Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection
The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on d...
Saved in:
| Published in: | PloS one Vol. 15; no. 12; p. e0242899 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
15.12.2020
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images. |
|---|---|
| AbstractList | The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images. The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images. |
| Audience | Academic |
| Author | Ayob, Masri Tiun, Sabrina Omar, Khairuddin AL-Dhief, Fahad Taha Hamzah, Faizal Amri Albadr, Musatafa Abbas Abbood |
| AuthorAffiliation | 2 Department of Communication Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia University of Engineering & Technology, Taxila, PAKISTAN 1 CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia 3 Department of Emergency Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia |
| AuthorAffiliation_xml | – name: 3 Department of Emergency Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia – name: 1 CAIT, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia – name: 2 Department of Communication Engineering, School of Electrical Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia – name: University of Engineering & Technology, Taxila, PAKISTAN |
| Author_xml | – sequence: 1 givenname: Musatafa Abbas Abbood orcidid: 0000-0003-2062-688X surname: Albadr fullname: Albadr, Musatafa Abbas Abbood – sequence: 2 givenname: Sabrina surname: Tiun fullname: Tiun, Sabrina – sequence: 3 givenname: Masri surname: Ayob fullname: Ayob, Masri – sequence: 4 givenname: Fahad Taha surname: AL-Dhief fullname: AL-Dhief, Fahad Taha – sequence: 5 givenname: Khairuddin orcidid: 0000-0003-1794-019X surname: Omar fullname: Omar, Khairuddin – sequence: 6 givenname: Faizal Amri surname: Hamzah fullname: Hamzah, Faizal Amri |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33320858$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNktuL1DAUxousuBf9D0QKguhDx9zatPsgLONtYGHAyz4azqSnnSxtMqap6H9v6szKVEQkDwknv-8jOec7T06ss5gkjylZUC7py1s3egvdYhfLC8IEK6vqXnJGK86yghF-cnQ-Tc6H4ZaQnJdF8SA55ZwzUublWfJlvQumNwPWaYsWg9EpdK3zJmz7DL8Hjz2mHYK3xrZpD3prLKaw23kXz2njfApjcD1MyuX6ZvU6o1VaY0AdjLMPk_sNdAM-OuwXyee3bz4t32fX63er5dV1pgtBQqZ1XRCKkEPOqkaUtaZ1oUWdl5Q0IFlONpTzSJFCaiawwYpTsZFSRhFowi-S1d63dnCrdt704H8oB0b9KjjfKvDxiR2qKhcVJbKSORAhGUBDGNsIwXNGCrKB6PVq77UbNz3WGm3w0M1M5zfWbFXrvikpuayIjAbPDwbefR1xCCo2WGPXgUU3DooJSQomc1FG9OkebSE-zdjGRUc94eqqEHFcnJAqUou_UHHV2Bsd59-YWJ8JXswEkQlxmC2Mw6BWHz_8P7u-mbPPjtgtQhe2g-vGadTDHHxy3MPfzbsLXgQu94D2bhg8NkqbAJNP_JrpFCVqSrk6pFxNKVeHlEex-EN85_9P2U9iUQIO |
| CitedBy_id | crossref_primary_10_1007_s00521_025_11392_2 crossref_primary_10_1016_j_apt_2024_104422 crossref_primary_10_1016_j_mcpdig_2023_07_007 crossref_primary_10_1007_s00500_023_09123_7 crossref_primary_10_1111_exsy_13532 crossref_primary_10_1007_s44163_024_00185_6 crossref_primary_10_1016_j_eswa_2022_119212 crossref_primary_10_1007_s11042_024_20108_y crossref_primary_10_1371_journal_pone_0251122 crossref_primary_10_1155_2021_9942873 crossref_primary_10_1016_j_compbiomed_2022_105344 crossref_primary_10_5306_wjco_v12_i6_437 crossref_primary_10_1016_j_specom_2024_103100 crossref_primary_10_1007_s00521_024_09617_x crossref_primary_10_1007_s42044_024_00190_z crossref_primary_10_1007_s42979_022_01642_8 crossref_primary_10_3390_jcm12103446 crossref_primary_10_1016_j_irbm_2022_05_006 crossref_primary_10_3389_fpubh_2022_925901 crossref_primary_10_3390_bioengineering11090952 crossref_primary_10_1109_ACCESS_2021_3082565 crossref_primary_10_3389_fonc_2023_1150840 crossref_primary_10_1007_s11042_024_19716_5 crossref_primary_10_1007_s00530_023_01072_3 crossref_primary_10_1007_s11042_022_12747_w crossref_primary_10_1007_s12559_022_10063_x crossref_primary_10_3390_sci6010002 crossref_primary_10_1007_s11760_024_03619_x crossref_primary_10_1016_j_cie_2021_107912 crossref_primary_10_1109_ACCESS_2021_3111175 crossref_primary_10_1016_j_specom_2024_103092 crossref_primary_10_1371_journal_pone_0316996 crossref_primary_10_1002_cdt3_27 crossref_primary_10_1007_s00500_022_07202_9 crossref_primary_10_1177_09722629251349031 crossref_primary_10_1109_ACCESS_2021_3081629 crossref_primary_10_3390_jimaging8100267 crossref_primary_10_1007_s11042_024_19788_3 crossref_primary_10_32604_cmes_2021_017679 crossref_primary_10_1007_s11042_024_19515_y |
| Cites_doi | 10.1016/j.compbiomed.2020.103792 10.4018/IJEIS.2019010106 10.1016/S0140-6736(20)30360-3 10.1007/s10772-019-09621-w 10.1183/09031936.01.00213501 10.59275/j.melba.2020-48g7 10.1016/j.asoc.2020.106580 10.1001/jama.2020.2565 10.1007/s11063-016-9496-z 10.1016/j.eswa.2016.08.026 10.1016/j.neunet.2009.11.009 10.5455/jjee.204-1585312246 10.3390/electronics8010100 10.1007/s12559-014-9255-2 10.1080/00405000.2013.827393 10.14419/ijet.v7i4.36.23737 10.1080/24751839.2019.1666625 10.1364/OL.43.001107 10.1007/s11042-017-5023-0 10.1007/s10489-020-01829-7 10.1016/j.neucom.2005.12.126 10.1016/j.cmpb.2020.105581 10.1109/TSMCB.2011.2168604 10.5755/j01.eie.26.1.25309 10.1166/jmihi.2018.2459 10.1016/j.ins.2017.12.059 10.1109/TCSII.2020.2980557 10.1109/72.788640 10.1016/j.ecolind.2017.10.049 10.1371/journal.pone.0194770 10.1109/TNN.2006.875977 10.1109/TIP.2018.2847035 10.1109/ACCESS.2020.2984925 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 Public Library of Science 2020 Albadr et al 2020 Albadr et al |
| Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Albadr et al 2020 Albadr et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0242899 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection |
| EISSN | 1932-6203 |
| ExternalDocumentID | oai_doaj_org_article_9549107975a0472aaf022b44352060ba PMC7737907 A645383009 33320858 10_1371_journal_pone_0242899 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Pakistan |
| GeographicLocations_xml | – name: Pakistan |
| GrantInformation_xml | – fundername: ; grantid: GUP-2020-063 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7X8 ESTFP PUEGO 5PM |
| ID | FETCH-LOGICAL-c640t-ccd601ea5a529f48dc1d6c4d5810fa7250b133ccd067c24efe9314b7771eaac03 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600339800040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Mon Nov 10 04:25:09 EST 2025 Tue Nov 04 02:01:10 EST 2025 Mon Sep 08 15:08:15 EDT 2025 Sat Nov 29 13:13:13 EST 2025 Sat Nov 29 09:56:08 EST 2025 Wed Nov 26 10:39:56 EST 2025 Wed Nov 26 10:04:57 EST 2025 Thu May 22 21:20:14 EDT 2025 Wed Feb 19 02:09:48 EST 2025 Tue Nov 18 22:14:19 EST 2025 Sat Nov 29 02:58:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c640t-ccd601ea5a529f48dc1d6c4d5810fa7250b133ccd067c24efe9314b7771eaac03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: NO authors have competing interests. |
| ORCID | 0000-0003-1794-019X 0000-0003-2062-688X |
| OpenAccessLink | https://doaj.org/article/9549107975a0472aaf022b44352060ba |
| PMID | 33320858 |
| PQID | 2470627548 |
| PQPubID | 23479 |
| PageCount | e0242899 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9549107975a0472aaf022b44352060ba pubmedcentral_primary_oai_pubmedcentral_nih_gov_7737907 proquest_miscellaneous_2470627548 gale_infotracmisc_A645383009 gale_infotracacademiconefile_A645383009 gale_incontextgauss_ISR_A645383009 gale_incontextgauss_IOV_A645383009 gale_healthsolutions_A645383009 pubmed_primary_33320858 crossref_citationtrail_10_1371_journal_pone_0242899 crossref_primary_10_1371_journal_pone_0242899 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-15 |
| PublicationDateYYYYMMDD | 2020-12-15 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2020 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | S Tiun (pone.0242899.ref040) 2017 pone.0242899.ref060 M Abdel-Nasser (pone.0242899.ref032) 2019; 8 M Nour (pone.0242899.ref050) 2020 F Shi (pone.0242899.ref015) 2020 Y Sun (pone.0242899.ref053) 2020 S-H Wang (pone.0242899.ref025) 2017 Y Mu (pone.0242899.ref029) 2018; 435 SUK Bukhari (pone.0242899.ref016) 2020 W Zhou (pone.0242899.ref038) 2020; 67 Y Bai (pone.0242899.ref001) 2020; 323 T Quoc Bao (pone.0242899.ref036) 2020; 4 RJ May (pone.0242899.ref041) 2010; 23 G-B Huang (pone.0242899.ref023) 2014; 6 C Marsboom (pone.0242899.ref035) 2018; 87 H Chen (pone.0242899.ref002) 2020; 395 FT Al-Dhief (pone.0242899.ref044) 2020; 8 MAA Albadra (pone.0242899.ref019) 2017; 12 G-B Huang (pone.0242899.ref021) 2011; 42 T Ozturk (pone.0242899.ref047) 2020 T Franquet (pone.0242899.ref006) 2001; 18 S Lu (pone.0242899.ref026) 2018; 8 ID Apostolopoulos (pone.0242899.ref007) 2020 M Sokolova (pone.0242899.ref039) 2006 H Çelik (pone.0242899.ref043) 2014; 105 AI Khan (pone.0242899.ref045) 2020 T Cherian (pone.0242899.ref003) 2005; 83 T Yu (pone.0242899.ref031) 2018; 43 VN Vapnik (pone.0242899.ref049) 1999; 10 P Niu (pone.0242899.ref048) 2016; 44 pone.0242899.ref042 pone.0242899.ref009 pone.0242899.ref008 pone.0242899.ref005 G-B Huang (pone.0242899.ref024) 2006; 17 MAA Albadr (pone.0242899.ref022) 2018; 13 N Dalal (pone.0242899.ref034) 2005 pone.0242899.ref051 Y Fang (pone.0242899.ref004) 2020 M Pakyurek (pone.0242899.ref052) 2020; 26 AM Alqudah (pone.0242899.ref010) 2020; 6 pone.0242899.ref014 OI Obaid (pone.0242899.ref046) 2018; 7 pone.0242899.ref058 pone.0242899.ref059 pone.0242899.ref012 pone.0242899.ref056 pone.0242899.ref013 J Zeng (pone.0242899.ref037) 2019; 15 pone.0242899.ref057 pone.0242899.ref054 pone.0242899.ref011 pone.0242899.ref055 Y-D Zhang (pone.0242899.ref027) 2018; 77 MAA Albadr (pone.0242899.ref028) 2019; 22 G-B Huang (pone.0242899.ref020) 2006; 70 M Xu (pone.0242899.ref030) 2018; 27 M Abdel-Nasser (pone.0242899.ref033) 2016; 64 MAA Albadr (pone.0242899.ref018) 2020 pone.0242899.ref017 |
| References_xml | – ident: pone.0242899.ref009 – ident: pone.0242899.ref011 – start-page: 103792 year: 2020 ident: pone.0242899.ref047 article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2020.103792 – volume: 15 start-page: 100 year: 2019 ident: pone.0242899.ref037 article-title: A Novel Finger-Vein Recognition Based on Quality Assessment and Multi-Scale Histogram of Oriented Gradients Feature publication-title: International Journal of Enterprise Information Systems (IJEIS) doi: 10.4018/IJEIS.2019010106 – volume: 83 start-page: 353 year: 2005 ident: pone.0242899.ref003 article-title: Standardized interpretation of paediatric chest radiographs for the diagnosis of pneumonia in epidemiological studies publication-title: Bulletin of the World Health Organization – volume: 395 start-page: 809 year: 2020 ident: pone.0242899.ref002 article-title: Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records publication-title: The Lancet doi: 10.1016/S0140-6736(20)30360-3 – ident: pone.0242899.ref057 – volume: 12 start-page: 4610 year: 2017 ident: pone.0242899.ref019 article-title: Extreme learning machine: a review publication-title: International Journal of Applied Engineering Research – volume: 22 start-page: 711 year: 2019 ident: pone.0242899.ref028 article-title: Spoken language identification based on optimised genetic algorithm–extreme learning machine approach publication-title: International Journal of Speech Technology doi: 10.1007/s10772-019-09621-w – volume: 18 start-page: 196 year: 2001 ident: pone.0242899.ref006 article-title: Imaging of pneumonia: trends and algorithms publication-title: European Respiratory Journal doi: 10.1183/09031936.01.00213501 – start-page: 200432 year: 2020 ident: pone.0242899.ref004 article-title: Sensitivity of chest CT for COVID-19: comparison to RT-PCR publication-title: Radiology – ident: pone.0242899.ref014 doi: 10.59275/j.melba.2020-48g7 – start-page: 1 year: 2017 ident: pone.0242899.ref025 article-title: Ductal carcinoma in situ detection in breast thermography by extreme learning machine and combination of statistical measure and fractal dimension publication-title: Journal of Ambient Intelligence and Humanized Computing – start-page: 106580 year: 2020 ident: pone.0242899.ref050 article-title: A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106580 – year: 2020 ident: pone.0242899.ref015 article-title: Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for covid-19 publication-title: IEEE reviews in biomedical engineering – start-page: 1015 volume-title: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation year: 2006 ident: pone.0242899.ref039 – ident: pone.0242899.ref058 – ident: pone.0242899.ref060 – ident: pone.0242899.ref012 – volume: 323 start-page: 1406 year: 2020 ident: pone.0242899.ref001 article-title: Presumed asymptomatic carrier transmission of COVID-19 publication-title: Jama doi: 10.1001/jama.2020.2565 – ident: pone.0242899.ref054 – volume: 44 start-page: 813 year: 2016 ident: pone.0242899.ref048 article-title: A kind of parameters self-adjusting extreme learning machine publication-title: Neural Processing Letters doi: 10.1007/s11063-016-9496-z – volume: 64 start-page: 365 year: 2016 ident: pone.0242899.ref033 article-title: Automatic nipple detection in breast thermograms publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.08.026 – ident: pone.0242899.ref005 – volume: 23 start-page: 283 year: 2010 ident: pone.0242899.ref041 article-title: Data splitting for artificial neural networks using SOM-based stratified sampling publication-title: Neural Networks doi: 10.1016/j.neunet.2009.11.009 – volume: 6 start-page: 168 year: 2020 ident: pone.0242899.ref010 article-title: COVID-19 Detection from X-ray Images Using Different Artificial Intelligence Hybrid Models publication-title: Jordan Journal of Electrical Engineering doi: 10.5455/jjee.204-1585312246 – volume: 8 start-page: 100 year: 2019 ident: pone.0242899.ref032 article-title: Breast cancer detection in thermal infrared images using representation learning and texture analysis methods publication-title: Electronics doi: 10.3390/electronics8010100 – ident: pone.0242899.ref059 – volume: 6 start-page: 376 year: 2014 ident: pone.0242899.ref023 article-title: An insight into extreme learning machines: random neurons, random features and kernels publication-title: Cognitive Computation doi: 10.1007/s12559-014-9255-2 – volume: 105 start-page: 575 year: 2014 ident: pone.0242899.ref043 article-title: Development of a machine vision system: real-time fabric defect detection and classification with neural networks publication-title: The Journal of The Textile Institute doi: 10.1080/00405000.2013.827393 – ident: pone.0242899.ref013 – volume: 7 start-page: 160 year: 2018 ident: pone.0242899.ref046 article-title: Evaluating the performance of machine learning techniques in the classification of Wisconsin Breast Cancer publication-title: International Journal of Engineering & Technology doi: 10.14419/ijet.v7i4.36.23737 – ident: pone.0242899.ref017 – volume: 4 start-page: 140 year: 2020 ident: pone.0242899.ref036 article-title: Plant species identification from leaf patterns using histogram of oriented gradients feature space and convolution neural networks publication-title: Journal of Information and Telecommunication doi: 10.1080/24751839.2019.1666625 – volume: 43 start-page: 1107 year: 2018 ident: pone.0242899.ref031 article-title: Toward real-time volumetric tomography for combustion diagnostics via dimension reduction publication-title: Optics letters doi: 10.1364/OL.43.001107 – ident: pone.0242899.ref051 – volume: 77 start-page: 22629 year: 2018 ident: pone.0242899.ref027 article-title: Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-5023-0 – ident: pone.0242899.ref055 – ident: pone.0242899.ref056 doi: 10.1007/s10489-020-01829-7 – start-page: 886 volume-title: Histograms of oriented gradients for human detection year: 2005 ident: pone.0242899.ref034 – volume: 70 start-page: 489 year: 2006 ident: pone.0242899.ref020 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: pone.0242899.ref042 – start-page: 105581 year: 2020 ident: pone.0242899.ref045 article-title: Coronet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2020.105581 – volume: 42 start-page: 513 year: 2011 ident: pone.0242899.ref021 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2011.2168604 – year: 2020 ident: pone.0242899.ref053 article-title: Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification publication-title: IEEE Transactions on Cybernetics – volume: 26 start-page: 46 year: 2020 ident: pone.0242899.ref052 article-title: Extraction of Novel Features Based on Histograms of MFCCs Used in Emotion Classification from Generated Original Speech Dataset publication-title: Elektronika ir Elektrotechnika doi: 10.5755/j01.eie.26.1.25309 – start-page: 1 year: 2020 ident: pone.0242899.ref018 article-title: Spoken Language Identification Based on Particle Swarm Optimisation–Extreme Learning Machine Approach publication-title: Circuits, Systems, and Signal Processing – ident: pone.0242899.ref008 – volume: 8 start-page: 1486 year: 2018 ident: pone.0242899.ref026 article-title: Pathological brain detection in magnetic resonance imaging using combined features and improved extreme learning machines publication-title: Journal of Medical Imaging and Health Informatics doi: 10.1166/jmihi.2018.2459 – volume: 435 start-page: 40 year: 2018 ident: pone.0242899.ref029 article-title: A Pearson’s correlation coefficient based decision tree and its parallel implementation publication-title: Information Sciences doi: 10.1016/j.ins.2017.12.059 – start-page: 1 volume-title: Experiments on Malay short text classification year: 2017 ident: pone.0242899.ref040 – volume: 67 start-page: 946 year: 2020 ident: pone.0242899.ref038 article-title: Histogram of Oriented Gradients Feature Extraction From Raw Bayer Pattern Images publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs doi: 10.1109/TCSII.2020.2980557 – volume: 10 start-page: 988 year: 1999 ident: pone.0242899.ref049 article-title: An overview of statistical learning theory publication-title: IEEE transactions on neural networks doi: 10.1109/72.788640 – volume: 87 start-page: 209 year: 2018 ident: pone.0242899.ref035 article-title: Using dimension reduction PCA to identify ecosystem service bundles publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2017.10.049 – year: 2020 ident: pone.0242899.ref016 article-title: The diagnostic evaluation of Convolutional Neural Network (CNN) for the assessment of chest X-ray of patients infected with COVID-19 publication-title: medRxiv – year: 2020 ident: pone.0242899.ref007 article-title: Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks publication-title: Physical and Engineering Sciences in Medicine: 1 – volume: 13 start-page: e0194770 year: 2018 ident: pone.0242899.ref022 article-title: Spoken language identification based on the enhanced self-adjusting extreme learning machine approach publication-title: PloS one doi: 10.1371/journal.pone.0194770 – volume: 17 start-page: 879 year: 2006 ident: pone.0242899.ref024 article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes publication-title: IEEE Trans Neural Networks doi: 10.1109/TNN.2006.875977 – volume: 27 start-page: 5044 year: 2018 ident: pone.0242899.ref030 article-title: Reducing complexity of HEVC: A deep learning approach publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2018.2847035 – volume: 8 start-page: 64514 year: 2020 ident: pone.0242899.ref044 article-title: A Survey of Voice Pathology Surveillance Systems Based on Internet of Things and Machine Learning Algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2984925 |
| SSID | ssj0053866 |
| Score | 2.5022852 |
| Snippet | The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0242899 |
| SubjectTerms | Algorithms Biology and Life Sciences Computer and Information Sciences COVID-19 - diagnosis COVID-19 - diagnostic imaging COVID-19 - physiopathology Genetic algorithms Humans Lung - diagnostic imaging Lung - physiopathology Lung - virology Machine Learning Mathematical optimization Medicine and Health Sciences Neural Networks, Computer Physical Sciences Research and Analysis Methods SARS-CoV-2 - isolation & purification SARS-CoV-2 - pathogenicity Support Vector Machine Thorax - diagnostic imaging Thorax - physiopathology Thorax - virology Tomography, X-Ray Computed |
| Title | Optimised genetic algorithm-extreme learning machine approach for automatic COVID-19 detection |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33320858 https://www.proquest.com/docview/2470627548 https://pubmed.ncbi.nlm.nih.gov/PMC7737907 https://doaj.org/article/9549107975a0472aaf022b44352060ba |
| Volume | 15 |
| WOSCitedRecordID | wos000600339800040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdg8MALYnx2G8UgJOAhnfNlJ49rWUU11kYdVB0PWI5jd5W2dGpT_n7Ojlsa8TAeeLmH-hyld-c7n3P-HULvIUnWGizHg4Q2MKdVwhOaxp5Pc0ESLaUviG02wYbDZDpNs51WX6YmrIYHrgV3bD5DQYqSslgYYEMhNESdPIIoHxBKcrs1guFNMlX7YFjFlLqLciHzj51eOreLUnVMVEos1uufQGTx-v_2yjthqVkyuROD-k_QY7d5xCf1S--je6p8ivbd8lzhjw5D-tMz9HMErgBUqAoMFmIuKmJxPVss59XVjQf-2JwKYtcxYoZvbEWlwhuAcQw7WSzW1cLiueLeaDL4DGLGhaps5Vb5HH3vn37rffFcKwVP0ohUnpQFZF5KxCIOUh0lhfQLKqMiTnyiBYN9UA7JKnBB8JJBpLRKQz_KGWMwSUgSvkB7JQjvFcKUqJj4ImC5oOYB4CATFSkqdK7DIJUtFG7kyqXDGTftLq65_XjGIN-opcWNNrjTRgt521m3Nc7GHfxdo7Itr0HJtj-A7XBnO_wu22mhN0bhvL5yul3r_IRGYEEhbD9b6J3lMEgZpSnFmYn1asUHo8k_MF2MG0wfHJNegDikcNcf4D8ZBK4G51GDE4xFNobfbsyTmyFTJFeqxXrFg4hZ0OkoaaGXtblu5ROGoenGCiOsYcgNATZHyvmVhRtnLGQpYQf_Q-KH6FFgDiz8wPPjI7RXLdfqNXoof1Xz1bKN7rPxxNApszQBmvT8NnrQPR1m47Zd40D72VegZ90O0HNyZijLLL0AmsU_YEY2OM8ufwM_C1is |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimised+genetic+algorithm-extreme+learning+machine+approach+for+automatic+COVID-19+detection&rft.jtitle=PloS+one&rft.au=Albadr%2C+Musatafa+Abbas+Abbood&rft.au=Tiun%2C+Sabrina&rft.au=Ayob%2C+Masri&rft.au=Hamzah%2C+Faizal+Amri&rft.date=2020-12-15&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=12&rft.spage=e0242899&rft_id=info:doi/10.1371%2Fjournal.pone.0242899&rft.externalDBID=n%2Fa&rft.externalDocID=A645383009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |