltonSMetabolic switching and cell fate decisions: implications for pluripotency, reprogramming and developmentCurr. Opin. Genet. Dev.20174644491:CAS:528:DC%2BC2sXhtVGnsLnE28662447584206310.1016/j.gde.2017.06.008
– reference: TreutleinBReconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seqNature20145093713751:CAS:528:DC%2BC2cXotVyqtLk%3D24739965414585310.1038/nature13173
– reference: JayawardenaTMMicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytesCirc. Res.2012110146514731:CAS:528:DC%2BC38XnsVCisr8%3D22539765338062410.1161/CIRCRESAHA.112.269035
– reference: DaiPHaradaYTakamatsuTHighly efficient direct conversion of human fibroblasts to neuronal cells by chemical compoundsJ. Clin. Biochem. Nutr.2015561661701:CAS:528:DC%2BC2MXhtlKrt7vF26060345445407810.3164/jcbn.15-39
– reference: Takahashi, J. Strategies for bringing stem cell-derived dopamine neurons to the clinic: the Kyoto trial. in Progress in Brain Research 230, 213–226 (Elsevier B.V., 2017).
– reference: QianHReversing a model of Parkinson’s disease with in situ converted nigral neuronsNature20205825505561:CAS:528:DC%2BB3cXht1ClsrvP32581380752145510.1038/s41586-020-2388-4
– reference: MuraokaNMiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signaturesEMBO J.201433156515811:CAS:528:DC%2BC2cXhsVWrtLrM24920580419805210.15252/embj.201387605
– reference: GascónSMasserdottiGRussoGLGötzMDirect neuronal reprogramming: achievements, hurdles, and new roads to successCell Stem Cell20172118342868686610.1016/j.stem.2017.06.0111:CAS:528:DC%2BC2sXhtFChu7vO
– reference: GascónSIdentification and successful negotiation of a metabolic checkpoint in direct neuronal reprogrammingCell Stem Cell2016183964092674841810.1016/j.stem.2015.12.0031:CAS:528:DC%2BC28XhtlKrsw%3D%3DGascón et al. revealed a critical metabolic checkpoint important for successful murine neuronal reprogramming in vivo and in vitro.
– reference: LiWLong-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cellsNat. Biotechnol.201432122312301:CAS:528:DC%2BC2cXhvFKlsrnK2540261310.1038/nbt.3082
– reference: FangHTGlobal H3.3 dynamic deposition defines its bimodal role in cell fate transitionNat. Commun.2018929670118590663210.1038/s41467-018-03904-71:CAS:528:DC%2BC1cXhtFCjurrE
– reference: MahataBSingle-cell RNA sequencing reveals T helper cells synthesizing steroids De Novo to contribute to immune homeostasisCell Rep.20147113011421:CAS:528:DC%2BC2cXnslGnurk%3D24813893403999110.1016/j.celrep.2014.04.011
– reference: SmithZDSindhuCMeissnerAMolecular features of cellular reprogramming and developmentNat. Rev. Mol. Cell Biol.2016171391541:CAS:528:DC%2BC28Xis1artrg%3D26883001
– reference: BaoXThe p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promotersCell Res.20152580921:CAS:528:DC%2BC2cXitFyhurbN2551234110.1038/cr.2014.165
– reference: BuganimYFaddahDAJaenischRMechanisms and models of somatic cell reprogrammingNat. Rev. Genet.2013144274391:CAS:528:DC%2BC3sXnslahsbk%3D23681063406015010.1038/nrg3473
– reference: ChakrabortySA CRISPR/Cas9-based system for reprogramming cell lineage specificationStem Cell Rep.201439409471:CAS:528:DC%2BC2cXhvVWms7fN10.1016/j.stemcr.2014.09.013
– reference: CaoJJoint profiling of chromatin accessibility and gene expression in thousands of single cellsScience2018361138013851:CAS:528:DC%2BC1cXhslOrur3I30166440657101310.1126/science.aau0730
– reference: MacoskoEZHighly parallel genome-wide expression profiling of individual cells using nanoliter dropletsCell2015161120212141:CAS:528:DC%2BC2MXpt1Sgt7o%3D26000488448113910.1016/j.cell.2015.05.002
– reference: RouauxCArlottaPDirect lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivoNat. Cell Biol.2013152142211:CAS:528:DC%2BC3sXhtFSnt7s%3D23334497411859110.1038/ncb2660
– reference: TrokovicRWeltnerJNoisaPRaivioTOtonkoskiTCombined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cellsStem Cell Res.2015152542622609615210.1016/j.scr.2015.06.001
– reference: ColasanteGRapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogrammingCell Stem Cell2015177197341:CAS:528:DC%2BC2MXhslGltbnL2652672610.1016/j.stem.2015.09.002
– reference: CirilloLAOpening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4Mol. Cell200292792891:CAS:528:DC%2BD38XhvFKhu7o%3D1186460210.1016/S1097-2765(02)00459-8
– reference: HorisawaKThe dynamics of transcriptional activation by hepatic reprogramming factorsMol. Cell202079660676.e81:CAS:528:DC%2BB3cXhsFGit7%2FK3275559310.1016/j.molcel.2020.07.012
– reference: ZhouHDicksonMEKimMSBassel-DubyROlsonENAkt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytesProc. Natl Acad. Sci. USA201511211864118691:CAS:528:DC%2BC2MXhsVOmtb3P2635412110.1073/pnas.15162371124586885
– reference: LiXMitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cellsCan. J. Physiol. Pharmacol.20169524725227925481533649210.1139/cjpp-2016-05151:CAS:528:DC%2BC28XitVajsrvO
– reference: HuangPInduction of functional hepatocyte-like cells from mouse fibroblasts by defined factorsNature20114753863891:CAS:528:DC%2BC3MXmsFyqsro%3D2156249210.1038/nature10116
– reference: WangLStoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogrammingCirc. Res.20151162372442541613310.1161/CIRCRESAHA.116.3055471:CAS:528:DC%2BC2MXpslGruw%3D%3D
– reference: WangLImproved generation of induced cardiomyocytes using a polycistronic construct expressing optimal ratio of Gata4, Mef2c and Tbx5J. Vis. Exp.201510553426
– reference: BernsteinBEA bivalent chromatin structure marks key developmental genes in embryonic stem cellsCell20061253153261:CAS:528:DC%2BD28Xkt1Oqur4%3D1663081910.1016/j.cell.2006.02.041
– reference: EraslanGAvsecŽGagneurJTheisFJDeep learning: new computational modelling techniques for genomicsNat. Rev. Genet.2019203894031:CAS:528:DC%2BC1MXosFKgsr4%3D3097180610.1038/s41576-019-0122-6
– reference: TorperOGeneration of induced neurons via direct conversion in vivoProc. Natl Acad. Sci. USA2013110703870431:CAS:528:DC%2BC3sXot1Ghtb4%3D2353023510.1073/pnas.13038291103637783
– reference: LuginbühlJSivaramanDMShinJWThe essentiality of non-coding RNAs in cell reprogrammingNoncoding RNA Res.20172748230159423609640310.1016/j.ncrna.2017.04.002
– reference: MagnussonJPA latent neurogenic program in astrocytes regulated by Notch signaling in the mouseScience20143462372411:CAS:528:DC%2BC2cXhs12nsLbM2530162810.1126/science.346.6206.237
– reference: CaoNConversion of human fibroblasts into functional cardiomyocytes by small moleculesScience2016352121612201:CAS:528:DC%2BC28XoslOqs7Y%3D2712723910.1126/science.aaf1502
– reference: Dal-PraSHodgkinsonCPMirotsouMKirsteIDzauVJDemethylation of H3K27 is essential for the induction of direct cardiac reprogramming by MIR ComboCirculation Res.2017120140314131:CAS:528:DC%2BC2sXmslaqtr8%3D2820971810.1161/CIRCRESAHA.116.308741
– reference: La MannoGRNA velocity of single cellsNature201856049449830089906613080110.1038/s41586-018-0414-61:CAS:528:DC%2BC1cXhsVynsrrL
– reference: XinMHippo pathway effector Yap promotes cardiac regenerationProc. Natl Acad. Sci. USA201311013839138441:CAS:528:DC%2BC3sXhtlKqu7jO2391838810.1073/pnas.13131921103752208
– reference: ZarbinMSuginoITownes-AndersonEConcise review: update on retinal pigment epithelium transplantation for age-related macular degenerationStem Cell Transl. Med.2019846647710.1002/sctm.18-0282
– reference: LiHChenGIn vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cellsNeuron2016917287381:CAS:528:DC%2BC28Xhtlyju7fM27537482546636410.1016/j.neuron.2016.08.004
– reference: SekiyaSSuzukiADirect conversion of mouse fibroblasts to hepatocyte-like cells by defined factorsNature20114753903931:CAS:528:DC%2BC3MXotlClsLk%3D2171629110.1038/nature10263
– reference: KiselevVYAndrewsTSHembergMChallenges in unsupervised clustering of single-cell RNA-seq dataNat. Rev. Genet.2019202732821:CAS:528:DC%2BC1MXlvFSit7s%3D3061734110.1038/s41576-018-0088-9
– reference: BuffoAOrigin and progeny of reactive gliosis: a source of multipotent cells in the injured brainProc. Natl Acad. Sci. USA2008105358135861:CAS:528:DC%2BD1cXjtlars7k%3D1829956510.1073/pnas.07090021052265175
– reference: SpektorRTippensNDMimosoCASolowayPDMethyl-ATAC-seq measures DNA methylation at accessible chromatinGenome Res.2019299699771:CAS:528:DC%2BC1MXhs1GrsrrN31160376658105210.1101/gr.245399.118
– reference: ZhengXMetabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylationeLife2016527282387496319810.7554/eLife.133741:CAS:528:DC%2BC1cXmsFams7c%3D
– reference: GuoZIn vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease modelCell Stem Cell2014141882021:CAS:528:DC%2BC3sXhvFyktrzJ2436088310.1016/j.stem.2013.12.001
– reference: ZhouHZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expressionGenes Dev.201731177017831:CAS:528:DC%2BC2sXhslCnsLvI28982760566667510.1101/gad.305482.117
– reference: AngCEThe novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorderseLife2019830628890638084110.7554/eLife.41770
– reference: NaganoTCell-cycle dynamics of chromosomal organization at single-cell resolutionNature201754761671:CAS:528:DC%2BC2sXhtFaqt7bN28682332556781210.1038/nature23001
– reference: YaoKRestoration of vision after de novo genesis of rod photoreceptors in mammalian retinasNature20185604844881:CAS:528:DC%2BC1cXhsFahsbrM30111842610741610.1038/s41586-018-0425-3
– reference: HenikoffSSmithMMHistone variants and epigeneticsCold Spring Harb. Perspect. Biol.20157a01936425561719429216210.1101/cshperspect.a0193641:CAS:528:DC%2BC28XhsFOqu7zF
– reference: ZhengGXYMassively parallel digital transcriptional profiling of single cellsNat. Commun.201781:CAS:528:DC%2BC2sXht1WlsLo%3D28091601524181810.1038/ncomms14049
– reference: LiuYAscl1 converts dorsal midbrain astrocytes into functional neurons in vivoJ. Neurosci.201535933693551:CAS:528:DC%2BC2MXhtFymtb%2FN26109658660519310.1523/JNEUROSCI.3975-14.2015
– reference: TangFmRNA-Seq whole-transcriptome analysis of a single cellNat. Methods200963773821:CAS:528:DC%2BD1MXktVKgu78%3D1934998010.1038/nmeth.1315
– reference: MathisonM‘Triplet’ polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectorsJ. Thorac. Cardiovasc. Surg.201414816561664.e21:CAS:528:DC%2BC2cXmvVWgtr0%3D2475533210.1016/j.jtcvs.2014.03.033
– reference: DingerMELong noncoding RNAs in mouse embryonic stem cell pluripotency and differentiationGenome Res.200818143314451:CAS:528:DC%2BD1cXhtV2qsr3N18562676252770410.1101/gr.078378.108
– reference: KulessaHFramptonJGrafTGATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblastsGenes Dev.19959125012621:CAS:528:DyaK2MXlvFShsLg%3D775894910.1101/gad.9.10.1250
– reference: MiyamotoKDirect in vivo reprogramming with sendai virus vectors improves cardiac function after myocardial infarctionCell Stem Cell20182291103.e51:CAS:528:DC%2BC2sXitVehtLzM2927614110.1016/j.stem.2017.11.010
– reference: HuangPDirect reprogramming of human fibroblasts to functional and expandable hepatocytesCell Stem Cell2014143703841:CAS:528:DC%2BC2cXjsVWmtr0%3D2458292710.1016/j.stem.2014.01.003
– reference: LiWIn vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypeseLife201431846
– reference: AbernathyDGMicroRNAs induce a permissive chromatin environment that enables neuronal subtype-specific reprogramming of adult human fibroblastsCell Stem Cell201721332348.e91:CAS:528:DC%2BC2sXhsVOhu7%2FI28886366567923910.1016/j.stem.2017.08.002
– reference: GrünDSingle-cell messenger RNA sequencing reveals rare intestinal cell typesNature20155252512552628746710.1038/nature149661:CAS:528:DC%2BC2MXhtlKlu7zJ
– reference: YuCLiuKTangSDingSChemical approaches to cell reprogrammingCurr. Opin. Genet. Dev.201428505625461450474724410.1016/j.gde.2014.09.0061:CAS:528:DC%2BC2cXhs1Gms7nF
– reference: ZhouYBmi1 is a key epigenetic barrier to direct cardiac reprogrammingCell Stem Cell2016183823951:CAS:528:DC%2BC28XivFyiur4%3D26942853477917810.1016/j.stem.2016.02.003
– reference: BuganimYSingle-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phaseCell2012150120912221:CAS:528:DC%2BC38XhtlKrs7vM22980981345765610.1016/j.cell.2012.08.023
– reference: CahanPCellNet: network biology applied to stem cell engineeringCell20141589039151:CAS:528:DC%2BC2cXhtlymtLnK25126793423368010.1016/j.cell.2014.07.020
– reference: HumeresCFrangogiannisNGFibroblasts in the infarcted, remodeling, and failing heartJACC Basic. Transl. Sci.2019444946731312768661000210.1016/j.jacbts.2019.02.006
– reference: NiuWIn vivo reprogramming of astrocytes to neuroblasts in the adult brainNat. Cell Biol.201315116411751:CAS:528:DC%2BC3sXhsVyqurrI2405630210.1038/ncb2843
– reference: IedaMDirect reprogramming of fibroblasts into functional cardiomyocytes by defined factorsCell20101423753861:CAS:528:DC%2BC3cXpvFKrsbY%3D20691899291984410.1016/j.cell.2010.07.002Idea et al. identified reprogramming factors that could reprogramme mouse cardiac fibroblasts to cardiomyocyte-like cells in vitro.
– volume: 161
  start-page: 555
  year: 2015
  ident: 335_CR84
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.017
– volume: 68
  start-page: 1023
  year: 2017
  ident: 335_CR106
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.11.030
– volume: 13
  start-page: 833
  year: 2016
  ident: 335_CR174
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3961
– volume: 3
  start-page: 1000
  year: 2014
  ident: 335_CR37
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2014.10.007
– volume: 108
  start-page: 7838
  year: 2011
  ident: 335_CR99
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1103113108
– volume: 161
  start-page: 1202
  year: 2015
  ident: 335_CR150
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 12
  start-page: 290
  year: 2019
  ident: 335_CR49
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2018.12.017
– volume: 148
  start-page: 1656
  year: 2014
  ident: 335_CR94
  publication-title: J. Thorac. Cardiovasc. Surg.
  doi: 10.1016/j.jtcvs.2014.03.033
– volume: 151
  start-page: 994
  year: 2012
  ident: 335_CR88
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.045
– volume: 20
  start-page: 273
  year: 2019
  ident: 335_CR152
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0088-9
– volume: 347
  start-page: 283
  year: 2016
  ident: 335_CR69
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2016.07.026
– volume: 37
  start-page: 547
  year: 2019
  ident: 335_CR158
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0071-9
– volume: 20
  start-page: 389
  year: 2019
  ident: 335_CR175
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0122-6
– volume: 116
  start-page: 418
  year: 2014
  ident: 335_CR32
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.304510
– volume: 125
  start-page: 315
  year: 2006
  ident: 335_CR112
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.041
– volume: 76
  start-page: 206
  year: 2019
  ident: 335_CR170
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.07.015
– volume: 37
  start-page: 925
  year: 2019
  ident: 335_CR185
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0206-z
– volume: 79
  start-page: 660
  year: 2020
  ident: 335_CR95
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.07.012
– volume: 472
  start-page: 476
  year: 2011
  ident: 335_CR146
  publication-title: Nature
  doi: 10.1038/nature09973
– volume: 352
  start-page: 1216
  year: 2016
  ident: 335_CR68
  publication-title: Science
  doi: 10.1126/science.aaf1502
– volume: 14
  start-page: 370
  year: 2014
  ident: 335_CR105
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.01.003
– volume: 21
  start-page: 569
  year: 2017
  ident: 335_CR28
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.09.014
– volume: 380
  start-page: 1748
  year: 2019
  ident: 335_CR30
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1716145
– volume: 6
  year: 2016
  ident: 335_CR147
  publication-title: Sci. Rep.
  doi: 10.1038/srep23017
– volume: 18
  start-page: 797
  year: 2016
  ident: 335_CR39
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.01.010
– volume: 15
  start-page: 254
  year: 2015
  ident: 335_CR82
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2015.06.001
– ident: 335_CR1
– volume: 192
  start-page: 500
  year: 2019
  ident: 335_CR65
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.11.034
– volume: 42
  start-page: 1113
  year: 2010
  ident: 335_CR130
  publication-title: Nat. Genet.
  doi: 10.1038/ng.710
– volume: 117
  start-page: 663
  year: 2004
  ident: 335_CR15
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00419-2
– volume: 20
  start-page: 3236
  year: 2017
  ident: 335_CR96
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.011
– volume: 509
  start-page: 371
  year: 2014
  ident: 335_CR167
  publication-title: Nature
  doi: 10.1038/nature13173
– volume: 475
  start-page: 390
  year: 2011
  ident: 335_CR21
  publication-title: Nature
  doi: 10.1038/nature10263
– volume: 16
  start-page: 999
  year: 2019
  ident: 335_CR190
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0547-z
– volume: 548
  start-page: 103
  year: 2017
  ident: 335_CR9
  publication-title: Nature
  doi: 10.1038/nature23283
– volume: 64
  start-page: 967
  year: 2016
  ident: 335_CR135
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.10.039
– volume: 547
  start-page: 61
  year: 2017
  ident: 335_CR169
  publication-title: Nature
  doi: 10.1038/nature23001
– volume: 18
  year: 2017
  ident: 335_CR173
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1269-0
– volume: 9
  start-page: 279
  year: 2002
  ident: 335_CR86
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00459-8
– volume: 91
  start-page: 728
  year: 2016
  ident: 335_CR10
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.08.004
– volume: 121
  start-page: 645
  year: 2005
  ident: 335_CR125
  publication-title: Cell
  doi: 10.1016/j.cell.2005.03.013
– volume: 4
  start-page: 449
  year: 2019
  ident: 335_CR45
  publication-title: JACC Basic. Transl. Sci.
  doi: 10.1016/j.jacbts.2019.02.006
– volume: 8
  year: 2017
  ident: 335_CR151
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– volume: 126
  start-page: 663
  year: 2006
  ident: 335_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 25
  start-page: 69
  year: 2019
  ident: 335_CR90
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2019.03.022
– volume: 10
  start-page: 359
  year: 2017
  ident: 335_CR177
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2017.00359
– volume: 7
  start-page: 1130
  year: 2014
  ident: 335_CR166
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.04.011
– volume: 25
  start-page: 988
  year: 2018
  ident: 335_CR100
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.09.067
– volume: 166
  start-page: 1386
  year: 2016
  ident: 335_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.055
– volume: 46
  start-page: 44
  year: 2017
  ident: 335_CR138
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2017.06.008
– volume: 29
  start-page: 969
  year: 2019
  ident: 335_CR191
  publication-title: Genome Res.
  doi: 10.1101/gr.245399.118
– volume: 16
  start-page: 507
  year: 2016
  ident: 335_CR98
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2016.02.037
– volume: 2
  start-page: 74
  year: 2017
  ident: 335_CR120
  publication-title: Noncoding RNA Res.
  doi: 10.1016/j.ncrna.2017.04.002
– volume: 50
  year: 2018
  ident: 335_CR149
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-018-0071-8
– volume: 582
  start-page: 550
  year: 2020
  ident: 335_CR81
  publication-title: Nature
  doi: 10.1038/s41586-020-2388-4
– volume: 31
  start-page: 516
  year: 2015
  ident: 335_CR113
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2015.07.005
– volume: 20
  start-page: 3014
  year: 2017
  ident: 335_CR143
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.005
– volume: 32
  start-page: 1223
  year: 2014
  ident: 335_CR43
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3082
– volume: 35
  start-page: 9336
  year: 2015
  ident: 335_CR57
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3975-14.2015
– volume: 18
  start-page: 396
  year: 2016
  ident: 335_CR140
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.12.003
– volume: 28
  start-page: 50
  year: 2014
  ident: 335_CR73
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2014.09.006
– volume: 550
  start-page: 451
  year: 2017
  ident: 335_CR161
  publication-title: Nature
  doi: 10.1038/550451a
– volume: 25
  start-page: 1013
  year: 2015
  ident: 335_CR66
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.99
– volume: 525
  start-page: 251
  year: 2015
  ident: 335_CR164
  publication-title: Nature
  doi: 10.1038/nature14966
– volume: 26
  start-page: 1063
  year: 2019
  ident: 335_CR189
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0323-x
– volume: 142
  start-page: 375
  year: 2010
  ident: 335_CR18
  publication-title: Cell
  doi: 10.1016/j.cell.2010.07.002
– volume: 68
  start-page: 668
  year: 2010
  ident: 335_CR51
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.09.009
– volume: 144
  start-page: 541
  year: 2017
  ident: 335_CR139
  publication-title: Development
  doi: 10.1242/dev.128389
– volume: 3
  start-page: 282
  year: 2014
  ident: 335_CR89
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2014.05.020
– volume: 560
  start-page: 494
  year: 2018
  ident: 335_CR160
  publication-title: Nature
  doi: 10.1038/s41586-018-0414-6
– volume: 5
  year: 2014
  ident: 335_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4338
– volume: 25
  start-page: 69
  year: 2013
  ident: 335_CR131
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2013.03.002
– volume: 20
  start-page: 257
  year: 2019
  ident: 335_CR162
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0093-7
– volume: 2
  start-page: 26
  year: 2012
  ident: 335_CR110
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2012.00026
– volume: 158
  start-page: 903
  year: 2014
  ident: 335_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2014.07.020
– volume: 51
  start-page: 987
  year: 1987
  ident: 335_CR2
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90585-X
– volume: 17
  start-page: 195
  year: 2015
  ident: 335_CR71
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.06.003
– volume: 23
  start-page: 758
  year: 2018
  ident: 335_CR64
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.09.003
– volume: 110
  start-page: 1465
  year: 2012
  ident: 335_CR24
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.112.269035
– volume: 15
  start-page: 214
  year: 2013
  ident: 335_CR53
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2660
– volume: 36
  start-page: 952
  year: 2018
  ident: 335_CR184
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.04.002
– volume: 105
  start-page: 53426
  year: 2015
  ident: 335_CR92
  publication-title: J. Vis. Exp.
– volume: 9
  start-page: 1250
  year: 1995
  ident: 335_CR14
  publication-title: Genes Dev.
  doi: 10.1101/gad.9.10.1250
– volume: 110
  start-page: 7038
  year: 2013
  ident: 335_CR36
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1303829110
– volume: 17
  start-page: 183
  year: 2016
  ident: 335_CR6
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.8
– volume: 475
  start-page: 386
  year: 2011
  ident: 335_CR22
  publication-title: Nature
  doi: 10.1038/nature10116
– volume: 45
  start-page: 10978
  year: 2017
  ident: 335_CR165
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx754
– volume: 16
  start-page: 133
  year: 2015
  ident: 335_CR163
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3833
– volume: 18
  start-page: 1433
  year: 2008
  ident: 335_CR136
  publication-title: Genome Res.
  doi: 10.1101/gr.078378.108
– volume: 103
  start-page: 2422
  year: 2006
  ident: 335_CR126
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0511041103
– volume: 10
  start-page: 1841
  year: 2015
  ident: 335_CR62
  publication-title: Int. J. Nanomed.
– volume: 507
  start-page: 462
  year: 2014
  ident: 335_CR181
  publication-title: Nature
  doi: 10.1038/nature13182
– volume: 8
  start-page: 466
  year: 2019
  ident: 335_CR29
  publication-title: Stem Cell Transl. Med.
  doi: 10.1002/sctm.18-0282
– volume: 41
  start-page: D808
  year: 2012
  ident: 335_CR182
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1094
– volume: 105
  start-page: 3581
  year: 2008
  ident: 335_CR50
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0709002105
– volume: 24
  start-page: 374
  year: 2012
  ident: 335_CR111
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2012.03.009
– volume: 173
  start-page: 1535
  year: 2018
  ident: 335_CR168
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.074
– volume: 464
  start-page: 1149
  year: 2010
  ident: 335_CR44
  publication-title: Nature
  doi: 10.1038/nature08894
– volume: 152
  start-page: 82
  year: 2013
  ident: 335_CR122
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.045
– volume: 54
  start-page: 201
  year: 2015
  ident: 335_CR67
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.02.029
– volume: 18
  start-page: 382
  year: 2016
  ident: 335_CR80
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.02.003
– volume: 95
  start-page: 247
  year: 2016
  ident: 335_CR144
  publication-title: Can. J. Physiol. Pharmacol.
  doi: 10.1139/cjpp-2016-0515
– volume: 6
  year: 2016
  ident: 335_CR47
  publication-title: Sci. Rep.
  doi: 10.1038/srep38815
– volume: 56
  start-page: 130
  year: 2010
  ident: 335_CR142
  publication-title: J. Cardiovasc. Pharmacol.
  doi: 10.1097/FJC.0b013e3181e74a14
– volume: 16
  start-page: 991
  year: 2019
  ident: 335_CR187
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0502-z
– volume: 346
  start-page: 237
  year: 2014
  ident: 335_CR48
  publication-title: Science
  doi: 10.1126/science.346.6206.237
– volume: 287
  start-page: 4434
  year: 2012
  ident: 335_CR145
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R111.271999
– volume: 14
  start-page: 188
  year: 2014
  ident: 335_CR35
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.12.001
– volume: 141
  start-page: 4267
  year: 2014
  ident: 335_CR60
  publication-title: Development
  doi: 10.1242/dev.114025
– volume: 534
  start-page: 391
  year: 2016
  ident: 335_CR77
  publication-title: Nature
  doi: 10.1038/nature18323
– volume: 112
  start-page: 11864
  year: 2015
  ident: 335_CR91
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1516237112
– volume: 5
  year: 2016
  ident: 335_CR137
  publication-title: eLife
  doi: 10.7554/eLife.13374
– volume: 22
  start-page: 91
  year: 2018
  ident: 335_CR61
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.11.010
– volume: 23
  start-page: 266
  year: 2018
  ident: 335_CR128
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.05.020
– volume: 31
  start-page: 522
  year: 2012
  ident: 335_CR134
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.459
– volume: 477
  start-page: 295
  year: 2011
  ident: 335_CR133
  publication-title: Nature
  doi: 10.1038/nature10398
– volume: 6
  start-page: 377
  year: 2009
  ident: 335_CR148
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1315
– volume: 10
  year: 2009
  ident: 335_CR178
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r29
– volume: 17
  start-page: 139
  year: 2016
  ident: 335_CR7
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.6
– volume: 91
  start-page: 728
  year: 2016
  ident: 335_CR31
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.08.004
– volume: 153
  start-page: 307
  year: 2013
  ident: 335_CR108
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.035
– volume: 150
  start-page: 1209
  year: 2012
  ident: 335_CR159
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.023
– volume: 551
  start-page: 100
  year: 2017
  ident: 335_CR75
  publication-title: Nature
  doi: 10.1038/nature24454
– volume: 4
  year: 2013
  ident: 335_CR115
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2582
– volume: 32
  start-page: 29
  year: 2016
  ident: 335_CR104
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2015.11.001
– volume: 48
  start-page: 331
  year: 2016
  ident: 335_CR179
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3487
– volume: 485
  start-page: 593
  year: 2012
  ident: 335_CR11
  publication-title: Nature
  doi: 10.1038/nature11044
– volume: 14
  start-page: 427
  year: 2013
  ident: 335_CR5
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3473
– volume: 8
  year: 2019
  ident: 335_CR119
  publication-title: eLife
  doi: 10.7554/eLife.40197
– volume: 2
  start-page: 522
  year: 2018
  ident: 335_CR46
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0260-8
– volume: 16
  start-page: 193
  year: 2013
  ident: 335_CR52
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3299
– volume: 174
  start-page: 1309
  year: 2018
  ident: 335_CR127
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.052
– volume: 173
  start-page: 104
  year: 2018
  ident: 335_CR153
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.014
– volume: 79
  start-page: 245
  year: 2015
  ident: 335_CR41
  publication-title: Circ. J.
  doi: 10.1253/circj.CJ-14-1372
– volume: 4
  start-page: 446
  year: 2020
  ident: 335_CR78
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-0539-4
– volume: 517
  start-page: 583
  year: 2014
  ident: 335_CR183
  publication-title: Nature
  doi: 10.1038/nature14136
– volume: 35
  start-page: 69
  year: 2017
  ident: 335_CR83
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3749
– volume: 21
  start-page: 381
  year: 2011
  ident: 335_CR97
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.22
– volume: 2016
  start-page: 3162363
  year: 2016
  ident: 335_CR116
  publication-title: Stem Cells Int.
  doi: 10.1155/2016/3162363
– volume: 361
  start-page: 1380
  year: 2018
  ident: 335_CR171
  publication-title: Science
  doi: 10.1126/science.aau0730
– volume: 476
  start-page: 228
  year: 2011
  ident: 335_CR23
  publication-title: Nature
  doi: 10.1038/nature10323
– volume: 21
  start-page: 332
  year: 2017
  ident: 335_CR123
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.08.002
– volume: 463
  start-page: 1035
  year: 2010
  ident: 335_CR20
  publication-title: Nature
  doi: 10.1038/nature08797
– volume: 15
  start-page: 1164
  year: 2013
  ident: 335_CR33
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2843
– volume: 22
  start-page: 78
  year: 2018
  ident: 335_CR54
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.11.020
– volume: 177
  start-page: 1873
  year: 2019
  ident: 335_CR172
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.006
– volume: 560
  start-page: 484
  year: 2018
  ident: 335_CR40
  publication-title: Nature
  doi: 10.1038/s41586-018-0425-3
– volume: 138
  start-page: 449
  year: 2009
  ident: 335_CR55
  publication-title: Cell
  doi: 10.1016/j.cell.2009.05.035
– volume: 33
  start-page: 1565
  year: 2014
  ident: 335_CR121
  publication-title: EMBO J.
  doi: 10.15252/embj.201387605
– volume: 25
  start-page: 485
  year: 2011
  ident: 335_CR102
  publication-title: Genes Dev.
  doi: 10.1101/gad.2019811
– volume: 5
  start-page: 763
  year: 2015
  ident: 335_CR180
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2015.09.016
– volume: 28
  start-page: 2679
  year: 2014
  ident: 335_CR85
  publication-title: Genes Dev.
  doi: 10.1101/gad.253443.114
– volume: 1
  start-page: 16071
  year: 2016
  ident: 335_CR74
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.71
– volume: 45
  start-page: 10103
  year: 2017
  ident: 335_CR109
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx692
– volume: 8
  year: 2019
  ident: 335_CR129
  publication-title: eLife
  doi: 10.7554/eLife.41770
– volume: 25
  start-page: 87
  year: 2019
  ident: 335_CR13
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2019.06.012
– volume: 56
  start-page: 166
  year: 2015
  ident: 335_CR70
  publication-title: J. Clin. Biochem. Nutr.
  doi: 10.3164/jcbn.15-39
– volume: 332
  start-page: 458
  year: 2011
  ident: 335_CR156
  publication-title: Science
  doi: 10.1126/science.1199010
– volume: 16
  start-page: 119
  year: 2015
  ident: 335_CR26
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.01.013
– volume: 9
  year: 2018
  ident: 335_CR117
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03904-7
– volume: 485
  start-page: 599
  year: 2012
  ident: 335_CR19
  publication-title: Nature
  doi: 10.1038/nature11139
– volume: 102
  start-page: 188
  year: 2014
  ident: 335_CR107
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvu023
– volume: 455
  start-page: 627
  year: 2008
  ident: 335_CR17
  publication-title: Nature
  doi: 10.1038/nature07314
– volume: 25
  start-page: 80
  year: 2015
  ident: 335_CR132
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.165
– volume: 16
  year: 2015
  ident: 335_CR186
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0737-7
– volume: 116
  start-page: 418
  year: 2015
  ident: 335_CR25
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.304510
– volume: 4
  year: 2013
  ident: 335_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3373
– volume: 155
  start-page: 621
  year: 2013
  ident: 335_CR87
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.028
– volume: 7
  year: 2016
  ident: 335_CR118
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13396
– volume: 14
  start-page: 263
  year: 2017
  ident: 335_CR188
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4155
– volume: 46
  start-page: 73
  year: 2018
  ident: 335_CR124
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2018.06.007
– volume: 25
  start-page: 731
  year: 2006
  ident: 335_CR16
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.09.011
– volume: 17
  start-page: 719
  year: 2015
  ident: 335_CR58
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.09.002
– volume: 21
  start-page: 18
  year: 2017
  ident: 335_CR42
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.06.011
– volume: 123
  start-page: 1275
  year: 2013
  ident: 335_CR56
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI66514
– volume: 7
  start-page: a019364
  year: 2015
  ident: 335_CR114
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a019364
– volume: 110
  start-page: 13839
  year: 2013
  ident: 335_CR154
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1313192110
– volume: 158
  start-page: 673
  year: 2014
  ident: 335_CR101
  publication-title: Cell
  doi: 10.1016/j.cell.2014.06.027
– volume: 25
  start-page: 1491
  year: 2015
  ident: 335_CR157
  publication-title: Genome Res.
  doi: 10.1101/gr.190595.115
– volume: 25
  start-page: 149
  year: 2019
  ident: 335_CR76
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2019.05.020
– volume: 10
  start-page: 678
  year: 2012
  ident: 335_CR4
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.05.005
– volume: 120
  start-page: 1403
  year: 2017
  ident: 335_CR103
  publication-title: Circulation Res.
  doi: 10.1161/CIRCRESAHA.116.308741
– volume: 6
  start-page: 1900344
  year: 2019
  ident: 335_CR79
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900344
– volume: 86
  start-page: 883
  year: 2015
  ident: 335_CR141
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.03.035
– volume: 550
  start-page: 260
  year: 2017
  ident: 335_CR155
  publication-title: Nature
  doi: 10.1038/nature24045
– volume: 17
  start-page: 735
  year: 2015
  ident: 335_CR72
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.09.012
– volume: 31
  start-page: 1770
  year: 2017
  ident: 335_CR176
  publication-title: Genes Dev.
  doi: 10.1101/gad.305482.117
– ident: 335_CR27
  doi: 10.1016/bs.pbr.2016.11.004
– volume: 3
  start-page: 1846
  year: 2014
  ident: 335_CR59
  publication-title: eLife
– volume: 3
  start-page: 940
  year: 2014
  ident: 335_CR63
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2014.09.013
– volume: 116
  start-page: 237
  year: 2015
  ident: 335_CR93
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.305547
SSID ssj0016175
Score 2.705465
SecondaryResourceType review_article
Snippet The reprogramming of somatic cells with defined factors, which converts cells from one lineage into cells of another, has greatly reshaped our traditional...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 410
SubjectTerms 631/532
631/532/2435
Animals
Biochemistry
Bioengineering
Biomedical and Life Sciences
Cancer Research
Cardiomyocytes
Cell Biology
Cell Differentiation - genetics
Cell Differentiation - physiology
Cell fate
Cell metabolism
Cell research
Cell Transdifferentiation - genetics
Cell Transdifferentiation - physiology
Cellular Reprogramming - genetics
Cellular Reprogramming - physiology
Developmental Biology
Epigenesis, Genetic - genetics
Epigenetics
Fibroblasts
Genetic aspects
Humans
Life Sciences
Maturation
Medicine
Metabolism
Methods
Molecular modelling
Non-coding RNA
Pluripotency
Review Article
Somatic cells
Stem Cells
Therapeutic applications
Transcription factors
Transdifferentiation
Translation
Title Direct cell reprogramming: approaches, mechanisms and progress
URI https://link.springer.com/article/10.1038/s41580-021-00335-z
https://www.ncbi.nlm.nih.gov/pubmed/33619373
https://www.proquest.com/docview/2532421863
https://www.proquest.com/docview/2492661511
https://pubmed.ncbi.nlm.nih.gov/PMC8161510
Volume 22
WOSCitedRecordID wos000620415800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDRAvfIwBgTEFhMQDi5bEiePwABrTJpBYVZUP9c1ybAcq0XQsLRL767lz3I5UYi-8-MVnJfad786-8-8AXiguSoV2PDJc6CjjmYmESbOojqsyVVWNLoLj9MdiMBDjcTn0F26tT6tc6kSnqM1M0x35QZqT6U8EZ2_PfkZUNYqiq76ExgZsEUpC6lL3hqsoAlrn3L0uKvDIHBepfzQTM3HQouEScUQJClTOLI8ueoZpXT3_ZZ_WcyfXAqjOLp3c-d8Z3YXb3iMNDzsRugfXbLMNN7oalb-34eapj77fhzedfgzpsj8kNEyX2jXF33odLrHJbbsfTi09J5600zZUjQkdHSrUHfhycvz56H3k6y9EmmfJPLJ1mTBh8ESlsorrWGd1xWtheFyn1haGl1mpKsYqYzPUkiqJVa7LWmijmUl1zB7AZjNr7CMITZlbVTIrKhSHKinQSxJ4-FYqzwuVpzqAZLn4UntwcqqR8UO6IDkTsmOYRIZJxzB5EcCr1ZizDprjSurnxFNJmBcNJdV8U4u2lR8-jeQhJ8x6LpgI4KUnqmf4ea38GwWcBMFk9Sh3e5S4KXW_e8lz6ZVCKy8ZHsCzVTeNpES3xs4WSEMAjuRlJgE87CRtNTnG8LTLChxd9GRwRUBQ4f2eZvLdQYYLcuyTOID9pbRe_ta_1-zx1bN4ArdSt4HoTmoXNufnC_sUrutf80l7vgcbxegrtePCtQJbcZTswda748FwtOe2KraD4ekf3Ec-mA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8rzwKK9AgYBAHKjVJE4cBwlQVai66naFSpF6M47twEpstjS7oPZH8RvxOI-SleitB84eJ7H9zYwnHn8D8Fwynknrx4lmXJGYxZpwHcWkCPIsknlhtwhupYfpaMQPDrKPS_C7vQuDaZWtTXSGWk8V_iNfjxJ0_SFn9N3hD4JVo_B0tS2hUcNixxz_siFb9Wbw3q7viyja-rC_uU2aqgJEsTicEVNkIeXaxgkyzpkKVFzkrOCaBUVkTKpZFmcypzTXJra6L8NAJioruNKK6kgF1D73AlxEJjvUKL7ZpZRgqJC420ypDdGDNGou6QSUr1fWUfKAYEIElk9LyEnPES66g7_84WKu5sKBrfODWzf-txm8CdebHbe_UavILVgy5QpcrmtwHq_Ald0mu-A2vK3tv4-HGT6yfbrUtYmdhtd-y71uqjV_YvC69LiaVL4ste_krMO4A5_PZRx3YbmcluY--DpLjMyo4bmFex6mdhfIU86lTJJUJpHyIGwXW6iGfB1rgHwXLgmAclEDRFiACAcQceLBq67PYU09cqb0M8SQQE6PEpOGvsp5VYnBpz2xwZCTn3HKPXjZCBVT-3olmzsYdhBIA9aTXO1JWqOj-s0txkRj9CpxCjAPnnbN2BMT-UoznVsZJKjEXXTowb0a2d3gKLXRPE1t77SH-U4AqdD7LeX4m6NE5xi4hIEHa612nH7Wv-fswdmjeAJXt_d3h2I4GO08hGuRU178_7YKy7OjuXkEl9TP2bg6euzMgA9fzltr_gBlhpkk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVRceJRXoEBAIA402iTOw0ECVGhXrFpWqxak3oxjO7ASmy3NLqj9afw6ZvIqWYneeuDscRLb84xnvgF4JiOeSLTjjo64coIo0A7XfuBkbpr4Ms3QRShPei8ejfjhYTJegd9NLQylVTY6sVTUeqboH3nfD8n0ezxi_axOixhvD94e_XCogxTdtDbtNCoW2TUnvzB8K14Pt_Gsn_v-YOfT-w9O3WHAUVHgzR2TJR7jGmMGGaSRclWQpVHGdeRmvjGxjpIgkSljqTYB6gHpuTJUScaVVkz7ymX43EuwGqOTEfRg9d3OaLzf3mGgbxCWtU0xBuxu7NclOy7j_QLNJncdSo-gZmqhc9oxi8vG4S_ruJy5uXR9W1rFwfX_eT9vwLXaF7e3KuG5CSsmX4crVXfOk3VY-1jnHdyCN5VlsOmawyYc0DKpbYpb8spuUNlNsWlPDRVST4ppYctc2yUdmpLb8PlC1nEHevksN_fA1kloZMIMT1EQUi9G_5DHnEsZhrEMfWWB1xy8UDUsO3UH-S7K9ADGRcUsAplFlMwiTi142c45qkBJzqV-SvwkCO0jp3P-KhdFIYYH-2IrIrT-iDNuwYuaKJvh65WsqzNwEQQQ1qHc6FCiOlLd4YbfRK0OC3HGbBY8aYdpJqX45Wa2QBqCriT_2rPgbsXl7eIYwzifxTg77vB_S0Ag6d2RfPKtBEvnFNJ4rgWbjaScfda_9-z--at4DGsoLGJvONp9AFf9Uo7px9wG9ObHC_MQLquf80lx_KjWCTZ8uWix-QMyvqOC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+cell+reprogramming%3A+approaches%2C+mechanisms+and+progress&rft.jtitle=Nature+reviews.+Molecular+cell+biology&rft.au=Wang%2C+Haofei&rft.au=Yang%2C+Yuchen&rft.au=Liu%2C+Jiandong&rft.au=Li%2C+Qian&rft.date=2021-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-0072&rft.eissn=1471-0080&rft.volume=22&rft.issue=6&rft.spage=410&rft.epage=424&rft_id=info:doi/10.1038%2Fs41580-021-00335-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0072&client=summon