Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection

The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 15; číslo 12; s. e0242899
Hlavní autoři: Albadr, Musatafa Abbas Abbood, Tiun, Sabrina, Ayob, Masri, AL-Dhief, Fahad Taha, Omar, Khairuddin, Hamzah, Faizal Amri
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 15.12.2020
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.
AbstractList The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.
The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.
Audience Academic
Author Ayob, Masri
Tiun, Sabrina
Omar, Khairuddin
AL-Dhief, Fahad Taha
Hamzah, Faizal Amri
Albadr, Musatafa Abbas Abbood
AuthorAffiliation 2 Department of Communication Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
University of Engineering & Technology, Taxila, PAKISTAN
1 CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
3 Department of Emergency Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
AuthorAffiliation_xml – name: 3 Department of Emergency Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
– name: 1 CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
– name: 2 Department of Communication Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
– name: University of Engineering & Technology, Taxila, PAKISTAN
Author_xml – sequence: 1
  givenname: Musatafa Abbas Abbood
  orcidid: 0000-0003-2062-688X
  surname: Albadr
  fullname: Albadr, Musatafa Abbas Abbood
– sequence: 2
  givenname: Sabrina
  surname: Tiun
  fullname: Tiun, Sabrina
– sequence: 3
  givenname: Masri
  surname: Ayob
  fullname: Ayob, Masri
– sequence: 4
  givenname: Fahad Taha
  surname: AL-Dhief
  fullname: AL-Dhief, Fahad Taha
– sequence: 5
  givenname: Khairuddin
  orcidid: 0000-0003-1794-019X
  surname: Omar
  fullname: Omar, Khairuddin
– sequence: 6
  givenname: Faizal Amri
  surname: Hamzah
  fullname: Hamzah, Faizal Amri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33320858$$D View this record in MEDLINE/PubMed
BookMark eNqNktuL1DAUxousuBf9D0QKguhDx9zatPsgLONtYGHAyz4azqSnnSxtMqap6H9v6szKVEQkDwknv-8jOec7T06ss5gkjylZUC7py1s3egvdYhfLC8IEK6vqXnJGK86yghF-cnQ-Tc6H4ZaQnJdF8SA55ZwzUublWfJlvQumNwPWaYsWg9EpdK3zJmz7DL8Hjz2mHYK3xrZpD3prLKaw23kXz2njfApjcD1MyuX6ZvU6o1VaY0AdjLMPk_sNdAM-OuwXyee3bz4t32fX63er5dV1pgtBQqZ1XRCKkEPOqkaUtaZ1oUWdl5Q0IFlONpTzSJFCaiawwYpTsZFSRhFowi-S1d63dnCrdt704H8oB0b9KjjfKvDxiR2qKhcVJbKSORAhGUBDGNsIwXNGCrKB6PVq77UbNz3WGm3w0M1M5zfWbFXrvikpuayIjAbPDwbefR1xCCo2WGPXgUU3DooJSQomc1FG9OkebSE-zdjGRUc94eqqEHFcnJAqUou_UHHV2Bsd59-YWJ8JXswEkQlxmC2Mw6BWHz_8P7u-mbPPjtgtQhe2g-vGadTDHHxy3MPfzbsLXgQu94D2bhg8NkqbAJNP_JrpFCVqSrk6pFxNKVeHlEex-EN85_9P2U9iUQIO
CitedBy_id crossref_primary_10_1007_s00521_025_11392_2
crossref_primary_10_1016_j_apt_2024_104422
crossref_primary_10_1016_j_mcpdig_2023_07_007
crossref_primary_10_1007_s00500_023_09123_7
crossref_primary_10_1111_exsy_13532
crossref_primary_10_1007_s44163_024_00185_6
crossref_primary_10_1016_j_eswa_2022_119212
crossref_primary_10_1007_s11042_024_20108_y
crossref_primary_10_1371_journal_pone_0251122
crossref_primary_10_1155_2021_9942873
crossref_primary_10_1016_j_compbiomed_2022_105344
crossref_primary_10_5306_wjco_v12_i6_437
crossref_primary_10_1016_j_specom_2024_103100
crossref_primary_10_1007_s00521_024_09617_x
crossref_primary_10_1007_s42044_024_00190_z
crossref_primary_10_1007_s42979_022_01642_8
crossref_primary_10_3390_jcm12103446
crossref_primary_10_1016_j_irbm_2022_05_006
crossref_primary_10_3389_fpubh_2022_925901
crossref_primary_10_3390_bioengineering11090952
crossref_primary_10_1109_ACCESS_2021_3082565
crossref_primary_10_3389_fonc_2023_1150840
crossref_primary_10_1007_s11042_024_19716_5
crossref_primary_10_1007_s00530_023_01072_3
crossref_primary_10_1007_s11042_022_12747_w
crossref_primary_10_1007_s12559_022_10063_x
crossref_primary_10_3390_sci6010002
crossref_primary_10_1007_s11760_024_03619_x
crossref_primary_10_1016_j_cie_2021_107912
crossref_primary_10_1109_ACCESS_2021_3111175
crossref_primary_10_1016_j_specom_2024_103092
crossref_primary_10_1371_journal_pone_0316996
crossref_primary_10_1002_cdt3_27
crossref_primary_10_1007_s00500_022_07202_9
crossref_primary_10_1177_09722629251349031
crossref_primary_10_1109_ACCESS_2021_3081629
crossref_primary_10_3390_jimaging8100267
crossref_primary_10_1007_s11042_024_19788_3
crossref_primary_10_32604_cmes_2021_017679
crossref_primary_10_1007_s11042_024_19515_y
Cites_doi 10.1016/j.compbiomed.2020.103792
10.4018/IJEIS.2019010106
10.1016/S0140-6736(20)30360-3
10.1007/s10772-019-09621-w
10.1183/09031936.01.00213501
10.59275/j.melba.2020-48g7
10.1016/j.asoc.2020.106580
10.1001/jama.2020.2565
10.1007/s11063-016-9496-z
10.1016/j.eswa.2016.08.026
10.1016/j.neunet.2009.11.009
10.5455/jjee.204-1585312246
10.3390/electronics8010100
10.1007/s12559-014-9255-2
10.1080/00405000.2013.827393
10.14419/ijet.v7i4.36.23737
10.1080/24751839.2019.1666625
10.1364/OL.43.001107
10.1007/s11042-017-5023-0
10.1007/s10489-020-01829-7
10.1016/j.neucom.2005.12.126
10.1016/j.cmpb.2020.105581
10.1109/TSMCB.2011.2168604
10.5755/j01.eie.26.1.25309
10.1166/jmihi.2018.2459
10.1016/j.ins.2017.12.059
10.1109/TCSII.2020.2980557
10.1109/72.788640
10.1016/j.ecolind.2017.10.049
10.1371/journal.pone.0194770
10.1109/TNN.2006.875977
10.1109/TIP.2018.2847035
10.1109/ACCESS.2020.2984925
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Albadr et al 2020 Albadr et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Albadr et al 2020 Albadr et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pone.0242899
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Opposing Viewpoints in Context
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection
EISSN 1932-6203
ExternalDocumentID oai_doaj_org_article_9549107975a0472aaf022b44352060ba
PMC7737907
A645383009
33320858
10_1371_journal_pone_0242899
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Pakistan
GeographicLocations_xml – name: Pakistan
GrantInformation_xml – fundername: ;
  grantid: GUP-2020-063
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c640t-ccd601ea5a529f48dc1d6c4d5810fa7250b133ccd067c24efe9314b7771eaac03
IEDL.DBID DOA
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600339800040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Mon Nov 10 04:25:09 EST 2025
Tue Nov 04 02:01:10 EST 2025
Mon Sep 08 15:08:15 EDT 2025
Sat Nov 29 13:13:13 EST 2025
Sat Nov 29 09:56:08 EST 2025
Wed Nov 26 10:39:56 EST 2025
Wed Nov 26 10:04:57 EST 2025
Thu May 22 21:20:14 EDT 2025
Wed Feb 19 02:09:48 EST 2025
Tue Nov 18 22:14:19 EST 2025
Sat Nov 29 02:58:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c640t-ccd601ea5a529f48dc1d6c4d5810fa7250b133ccd067c24efe9314b7771eaac03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: NO authors have competing interests.
ORCID 0000-0003-1794-019X
0000-0003-2062-688X
OpenAccessLink https://doaj.org/article/9549107975a0472aaf022b44352060ba
PMID 33320858
PQID 2470627548
PQPubID 23479
PageCount e0242899
ParticipantIDs doaj_primary_oai_doaj_org_article_9549107975a0472aaf022b44352060ba
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7737907
proquest_miscellaneous_2470627548
gale_infotracmisc_A645383009
gale_infotracacademiconefile_A645383009
gale_incontextgauss_ISR_A645383009
gale_incontextgauss_IOV_A645383009
gale_healthsolutions_A645383009
pubmed_primary_33320858
crossref_citationtrail_10_1371_journal_pone_0242899
crossref_primary_10_1371_journal_pone_0242899
PublicationCentury 2000
PublicationDate 2020-12-15
PublicationDateYYYYMMDD 2020-12-15
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S Tiun (pone.0242899.ref040) 2017
pone.0242899.ref060
M Abdel-Nasser (pone.0242899.ref032) 2019; 8
M Nour (pone.0242899.ref050) 2020
F Shi (pone.0242899.ref015) 2020
Y Sun (pone.0242899.ref053) 2020
S-H Wang (pone.0242899.ref025) 2017
Y Mu (pone.0242899.ref029) 2018; 435
SUK Bukhari (pone.0242899.ref016) 2020
W Zhou (pone.0242899.ref038) 2020; 67
Y Bai (pone.0242899.ref001) 2020; 323
T Quoc Bao (pone.0242899.ref036) 2020; 4
RJ May (pone.0242899.ref041) 2010; 23
G-B Huang (pone.0242899.ref023) 2014; 6
C Marsboom (pone.0242899.ref035) 2018; 87
H Chen (pone.0242899.ref002) 2020; 395
FT Al-Dhief (pone.0242899.ref044) 2020; 8
MAA Albadra (pone.0242899.ref019) 2017; 12
G-B Huang (pone.0242899.ref021) 2011; 42
T Ozturk (pone.0242899.ref047) 2020
T Franquet (pone.0242899.ref006) 2001; 18
S Lu (pone.0242899.ref026) 2018; 8
ID Apostolopoulos (pone.0242899.ref007) 2020
M Sokolova (pone.0242899.ref039) 2006
H Çelik (pone.0242899.ref043) 2014; 105
AI Khan (pone.0242899.ref045) 2020
T Cherian (pone.0242899.ref003) 2005; 83
T Yu (pone.0242899.ref031) 2018; 43
VN Vapnik (pone.0242899.ref049) 1999; 10
P Niu (pone.0242899.ref048) 2016; 44
pone.0242899.ref042
pone.0242899.ref009
pone.0242899.ref008
pone.0242899.ref005
G-B Huang (pone.0242899.ref024) 2006; 17
MAA Albadr (pone.0242899.ref022) 2018; 13
N Dalal (pone.0242899.ref034) 2005
pone.0242899.ref051
Y Fang (pone.0242899.ref004) 2020
M Pakyurek (pone.0242899.ref052) 2020; 26
AM Alqudah (pone.0242899.ref010) 2020; 6
pone.0242899.ref014
OI Obaid (pone.0242899.ref046) 2018; 7
pone.0242899.ref058
pone.0242899.ref059
pone.0242899.ref012
pone.0242899.ref056
pone.0242899.ref013
J Zeng (pone.0242899.ref037) 2019; 15
pone.0242899.ref057
pone.0242899.ref054
pone.0242899.ref011
pone.0242899.ref055
Y-D Zhang (pone.0242899.ref027) 2018; 77
MAA Albadr (pone.0242899.ref028) 2019; 22
G-B Huang (pone.0242899.ref020) 2006; 70
M Xu (pone.0242899.ref030) 2018; 27
M Abdel-Nasser (pone.0242899.ref033) 2016; 64
MAA Albadr (pone.0242899.ref018) 2020
pone.0242899.ref017
References_xml – ident: pone.0242899.ref009
– ident: pone.0242899.ref011
– start-page: 103792
  year: 2020
  ident: pone.0242899.ref047
  article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2020.103792
– volume: 15
  start-page: 100
  year: 2019
  ident: pone.0242899.ref037
  article-title: A Novel Finger-Vein Recognition Based on Quality Assessment and Multi-Scale Histogram of Oriented Gradients Feature
  publication-title: International Journal of Enterprise Information Systems (IJEIS)
  doi: 10.4018/IJEIS.2019010106
– volume: 83
  start-page: 353
  year: 2005
  ident: pone.0242899.ref003
  article-title: Standardized interpretation of paediatric chest radiographs for the diagnosis of pneumonia in epidemiological studies
  publication-title: Bulletin of the World Health Organization
– volume: 395
  start-page: 809
  year: 2020
  ident: pone.0242899.ref002
  article-title: Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(20)30360-3
– ident: pone.0242899.ref057
– volume: 12
  start-page: 4610
  year: 2017
  ident: pone.0242899.ref019
  article-title: Extreme learning machine: a review
  publication-title: International Journal of Applied Engineering Research
– volume: 22
  start-page: 711
  year: 2019
  ident: pone.0242899.ref028
  article-title: Spoken language identification based on optimised genetic algorithm–extreme learning machine approach
  publication-title: International Journal of Speech Technology
  doi: 10.1007/s10772-019-09621-w
– volume: 18
  start-page: 196
  year: 2001
  ident: pone.0242899.ref006
  article-title: Imaging of pneumonia: trends and algorithms
  publication-title: European Respiratory Journal
  doi: 10.1183/09031936.01.00213501
– start-page: 200432
  year: 2020
  ident: pone.0242899.ref004
  article-title: Sensitivity of chest CT for COVID-19: comparison to RT-PCR
  publication-title: Radiology
– ident: pone.0242899.ref014
  doi: 10.59275/j.melba.2020-48g7
– start-page: 1
  year: 2017
  ident: pone.0242899.ref025
  article-title: Ductal carcinoma in situ detection in breast thermography by extreme learning machine and combination of statistical measure and fractal dimension
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– start-page: 106580
  year: 2020
  ident: pone.0242899.ref050
  article-title: A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106580
– year: 2020
  ident: pone.0242899.ref015
  article-title: Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19
  publication-title: IEEE reviews in biomedical engineering
– start-page: 1015
  volume-title: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation
  year: 2006
  ident: pone.0242899.ref039
– ident: pone.0242899.ref058
– ident: pone.0242899.ref060
– ident: pone.0242899.ref012
– volume: 323
  start-page: 1406
  year: 2020
  ident: pone.0242899.ref001
  article-title: Presumed asymptomatic carrier transmission of COVID-19
  publication-title: Jama
  doi: 10.1001/jama.2020.2565
– ident: pone.0242899.ref054
– volume: 44
  start-page: 813
  year: 2016
  ident: pone.0242899.ref048
  article-title: A kind of parameters self-adjusting extreme learning machine
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-016-9496-z
– volume: 64
  start-page: 365
  year: 2016
  ident: pone.0242899.ref033
  article-title: Automatic nipple detection in breast thermograms
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.08.026
– ident: pone.0242899.ref005
– volume: 23
  start-page: 283
  year: 2010
  ident: pone.0242899.ref041
  article-title: Data splitting for artificial neural networks using SOM-based stratified sampling
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.11.009
– volume: 6
  start-page: 168
  year: 2020
  ident: pone.0242899.ref010
  article-title: COVID-19 Detection from X-ray Images Using Different Artificial Intelligence Hybrid Models
  publication-title: Jordan Journal of Electrical Engineering
  doi: 10.5455/jjee.204-1585312246
– volume: 8
  start-page: 100
  year: 2019
  ident: pone.0242899.ref032
  article-title: Breast cancer detection in thermal infrared images using representation learning and texture analysis methods
  publication-title: Electronics
  doi: 10.3390/electronics8010100
– ident: pone.0242899.ref059
– volume: 6
  start-page: 376
  year: 2014
  ident: pone.0242899.ref023
  article-title: An insight into extreme learning machines: random neurons, random features and kernels
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-014-9255-2
– volume: 105
  start-page: 575
  year: 2014
  ident: pone.0242899.ref043
  article-title: Development of a machine vision system: real-time fabric defect detection and classification with neural networks
  publication-title: The Journal of The Textile Institute
  doi: 10.1080/00405000.2013.827393
– ident: pone.0242899.ref013
– volume: 7
  start-page: 160
  year: 2018
  ident: pone.0242899.ref046
  article-title: Evaluating the performance of machine learning techniques in the classification of Wisconsin Breast Cancer
  publication-title: International Journal of Engineering & Technology
  doi: 10.14419/ijet.v7i4.36.23737
– ident: pone.0242899.ref017
– volume: 4
  start-page: 140
  year: 2020
  ident: pone.0242899.ref036
  article-title: Plant species identification from leaf patterns using histogram of oriented gradients feature space and convolution neural networks
  publication-title: Journal of Information and Telecommunication
  doi: 10.1080/24751839.2019.1666625
– volume: 43
  start-page: 1107
  year: 2018
  ident: pone.0242899.ref031
  article-title: Toward real-time volumetric tomography for combustion diagnostics via dimension reduction
  publication-title: Optics letters
  doi: 10.1364/OL.43.001107
– ident: pone.0242899.ref051
– volume: 77
  start-page: 22629
  year: 2018
  ident: pone.0242899.ref027
  article-title: Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-017-5023-0
– ident: pone.0242899.ref055
– ident: pone.0242899.ref056
  doi: 10.1007/s10489-020-01829-7
– start-page: 886
  volume-title: Histograms of oriented gradients for human detection
  year: 2005
  ident: pone.0242899.ref034
– volume: 70
  start-page: 489
  year: 2006
  ident: pone.0242899.ref020
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: pone.0242899.ref042
– start-page: 105581
  year: 2020
  ident: pone.0242899.ref045
  article-title: Coronet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2020.105581
– volume: 42
  start-page: 513
  year: 2011
  ident: pone.0242899.ref021
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2011.2168604
– year: 2020
  ident: pone.0242899.ref053
  article-title: Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification
  publication-title: IEEE Transactions on Cybernetics
– volume: 26
  start-page: 46
  year: 2020
  ident: pone.0242899.ref052
  article-title: Extraction of Novel Features Based on Histograms of MFCCs Used in Emotion Classification from Generated Original Speech Dataset
  publication-title: Elektronika ir Elektrotechnika
  doi: 10.5755/j01.eie.26.1.25309
– start-page: 1
  year: 2020
  ident: pone.0242899.ref018
  article-title: Spoken Language Identification Based on Particle Swarm Optimisation–Extreme Learning Machine Approach
  publication-title: Circuits, Systems, and Signal Processing
– ident: pone.0242899.ref008
– volume: 8
  start-page: 1486
  year: 2018
  ident: pone.0242899.ref026
  article-title: Pathological brain detection in magnetic resonance imaging using combined features and improved extreme learning machines
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2018.2459
– volume: 435
  start-page: 40
  year: 2018
  ident: pone.0242899.ref029
  article-title: A Pearson’s correlation coefficient based decision tree and its parallel implementation
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.12.059
– start-page: 1
  volume-title: Experiments on Malay short text classification
  year: 2017
  ident: pone.0242899.ref040
– volume: 67
  start-page: 946
  year: 2020
  ident: pone.0242899.ref038
  article-title: Histogram of Oriented Gradients Feature Extraction From Raw Bayer Pattern Images
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
  doi: 10.1109/TCSII.2020.2980557
– volume: 10
  start-page: 988
  year: 1999
  ident: pone.0242899.ref049
  article-title: An overview of statistical learning theory
  publication-title: IEEE transactions on neural networks
  doi: 10.1109/72.788640
– volume: 87
  start-page: 209
  year: 2018
  ident: pone.0242899.ref035
  article-title: Using dimension reduction PCA to identify ecosystem service bundles
  publication-title: Ecological Indicators
  doi: 10.1016/j.ecolind.2017.10.049
– year: 2020
  ident: pone.0242899.ref016
  article-title: The diagnostic evaluation of Convolutional Neural Network (CNN) for the assessment of chest X-ray of patients infected with COVID-19
  publication-title: medRxiv
– year: 2020
  ident: pone.0242899.ref007
  article-title: Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks
  publication-title: Physical and Engineering Sciences in Medicine: 1
– volume: 13
  start-page: e0194770
  year: 2018
  ident: pone.0242899.ref022
  article-title: Spoken language identification based on the enhanced self-adjusting extreme learning machine approach
  publication-title: PloS one
  doi: 10.1371/journal.pone.0194770
– volume: 17
  start-page: 879
  year: 2006
  ident: pone.0242899.ref024
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/TNN.2006.875977
– volume: 27
  start-page: 5044
  year: 2018
  ident: pone.0242899.ref030
  article-title: Reducing complexity of HEVC: A deep learning approach
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2018.2847035
– volume: 8
  start-page: 64514
  year: 2020
  ident: pone.0242899.ref044
  article-title: A Survey of Voice Pathology Surveillance Systems Based on Internet of Things and Machine Learning Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984925
SSID ssj0053866
Score 2.5022128
Snippet The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0242899
SubjectTerms Algorithms
Biology and Life Sciences
Computer and Information Sciences
COVID-19 - diagnosis
COVID-19 - diagnostic imaging
COVID-19 - physiopathology
Genetic algorithms
Humans
Lung - diagnostic imaging
Lung - physiopathology
Lung - virology
Machine Learning
Mathematical optimization
Medicine and Health Sciences
Neural Networks, Computer
Physical Sciences
Research and Analysis Methods
SARS-CoV-2 - isolation & purification
SARS-CoV-2 - pathogenicity
Support Vector Machine
Thorax - diagnostic imaging
Thorax - physiopathology
Thorax - virology
Tomography, X-Ray Computed
Title Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection
URI https://www.ncbi.nlm.nih.gov/pubmed/33320858
https://www.proquest.com/docview/2470627548
https://pubmed.ncbi.nlm.nih.gov/PMC7737907
https://doaj.org/article/9549107975a0472aaf022b44352060ba
Volume 15
WOSCitedRecordID wos000600339800040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdg8MALYnx2G8UgJOAhXZzEcfK4llVUY23UQdXxgOXYTldpS6c25e_n7LilEQ_jgZd7iM9Scnf23cXn3yH03hzmMlVQz9cshwRF5Z4oIFmJiaKqyFmgXbMJNhwm02ma7bT6MjVhNTxwLbhjcwwFKUrKqDDAhkIU4HXyCLx84Md-bkMjGN4kU_UeDKs4jt1FuZCRY6eXzu2i1B3jlRKL9frHEVm8_r935R231CyZ3PFB_SfosQse8Un90vvoni6fon23PFf4o8OQ_vQM_RzBVgAq1AqDhZiLilhczxbLeXV148F-bP4KYtcxYoZvbEWlxhuAcQyRLBbramHxXHFvNBl89kiKla5s5Vb5HH3vn37rffFcKwVPxpFfeVIqyLy0oIIGaRElShIVy0jRhPiFYBAH5ZCsAhc4LxlEutBpSKKcMQaThPTDF2ivBOG9QpgUCSk0jTSlMkqVSBUxGPeSEiVgpm6hcCNXLh3OuGl3cc3t4RmDfKOWFjfa4E4bLeRtZ93WOBt38HeNyra8BiXbPgDb4c52-F2200JvjMJ5feV0u9b5SRyBBYUQfrbQO8thkDJKU4ozE-vVig9Gk39guhg3mD44pmIB4pDCXX-AbzIIXA3OowYnGItsDL_dmCc3Q6ZIrtSL9YoHEbOg01HSQi9rc93KJwxD040VRljDkBsCbI6U8ysLN85YyFKfHfwPiR-iR4H5YUECj9AjtFct1_o1eih_VfPVso3us_HE0CmzNAGa9EgbPeieDrNx265xoP3sK9CzbgfouX9mKMssvQCa0R8wIxucZ5e_ASunWLg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimised+genetic+algorithm-extreme+learning+machine+approach+for+automatic+COVID-19+detection&rft.jtitle=PloS+one&rft.au=Albadr%2C+Musatafa+Abbas+Abbood&rft.au=Tiun%2C+Sabrina&rft.au=Ayob%2C+Masri&rft.au=Al-Dhief%2C+Fahad+Taha&rft.date=2020-12-15&rft.eissn=1932-6203&rft.volume=15&rft.issue=12&rft.spage=e0242899&rft_id=info:doi/10.1371%2Fjournal.pone.0242899&rft_id=info%3Apmid%2F33320858&rft.externalDocID=33320858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon