Pattern recognition of topologically associating domains using deep learning

Background Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserv...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 22; no. Suppl 10; pp. 634 - 15
Main Authors: Yang, Jhen Yuan, Chang, Jia-Ming
Format: Journal Article
Language:English
Published: London BioMed Central 08.12.2022
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects:
ISSN:1471-2105, 1471-2105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserved based on checking synteny block cross species. Are there common TAD patterns across species or cell lines? Results To address the above question, we propose a novel task—TAD recognition—as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, thus re-casting TAD recognition as image pattern recognition, for which we use a convolutional neural network and a residual neural network. In addition, we propose an elegant way to generate non-TAD data for binary classification. We demonstrate deep learning performance which is quite promising, AUC > 0.80, through cross-species and cell-type validation. Conclusions TADs have been shown to be conserved during evolution. Interestingly, our results confirm that the TAD recognition model is practical across species, which indicates that TADs between human and mouse show common patterns from an image classification point of view. Our approach could be a new way to identify TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if the two classification models are exchangeable.
AbstractList Abstract Background Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserved based on checking synteny block cross species. Are there common TAD patterns across species or cell lines? Results To address the above question, we propose a novel task—TAD recognition—as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, thus re-casting TAD recognition as image pattern recognition, for which we use a convolutional neural network and a residual neural network. In addition, we propose an elegant way to generate non-TAD data for binary classification. We demonstrate deep learning performance which is quite promising, AUC > 0.80, through cross-species and cell-type validation. Conclusions TADs have been shown to be conserved during evolution. Interestingly, our results confirm that the TAD recognition model is practical across species, which indicates that TADs between human and mouse show common patterns from an image classification point of view. Our approach could be a new way to identify TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if the two classification models are exchangeable.
Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserved based on checking synteny block cross species. Are there common TAD patterns across species or cell lines? To address the above question, we propose a novel task--TAD recognition--as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, thus re-casting TAD recognition as image pattern recognition, for which we use a convolutional neural network and a residual neural network. In addition, we propose an elegant way to generate non-TAD data for binary classification. We demonstrate deep learning performance which is quite promising, AUC > 0.80, through cross-species and cell-type validation. TADs have been shown to be conserved during evolution. Interestingly, our results confirm that the TAD recognition model is practical across species, which indicates that TADs between human and mouse show common patterns from an image classification point of view. Our approach could be a new way to identify TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if the two classification models are exchangeable.
Background Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserved based on checking synteny block cross species. Are there common TAD patterns across species or cell lines? Results To address the above question, we propose a novel task—TAD recognition—as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, thus re-casting TAD recognition as image pattern recognition, for which we use a convolutional neural network and a residual neural network. In addition, we propose an elegant way to generate non-TAD data for binary classification. We demonstrate deep learning performance which is quite promising, AUC > 0.80, through cross-species and cell-type validation. Conclusions TADs have been shown to be conserved during evolution. Interestingly, our results confirm that the TAD recognition model is practical across species, which indicates that TADs between human and mouse show common patterns from an image classification point of view. Our approach could be a new way to identify TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if the two classification models are exchangeable.
Background Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserved based on checking synteny block cross species. Are there common TAD patterns across species or cell lines? Results To address the above question, we propose a novel task—TAD recognition—as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, thus re-casting TAD recognition as image pattern recognition, for which we use a convolutional neural network and a residual neural network. In addition, we propose an elegant way to generate non-TAD data for binary classification. We demonstrate deep learning performance which is quite promising, AUC > 0.80, through cross-species and cell-type validation. Conclusions TADs have been shown to be conserved during evolution. Interestingly, our results confirm that the TAD recognition model is practical across species, which indicates that TADs between human and mouse show common patterns from an image classification point of view. Our approach could be a new way to identify TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if the two classification models are exchangeable.
Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserved based on checking synteny block cross species. Are there common TAD patterns across species or cell lines?BACKGROUNDRecent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserved based on checking synteny block cross species. Are there common TAD patterns across species or cell lines?To address the above question, we propose a novel task-TAD recognition-as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, thus re-casting TAD recognition as image pattern recognition, for which we use a convolutional neural network and a residual neural network. In addition, we propose an elegant way to generate non-TAD data for binary classification. We demonstrate deep learning performance which is quite promising, AUC > 0.80, through cross-species and cell-type validation.RESULTSTo address the above question, we propose a novel task-TAD recognition-as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, thus re-casting TAD recognition as image pattern recognition, for which we use a convolutional neural network and a residual neural network. In addition, we propose an elegant way to generate non-TAD data for binary classification. We demonstrate deep learning performance which is quite promising, AUC > 0.80, through cross-species and cell-type validation.TADs have been shown to be conserved during evolution. Interestingly, our results confirm that the TAD recognition model is practical across species, which indicates that TADs between human and mouse show common patterns from an image classification point of view. Our approach could be a new way to identify TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if the two classification models are exchangeable.CONCLUSIONSTADs have been shown to be conserved during evolution. Interestingly, our results confirm that the TAD recognition model is practical across species, which indicates that TADs between human and mouse show common patterns from an image classification point of view. Our approach could be a new way to identify TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if the two classification models are exchangeable.
Background Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserved based on checking synteny block cross species. Are there common TAD patterns across species or cell lines? Results To address the above question, we propose a novel task--TAD recognition--as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, thus re-casting TAD recognition as image pattern recognition, for which we use a convolutional neural network and a residual neural network. In addition, we propose an elegant way to generate non-TAD data for binary classification. We demonstrate deep learning performance which is quite promising, AUC > 0.80, through cross-species and cell-type validation. Conclusions TADs have been shown to be conserved during evolution. Interestingly, our results confirm that the TAD recognition model is practical across species, which indicates that TADs between human and mouse show common patterns from an image classification point of view. Our approach could be a new way to identify TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if the two classification models are exchangeable. Keywords: Topologically associating domain, TAD, Hi-C, Chromosome organization, Deep learning
Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserved based on checking synteny block cross species. Are there common TAD patterns across species or cell lines? To address the above question, we propose a novel task-TAD recognition-as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, thus re-casting TAD recognition as image pattern recognition, for which we use a convolutional neural network and a residual neural network. In addition, we propose an elegant way to generate non-TAD data for binary classification. We demonstrate deep learning performance which is quite promising, AUC > 0.80, through cross-species and cell-type validation. TADs have been shown to be conserved during evolution. Interestingly, our results confirm that the TAD recognition model is practical across species, which indicates that TADs between human and mouse show common patterns from an image classification point of view. Our approach could be a new way to identify TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if the two classification models are exchangeable.
ArticleNumber 634
Audience Academic
Author Chang, Jia-Ming
Yang, Jhen Yuan
Author_xml – sequence: 1
  givenname: Jhen Yuan
  surname: Yang
  fullname: Yang, Jhen Yuan
  organization: Department of Computer Science, National Chengchi University
– sequence: 2
  givenname: Jia-Ming
  orcidid: 0000-0002-6711-1739
  surname: Chang
  fullname: Chang, Jia-Ming
  email: chang.jiaming@gmail.com
  organization: Department of Computer Science, National Chengchi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36482308$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv3CAUha0qVfNo_0AXlaVu2oVTwMbAplIU9THSSK36WKM7GFxGHpgCjpp_XzxOmjiqghcY_J1zzeWcFkfOO10ULzE6x5i37yImnIoKEVIhihit8JPiBDcMVwQjenTv_bg4jXGLEGYc0WfFcd02nNSInxTrr5CSDq4MWvne2WS9K70pk9_7wfdWwTBclxCjVxaSdX3Z-R1YF8sxHlZa78tBQ3B59bx4amCI-sXNfFb8_Pjhx-Xnav3l0-ryYl2ptsGpEkwbg6DpsOadwWzDgW3azQartjasbbmC2uAun0u0AnUUY2MUJSBQow0Ars-K1ezbedjKfbA7CNfSg5WHDR96CSFZNWhpeFMTgqk2HWvyEIK3BguDeK6vGMpe72ev_bjZ6U5plwIMC9PlF2d_yd5fScFqIhjNBm9uDIL_PeqY5M5GpYcBnPZjlCQzGWRUZPT1A3Trx-ByqyaKUtQSTO6oHvIBrDM-11WTqbxgRDQNEaLO1Pl_qPx0emdVDoqxeX8heLsQZCbpP6mHMUa5-v5tyb6635R_3bjNTQb4DKjgYwzaSGUTTOHJf2EHiZGcIirniMp8lfIQUTldHnkgvXV_VFTPophh1-tw17lHVH8Bmzz2xg
CitedBy_id crossref_primary_10_1093_bib_bbaf127
crossref_primary_10_5483_BMBRep_2024_0020
crossref_primary_10_1093_gpbjnl_qzae091
crossref_primary_10_1016_j_gde_2024_102308
Cites_doi 10.1038/ng1896
10.1038/ng.947
10.1016/j.cell.2015.07.024
10.1038/nprot.2007.116
10.1038/nature14980
10.1109/CVPR.2016.90
10.1186/s12859-017-1931-2
10.1007/s12551-018-0489-1
10.1109/5.726791
10.1016/j.cell.2017.09.043
10.1016/j.cell.2014.11.021
10.1038/s41467-018-03113-2
10.1186/s13059-018-1596-9
10.1126/science.1067799
10.1038/nature11082
10.1126/science.aao6891
10.1109/CVPR.2016.319
10.1093/nar/gkx145
10.1038/nrg.2016.112
10.1126/sciadv.aar8082
10.1109/CVPR.2015.7298965
10.1016/j.celrep.2015.02.004
10.1109/TPAMI.2019.2913372
10.1016/j.celrep.2014.08.072
10.1016/j.ajhg.2021.01.001
10.1016/j.cell.2012.01.010
10.1093/nar/gkz315
10.1038/nature13986
10.1186/s13059-019-1894-x
10.1126/science.1181369
10.1007/BF00344251
10.1038/nature11243
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-022-05075-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 15
ExternalDocumentID oai_doaj_org_article_f8432215efd744449986f19f08a4dc70
PMC9732975
A729442993
36482308
10_1186_s12859_022_05075_1
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: 108-2628-E-004-001-MY3
  funderid: http://dx.doi.org/10.13039/501100004663
– fundername: Ministry of Science and Technology, Taiwan
  grantid: 108-2628-E-004-001-MY3
– fundername: ;
  grantid: 108-2628-E-004-001-MY3
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c641t-97eff0a4d1e8df17b8a7b6bb1c63f7668ca3f1d0229690d511ffc52a904efaa13
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000895970000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Mon Nov 10 04:30:03 EST 2025
Tue Nov 04 02:06:52 EST 2025
Thu Sep 04 20:29:58 EDT 2025
Mon Oct 06 18:36:13 EDT 2025
Tue Nov 11 09:58:49 EST 2025
Tue Nov 04 17:52:31 EST 2025
Thu Nov 13 15:27:41 EST 2025
Thu Apr 03 07:08:45 EDT 2025
Tue Nov 18 22:25:28 EST 2025
Sat Nov 29 05:40:13 EST 2025
Sat Sep 06 07:27:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 10
Keywords Deep learning
Topologically associating domain
Hi-C
TAD
Chromosome organization
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c641t-97eff0a4d1e8df17b8a7b6bb1c63f7668ca3f1d0229690d511ffc52a904efaa13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6711-1739
OpenAccessLink https://doaj.org/article/f8432215efd744449986f19f08a4dc70
PMID 36482308
PQID 2755506212
PQPubID 44065
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_f8432215efd744449986f19f08a4dc70
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9732975
proquest_miscellaneous_2753297759
proquest_journals_2755506212
gale_infotracmisc_A729442993
gale_infotracacademiconefile_A729442993
gale_incontextgauss_ISR_A729442993
pubmed_primary_36482308
crossref_citationtrail_10_1186_s12859_022_05075_1
crossref_primary_10_1186_s12859_022_05075_1
springer_journals_10_1186_s12859_022_05075_1
PublicationCentury 2000
PublicationDate 2022-12-08
PublicationDateYYYYMMDD 2022-12-08
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References BD Pope (5075_CR23) 2014; 515
M Simonis (5075_CR3) 2006; 38
R Dali (5075_CR12) 2017; 45
M Peifer (5075_CR9) 2015; 526
M Rudan (5075_CR24) 2015; 10
O Oluwadare (5075_CR28) 2017; 18
E Lieberman-Aiden (5075_CR5) 2009; 326
5075_CR22
J Henderson (5075_CR18) 2019; 47
M Zufferey (5075_CR10) 2018; 19
J Dostie (5075_CR4) 2007; 2
SS Rao (5075_CR29) 2014; 159
5075_CR26
E Yaffe (5075_CR33) 2011; 43
K Pal (5075_CR11) 2019; 11
B Bonev (5075_CR1) 2016; 17
J Hu (5075_CR17) 2018; 42
Y Kim (5075_CR21) 2018; 359
B Schuettengruber (5075_CR32) 2014; 9
Q Szabo (5075_CR8) 2018; 4
Y Shen (5075_CR30) 2012; 488
E Kentepozidou (5075_CR25) 2020; 21
J Dekker (5075_CR2) 2002; 295
Y Lecun (5075_CR14) 1998; 86
T Sexton (5075_CR7) 2012; 148
SSP Rao (5075_CR27) 2015; 162
K Fukushima (5075_CR13) 1980; 36
5075_CR35
5075_CR34
JR Dixon (5075_CR6) 2012; 485
5075_CR31
5075_CR15
B Bonev (5075_CR20) 2017; 171
Y Zhang (5075_CR19) 2018; 9
5075_CR16
References_xml – volume: 38
  start-page: 1348
  year: 2006
  ident: 5075_CR3
  publication-title: Nat Genet
  doi: 10.1038/ng1896
– volume: 43
  start-page: 1059
  year: 2011
  ident: 5075_CR33
  publication-title: Nat Genet
  doi: 10.1038/ng.947
– volume: 162
  start-page: 687
  year: 2015
  ident: 5075_CR27
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.024
– volume: 2
  start-page: 988
  year: 2007
  ident: 5075_CR4
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.116
– ident: 5075_CR31
– volume: 526
  start-page: 700
  year: 2015
  ident: 5075_CR9
  publication-title: Nature
  doi: 10.1038/nature14980
– ident: 5075_CR16
  doi: 10.1109/CVPR.2016.90
– volume: 18
  start-page: 480
  year: 2017
  ident: 5075_CR28
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1931-2
– volume: 11
  start-page: 67
  year: 2019
  ident: 5075_CR11
  publication-title: Biophys Rev
  doi: 10.1007/s12551-018-0489-1
– volume: 86
  start-page: 2278
  year: 1998
  ident: 5075_CR14
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 171
  start-page: 557
  year: 2017
  ident: 5075_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.043
– volume: 159
  start-page: 1665
  year: 2014
  ident: 5075_CR29
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.021
– volume: 9
  start-page: 750
  year: 2018
  ident: 5075_CR19
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03113-2
– volume: 19
  start-page: 217
  year: 2018
  ident: 5075_CR10
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1596-9
– volume: 295
  start-page: 1306
  year: 2002
  ident: 5075_CR2
  publication-title: Science
  doi: 10.1126/science.1067799
– volume: 485
  start-page: 376
  year: 2012
  ident: 5075_CR6
  publication-title: Nature
  doi: 10.1038/nature11082
– volume: 359
  start-page: eaao6891
  year: 2018
  ident: 5075_CR21
  publication-title: Science
  doi: 10.1126/science.aao6891
– ident: 5075_CR26
  doi: 10.1109/CVPR.2016.319
– volume: 45
  start-page: gkx145
  year: 2017
  ident: 5075_CR12
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx145
– ident: 5075_CR34
– volume: 17
  start-page: 661
  year: 2016
  ident: 5075_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.112
– volume: 4
  start-page: eaar8082
  year: 2018
  ident: 5075_CR8
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aar8082
– ident: 5075_CR15
  doi: 10.1109/CVPR.2015.7298965
– volume: 10
  start-page: 1297
  year: 2015
  ident: 5075_CR24
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.02.004
– volume: 42
  start-page: 2011
  year: 2018
  ident: 5075_CR17
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/TPAMI.2019.2913372
– volume: 9
  start-page: 219
  year: 2014
  ident: 5075_CR32
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.08.072
– ident: 5075_CR22
  doi: 10.1016/j.ajhg.2021.01.001
– volume: 148
  start-page: 458
  year: 2012
  ident: 5075_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.010
– volume: 47
  start-page: e78
  year: 2019
  ident: 5075_CR18
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz315
– volume: 515
  start-page: 402
  year: 2014
  ident: 5075_CR23
  publication-title: Nature
  doi: 10.1038/nature13986
– volume: 21
  start-page: 5
  year: 2020
  ident: 5075_CR25
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1894-x
– volume: 326
  start-page: 289
  year: 2009
  ident: 5075_CR5
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 36
  start-page: 193
  year: 1980
  ident: 5075_CR13
  publication-title: Biol Cybern
  doi: 10.1007/BF00344251
– ident: 5075_CR35
– volume: 488
  start-page: 116
  year: 2012
  ident: 5075_CR30
  publication-title: Nature
  doi: 10.1038/nature11243
SSID ssj0017805
Score 2.42325
Snippet Background Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically...
Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains...
Background Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically...
Abstract Background Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 634
SubjectTerms Accuracy
Algorithms
Animals
Artificial neural networks
Bioinformatics
Biomedical and Life Sciences
Cell lines
Chromosome organization
Chromosomes
Classification
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Deep Learning
Domains
Evolution
Gene mapping
Genetic research
Genomes
Genomics
Hi-C
Humans
Image classification
Interactomes
Life Sciences
Machine learning
Methods
Mice
Microarrays
Neural networks
Nucleotide sequence
Object recognition
Object recognition (Computers)
Pattern recognition
Performance evaluation
Structure
Synteny
TAD
Topologically associating domain
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQUEBIHCBqnDi2c0IFUYGEqoqH1Jvl-LGsVJJls4vUf8-M46SkiF7ILfHk4ZnxeOyZfEPIC_CBmasbndWSUwTVLjJd5zaz4IzoXArpWROKTYjDQ3l8XB_FDbc-plWONjEYatsZ3CPfK0QFzjQHS_tm9TPDqlEYXY0lNC6TK4iSUITUvaMpioB4_eOPMpLv9RTR2jLMX8_BDaoyOpuMAmb_35b5j6npfNrkudhpmJIObv5vZ26RG9EZTfcH7blNLrn2Drk2lKc8vUs-HQXwzTadsoy6Nu18uhkKK6B4T05TPQq4XaS2-6GXbZ9iNj2cObdKY1mKxT3y7eD913cfslh9ITOc0U1WC-d9rpmlTlpPRSO1aHjTUMNLLziXRpeeWuBmDStsC46b96YqQNLMea1peZ_stF3rHpK0dl7KylcFd5JZE0KPhYfng7OcVzJPCB3FoEyEJscKGScqLFEkV4PoFLxMBdEpmpBX0z2rAZjjQuq3KN2JEkG1w4VuvVBxjCovGZg3WjlvBYMDVqLc09rnErhgBHzmc9QNhbAZLeblLPS279XHL5_VPqxRGE7tZUJeRiLfQR-Mjr85ACcQaWtGuTujhHFt5s2j7qhoV3p1pjgJeTY1452YK9e6bhtoygLc-qpOyINBY6d-l5xhZFUmRMx0ecaYeUu7_B5QxxHWqRZVQl6PWn_2Wf9m_KOLe_GYXC9wPGJ-kNwlO5v11j0hV82vzbJfPw2j-Td_tE-p
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQAYlLeUOgoICQOEDUOHH8OBZEBRKqqhZQb5bj2MtKxak2u5X675lxHpDykGBvWY8Tezz2zGjG3xDyAmxg5lRtMiU5RVDtIjMqb7IGjBGTSyE9q2OxCXFwIE9O1OFwKawbs93HkGQ8qeO2lny3o4i1lmH2eQ5GTJWBz3MV1J3Egg1Hx1-m2AGi9I_XY37bb6aCIlL_r-fxTwrpcrLkpYhpVET7N_9vCrfI9mB4pnu9pNwmV1y4Q673pSgv7pKPhxFoM6RTRlEb0tan676IAi7l6UVqxsUMi7Rpv5ll6FLMnIcn587SoQTF4h75vP_u09v32VBpIbOc0XWmhPM-N6yhTjaeiloaUfO6ppaXXnAurSk9bWDgCrzpBow0721VwKoy542h5X2yFdrgHpJUOS9l5auCO8kaG8OMhYf3g2GcVzJPCB2Zr-0AQ47VME51dEck1z2XNHxMRy5pmpBXU5-zHoTjr9RvcE0nSgTQjn-0q4Ue9qP2ksFRRivnG8HgB14n91T5XAIXrIBhPkeJ0AiRETAHZ2E2Xac_HB_pPfBHGKrxMiEvByLfwhysGa40ACcQVWtGuTOjhD1s582j4OnhDOl0ISpwHznYFgl5NjVjT8yLC67dRJqyABO-Ugl50MvpNO-SM4yiyoSImQTPGDNvCcuvEWEcIZyUqBLyepTjH8P6M-Mf_Rv5Y3KjwK2AuUFyh2ytVxv3hFyz5-tlt3oa9_R38A1F2g
  priority: 102
  providerName: Springer Nature
Title Pattern recognition of topologically associating domains using deep learning
URI https://link.springer.com/article/10.1186/s12859-022-05075-1
https://www.ncbi.nlm.nih.gov/pubmed/36482308
https://www.proquest.com/docview/2755506212
https://www.proquest.com/docview/2753297759
https://pubmed.ncbi.nlm.nih.gov/PMC9732975
https://doaj.org/article/f8432215efd744449986f19f08a4dc70
Volume 22
WOSCitedRecordID wos000895970000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BAYkL4k1KWQWExAGixnnYzrFFraiAVbQFtHCxnMReVmqTqtlF6r9nxkmWpgi4kIOlxJPXN-N4Rp58A_ASfeDEZIUOMskZkWpHgc7CKqjQGdGhFNImhSs2IaZTOZ9n-aVSX5QT1tEDd8DtWpmgzbHU2EokuGF4wC3LbCh1UpXCReuhyIZgql8_IKb-4RcZyXdbRjxtAWWuh-gApQEbTUOOrf_3b_KlSelqwuSVVVM3GR3ehTu9F-nvdU9_D66Z-j7c6upKXjyAD7ljzaz9TXpQU_uN9VddRQTSy8mFrwfN1Au_ak71sm59SoPHPWPO_L6exOIhfD48-PT2XdCXTQhKnrBVkAljbYjoMCMry0QhtSh4UbCSx1ZwLksdW1YhGBmGxhV6XNaWaYQqSozVmsWPYKtuavME_MxYKVObRtxIRNutGUYWr49ebpjK0AM2oKjKnlOcSlucKBdbSK465BXeTDnkFfPg9eacs45R46_S-6ScjSSxYbsDaCOqtxH1Lxvx4AWpVhHfRU0JNQu9blt1dDxTexhcJDQnxx686oVsg-9Q6v7_BESCKLJGkjsjSRyQ5bh7sCDVfxBaFYkUY0GOjoIHzzfddCYludWmWTuZOEJ_PM08eNwZ3Oa9Y57Qkqj0QIxMcQTMuKdefnd04cTHlInUgzeD0f56rD8Dv_0_gH8KtyMadJT-I3dga3W-Ns_gZvljtWzPJ3BdzIVr5QRu7B9M89nEDWNs34tgQnm4ObZ5-g3786OP-Vfcmx1_-QlsNUnK
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtNAcFUKCC68H4YCBoE4gFWvH7vrA0LlUTVKiCooUm_Ler0bIhU7xAkoP8U3MrO2U1xEbz3gW7zjx4znmZmdIeQp-MCJyXIVZIJRbKodBSoLi6AAZ0SFggub5G7YBB-PxeFhtr9BfnV7YbCsstOJTlEXlcb_yLcjnoIzzUDTvp59D3BqFGZXuxEaDVsMzeonhGz1q8E7-L7Pomj3_cHbvaCdKhBoltBFkHFjbaiSghpRWMpzoXjO8pxqFlvOmNAqtrQA25ZB5FiAQ2KtTiPAIDFWKRrDfc-R80ksOMrVkAfrrAXOB-g25gi2XVPsDhdgvXwIblca0J7xczMC_rYEf5jCk2WaJ3K1zgTuXv3fiHeNXGmdbX-nkY7rZMOUN8jFZvzm6iYZ7bvmoqW_rqKqSr-y_qIZHIHse7TyVcfA5cQvqm9qWtY-7haAX8bM_HbsxuQW-XwmqNwmm2VVmrvEz4wVIrVpxIxICu1Sq5GF-0MwEKYi9AjtPrvUbet1nAByJF0IJphsWEXCw6RjFUk98mJ9zaxpPHIq9BvkpjUkNg13J6r5RLY6SFqRgPqmqbEFT-CASJtZmtlQABU0h9d8grwosS1IiXVHE7Wsazn49FHuQAyWoOsSe-R5C2QrwEGrdhsHUAI7ifUgt3qQoLd0f7njVdnqzVoeM6pHHq-X8UqsBSxNtXQwcQRhS5p55E4jIWu8Y5Zg5lh4hPdkp0eY_ko5_eq6qmPbqoynHnnZSdnxa_2b8PdOx-IRubR38GEkR4Px8D65HKEuwFoosUU2F_OleUAu6B-LaT1_6DSJT76ctfT9Bnhlrjc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQOcQL9xEoEBASDxA1ThzbeSzHiopqtaKA-mY5ib2sVJzVJovUf8-Mc9CUQ0LsW9bjxJ4Z2zOa8TeEPAcbmJm80FEuOUVQ7STSeVxFFRgjOpZCWlb4YhNiPpfHx_nizC1-n-0-hCS7Ow2I0uTavXVluyUu-V5DEXctwkz0GAyaLAL_5yLDRHr014--jHEEROwfrsr8tt_kOPKo_b_uzWcOp_OJk-eip_5Qml3__-ncINd6gzTc7zToJrlg3C1yuStReXqbHC48AKcLx0yj2oW1DduuuAKK-OQ01IOQ3TKs6m965ZoQM-rhyZh12JemWN4hn2fvPr15H_UVGKKSM9pGuTDWxppV1MjKUlFILQpeFLTkqRWcy1KnllYw8By87AqMN2vLLAFpM2O1puldsuNqZ-6TMDdWysxmCTeSVaUPPyYW3g8Gc5zJOCB0EIQqe3hyrJJxorybIrnquKTgY8pzSdGAvBz7rDtwjr9Sv0b5jpQIrO3_qDdL1a9TZSWDLY5mxlaCwQ-8UW5pbmMJXCgFDPMZaodC6AyHuTlLvW0adXD0Ue2Dn8LweE8D8qInsjXModT9VQfgBKJtTSh3J5Swtstp86CEqt9bGpWIDNxKDjZHQJ6OzdgT8-WcqbeeJk3AtM_ygNzrdHacd8oZRldlQMREmyeMmba41VePPI7QTrnIAvJq0Omfw_oz4x_8G_kTcmXxdqYOD-YfHpKrCa4KTB-Su2Sn3WzNI3Kp_N6ums1jv9R_AHSXUaI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+recognition+of+topologically+associating+domains+using+deep+learning&rft.jtitle=BMC+bioinformatics&rft.au=Jhen+Yuan+Yang&rft.au=Jia-Ming+Chang&rft.date=2022-12-08&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=22&rft.issue=S10&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1186%2Fs12859-022-05075-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f8432215efd744449986f19f08a4dc70
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon